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Abstract

A significant number of variants/mutations in the N-methyl-D-aspartate glutamatergic receptor 

(NMDAR) gene family (GRIN) have been identified along with stunning advances in the 

technologies of next generation of whole-exome sequencing. Mutations in human GRIN genes are 

distributed throughout the entire gene, from amino terminal domain to C-terminal domain, in 

patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, 

intellectual disability, attention deficit hyperactivity disorder, and schizophrenia. Analyzing the 

currently available human genetic variations illustrates the genetic variation intolerance to 

missense mutations differs significantly among domains within the GRIN genes. Functional 

analyses of these mutations and their pharmacological profiles provide the first opportunity to 

understand the molecular mechanism and targeted therapeutic strategies for these neurological and 

psychiatric disorders, as well as unfold novel clues to channel function.
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Introduction

N-methyl-D-aspartate receptors (NMDARs), ligand-gated inotropic glutamatergic channels, 

mediate a Ca2+-permeable, slow component of synaptic current that plays key roles in the 
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formation and maturation of excitatory synapses and brain circuits [1]. NMDARs, hetero-

tetramers, are comprised of two GluN1 subunits and two GluN2 subunits. The glycine-

binding GluN1 subunit, product of a single gene GRIN1 with eight splicing variants, has an 

ubiquitous expression throughout the brain. The four glutamate-binding GluN2 subunits 

(2A, 2B, 2C, and 2D, encoded by genes of GRIN2A, 2B, 2C, and 2D) present different 

temporal and spatial expression profiles, and distinct pharmacological and biophysical 

properties. The expression of GluN2A and GluN2C subunits are predominant in postnatal 

period and peak in adult, whereas high levels of GluN2B and GluN2D subunits are 

expressed at embryonic/prenatal stages. The expression levels of GluN2B and GluN2D 

subunits in most brain regions decreases with age leading to localization after birth in certain 

brain regions [2]. Each subunit in the NMDARs shares a same structure and contains four 

semi-autonomous domains: an amino-terminal domain (ATD), a clamshell-shaped agonist 

binding domain (ABD), four channel-forming transmembrane domains (TMDs: M1, M2, 

M3, and M4; with M2 re-entrant loop to form the channel pore), and an intracellular 

carboxy-terminal domain (CTD). The ABDs fold into clamshell-shaped bi-lobed structures, 

hosting a binding pocket for agonists [3]. Activation of NMDAR channels requires binding 

of both glutamate and glycine simultaneously. The agonist binding promotes the ABD 

clamshell closure, which induces movement of linker regions connected the ABD to the 

transmembrane domains that causes conformational changes and the cation-selective pore to 

open. Opening of NMDAR channels results in an elevation in the Ca2+ levels intracellularly 

and membrane depolarization [1]. It has been established that NMDARs play critical roles in 

normal brain function, such as synaptic plasticity, learning, memory, motor and sensory 

function, and brain development, as well as in various pathological conditions, including 

stroke, epilepsy, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, pain and 

schizophrenia [1,4].

Recent advances in the technologies of next-generation whole exome sequencing have 

yielded a significant number of rare variants and de novo mutations in the GRIN genes 

which are associated with a number of neuropsychiatric disorders [5–7]. In this review, we 

will summarize the recent studies of NMDAR mutations and rare variants, discuss the 

current understanding of the molecular mechanism of the impact on clinical phenotype and 

disease progression underlying these mutations and rare variants, and highlight exploration 

of mechanism-based novel therapeutic strategies.

NMDAR mutations and rare variants are associated with various 

neurological and psychiatric disorders

Analysis of genetic variation to missense mutations in the healthy population (e.g. 

documented in ExAC Browser) by using residual variation intolerance score shows that the 

GRIN genes are intolerant to variation (have fewer SNPs than expected) [8•,9], suggesting 

genetic variation may be more likely to influence disease. Following the first report of 

potential disease-causing NMDAR mutations [10•], a large number of genetic variants 

(>200) in NMDARs subunits have been reported. Here, we focus on the genetic variants on 

NMDAR subunits in literatures which are absent in gnomAD database (http://

gnomad.broadinstitute.org/; assessed on August 2nd, 2017) since the variants in gnomAD 
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were presumably identified in healthy population without neurologic and neuropsychiatric 

disorders. Among 258 reported mutations and rare variants, there are 65% (167/258) of 

missense, 9% (22/258) of nonsense, 9% (23/258) of frameshift, 5% (14/258) of splice site, 

and 12% (32/258) others (i.e. chromosomal translocation, inversion, deletion) (Figure 1A). 

The mutations and rare variants are scattered across all NMDAR subunits with 10% 

(26/258) in GluN1 [11–28], 39% (100/258) in GluN2A [10•,12,16,22,24,29–50], 45% 

(116/258) in GluN2B [10•,12,13,16,18,19,21,22,24,29,39,42,44••,49–73••], 3% (9/258) in 

GluN2C [11,12,36], and 3% (7/258) in GluN2D [12,74••] (Figure 1B).

These NMDAR mutations and rare variants are present in patients with various 

neurodevelopmental and neuropsychiatric disorders, such as epilepsy/seizures (EPI), 

intellectual disability (ID), attention deficit hyperactivity disorder (ADHD), autism spectrum 

disorder (ASD), as well as schizophrenia (SCZ) (Figure 1C,D; Suppl. Table S1). Many of 

these conditions are comorbid. Generally, 77% (198/258) of the patients harboring NMDAR 

mutations have intellectual disability (including developmental delay and mental 

retardation), 49% (127/258) with epilepsy, 19% (49/258) with autism spectrum disorder, 

5.0% (12/258) with schizophrenia, and 2.0% (5/258) with attention deficit hyperactivity 

disorder (Figure 1C,D). Epilepsy was the largest group observed in 78% (78/100) of the 

patients with GRIN2A/GluN2A variants, followed by intellectual disability (70%, 70/100) 

and autism spectrum disorder (10%, 10/100) (Figure 1C,D). The GRIN2A-related epilepsies 

often include some aspects of the epilepsy-aphasia syndrome and comprise Landau-Kleffner 

syndrome (LKS), as well as idiopathic focal epilepsy (IFE), atypical benign partial epilepsy 

of childhood (ABPE), benign partial epilepsy of childhood with centrotemporal spikes 

(BECTS), continuous spike-and-wave during slow wave sleep (CSWSS), benign childhood 

epilepsy (BCE), atypical childhood epilepsy with centrotemporal spikes (ACECTS), early-

onset epileptic encephalopathy (EOEE), and unclassified childhood-onset epilepsy. 

Intellectual disability was the largest group occurred in 87% (101/116) of the patients with 

GRIN2B/GluN2B variants, followed by epilepsy (29%, 34/116) and autism spectrum 

disorder (27%, 31/116) (Figure 1C,D). Most mutations in GluN2B were in patients with 

intellectual disability, whereas GluN2A mutations were associated with epilepsy most 

frequently in the cohort of patients studied.

Moreover, mutations have been found in all domains (ATD, ABD, TM-linker, and CTD) 

throughout the mature protein (Figure 2), with the large numbers in ABD and TM-link 

regions. Interestingly, analyzing the genetic intolerance to missense mutations in protein 

domains within GluN subunits (e.g. GluN1, GluN2A and GluN2B subunits) in healthy 

population shows the certain regions in ABD and TM-link are among the sub-regions of the 

relevant gene-encoded proteins with the most heavily missense depletion [44••,75], 

indicating genetic variation in these regions may be more likely to cause disease.

Estimation of overall impact of the mutations on NMDAR function

It is impossible to predict how the rapidly expanding number of disease-related rare variants 

and mutations in GRIN gene family impact brain function and neuronal health without 

functional assessment of the NMDAR protein. This lack of functional data precludes the 

accurate diagnosis and proper treatment. In past several years, of 258 published mutations 
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on NMDAR subunits, functional analyses have been performed on 66 mutations (Suppl. 

Table S1), including 13 mutants from GluN1 [11,23,26,75], 25 from GluN2A [10•,31–

34,44••,48,75–79••], 27 from GluN2B [10•,44••,60,61,72•,73••,75], and one from GluN2D 

[74••]. These functional assessments range from evaluation of a single parameter (i.e. current 

amplitudes) to more comprehensive analyses of multi-parameters, including 

pharmacological properties (i.e. agonist potency, sensitivity to negative modulators, and 

current amplitude), biophysical properties (i.e. channel activation time course, deactivation, 

desensitization, charge transfer, single channel open probability), receptor biogenesis and 

forward trafficking, and/or neuronal excitotoxicity assay. We summarized the functional 

studies with more than one parameter evaluated on 52 missense mutations, 3 located in 

ATD, 25 in ABD, 23 in TM-link, and 1 in CTD (Figure 3). Interestingly, 87% mutations in 

ABD and 96% in TM-link showed functional changes and the functional consequences of 

these mutations differ among domains. 70% of ABD mutations presented loss-of-function, 

whereas 56% of TM-link mutations showed gain-of-function (Figure 3B). No trend is 

evident for the mutations located in ATD and CTD, since there are only a limited number of 

the mutations with functional data. Two TM-link mutations, GluN2A-P552R and GluN2D-

V667I, have been shown to induce excitotoxicity in transfected cultured neurons [74••,75], 

indicating these gain-of-function mutations may underlie the patients’ phenotypes of 

intractable seizures and epileptic encephalopathy. In addition, a functional analysis was 

performed on several variants reported in gnomAD database, some of which showed 

functional changes [44••,77•,79••–81].

Similar neurologic phenotypes (i.e. seizures) can result from both gain- (enhanced NMDAR 

function; i.e. GluN2A-P552R [75] and GluN2A-K669N [44] and loss-of-function mutations 

(reduced NMDAR function; i.e. GluN2A-A548T [75] and GluN2A-V685G [44] in the same 

gene. This observation suggests compensatory mechanism may contribute to patient’s 

phenotype. Moreover, mutations influenced NMDAR function by multiple aspects and may 

have apparent conflicting consequences on the receptor function. For instance, mutant 

GluN2B-C456Y showed enhanced glutamate potency, but reduced glycine potency and 

decreased receptor expression on cell surface [44••]. Thus evaluation of only one aspect of 

NMDAR function may result in an incomplete or even misleading conclusion. Therefore, 

comprehensive evaluation of mutant NMDAR function is necessary to estimate overall 

impact of the mutations on NMDAR function. A recent study [44••] reported an approach 

that integrates measured multiple parameters on NMDAR mutations to estimate overall 

impact of these mutations on receptor function (synaptic and non-synaptic responses). The 

changes in synaptic NMDAR charge transfer for mutations relative to wild type receptors 

were evaluated by the product of the weighted deactivation time rate and the relative current 

amplitude (Figure 4A). Non-synaptic NMDAR charge transfer was assessed in steady-state 

non-synaptic agonist concentrations (Figure 4B). This approach combines quantitative 

assessments of the various effects that mutations have on receptor’s pharmacological 

properties, intrinsic biophysical properties, and surface expression to discern the 

mechanisms underlying the mutant-associated phenotypes.

The in-depth and comprehensive functional evaluation is required to fill the expanding gulf 

between the volume of genetic information describing disease-related NMDAR mutations 
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and our understanding mechanisms of how the mutant influence the receptor function, 

especially study on in vivo models (i.e. transgenic mouse).

Pharmacologic modulation of mutant NMDARs

The diagnosis of human NMDAR mutations that increase or decrease NMDAR activation 

makes it possible that each mutated receptor can be positively and negatively modulated. A 

set of FDA-approved NMDAR channel blockers with low affinity (e.g. memantine, 

dextromethorphan and its metabolite dextrorphan, amantadine, and ketamine) that can 

inhibit NMDAR function have been evaluated in a subset of gain-of-function NMDAR 

variants [44••,72•,74••–76•,78], some of which have been shown to be safe in a pediatric 

population. The different gain-of-function NMDAR mutants showed differential responses 

on the sensitivity to FDA-approved blockers that inhibit mutated NMDARs, suggesting a 

necessity for specific electrophysiological assessment of the response of each mutation to 

NMDAR blockers considered for treatment. In addition, the sensitivity of GluN2A- selective 

non-competitive antagonist TCN-201 and GluN2B selective negative allosteric modulator 

radiprodil were also tested on GluN2A and GluN2B gain-of function mutations [75,78,82]. 

These compounds may attenuate NMDAR hyperactivity, slow neuro-excitotoxicity, and also 

partially restore the circuit imbalances that result from altered NMDAR function to the wild 

type receptors. The “n of 1” trial, an useful approach, has been employed on a subset of 

epileptic patients with GoF GRIN mutations. Add-on memantine treatment has been used in 

children with intractable seizures and epileptic encephalopathy harboring potential gain-of-

function mutations in GRIN2A, GRIN2B, and GRIN2D genes with a mixed response. In 

these cases, the patient with GluN2A-L812M [76•] and the patient with GluN2D-V667I (the 

second proband in Li et al., 2016 [74••]) had a favorable response to memantine treatment 

with significant reduction of the patients’ seizures burden. However, add-on memantine 

therapy was showed no effectiveness or unclear results in reducing intractable seizures in 

four patients harboring GluN2B mutations (GluN2B-G611V, -N615I, -V618G, and -M818T; 

[72•]) and another patient with GluN2D-V667I (the first proband in Li et al., 2016 [74]), 

whose seizures were controlled by a combination therapy with ketamine and magnesium 

sulfate [74••]. The difference in memantine response in these cases reflects the complexity of 

precision medicine. Well-designed double-blinded prospective clinical trials are necessary to 

determine the outcomes of memantine treatment.

As for rectifying loss-of-function mutations, the strategies enhancing NMDAR activity were 

also evaluated. Several positive allosteric modulators, pregnenolone sulfate, spermine, and 

FDA-approved tobramycin, potentiated several GluN2A and GluN2B loss-of-function 

mutations located in ABD through enhancement of current amplitude, and/or prolongation 

of deactivation time course [44••]. A GluN2A-selective positive allosteric modulator (a 

thiazolopyrimidinone compound) significantly increased the calcium influx of a subset of 

GluN2A loss-of-function mutations located in agonist binding domain, and partially or fully 

rectified the altered functions (changes in agonist potency) that caused by these mutations to 

wild type receptor levels [79]. Co-agonist D-serine was able to attenuate hypofunction of 

GluN2B-P553T-containing NMDARs, associated with Rett-like patient with severe 

encephalopathy, and the patient has shown motor, cognitive, and communication 

improvements after 17 months of D-serine dietary supplementation [73••]. These data 
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suggest that further work evaluating positive allosteric modulators as a strategy for 

enhancing mutant NMDAR function could be beneficial. A significant number of disease-

associated NMDAR mutants appear to cause protein folding or assembly defects. An 

alternative strategy for variants that reduce receptor protein levels at the cell surface is to 

develop pharmacological chaperones, which could facilitate NMDAR biogenesis, correcting 

protein folding and NMDAR assembly, thereby enhancing protein stability and forwarding 

trafficking. Taken together, the NMDARs with rare variants can be positively or negatively 

modulated, which may highlight the continued development of clinically-available NMDAR 

modulators.

Conclusion and future direction

Although sequencing provides unprecedented opportunities for target identification, a large 

and expanding gulf has developed between the volume of genetic information describing 

disease-associated rare variants and de novo mutations in patients and our understanding of 

how these genetic variants affect the function of the proteins they encode. The lack of 

functional understanding blunts the promise that genetic analysis holds for improving 

treatment. Furthermore, it prevents translation of genetic information into a better 

understanding of the basis for disease. Efforts to fill a gap in this rapidly emerging field will 

provide a functional understanding of how all mutations impact NMDAR properties. We 

expect that these studies will be instrumental in allowing clinical diagnostic criteria to be 

developed, which will also facilitate better identification of patients with NMDAR 

mutations. In addition, we expect the evaluation of these mutations will unfold new clues to 

channel function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Dr. Stephen F. Traynelis for his critical reading and valuable comments. The study related to this review 
was supported by NICHD/NIH (the Eunice Kennedy Shriver National Institute Of Child Health & Human 
Development of the National Institutes of Health) (R01HD082373), by the National Natural Science Foundation of 
China (grant number: 81601131, 81501123), by the Beijing Natural Science Foundation (grant number: 7151010, 
7172217), by the Beijing Municipal Natural Science Key Project (grant number: 15G10050), by the Beijing 
Institute for Brain Disorders Foundation (grant number: BIBDPXM2014_014226_000016), by the Beijing 
Municipal Science and Technology Commission (grant number: Z161100000216133, Z161100004916169), by 
Beijing key laboratory of molecular diagnosis and study on pediatric genetic diseases(grant number: BZ0317), by 
the National Key Research and Development Program of China (grant number: 2016YFC1306201, 
2016YFC0901505).

Abbreviations

ABD agonist-binding domain

ABPE atypical benign partial epilepsy

ACECTS atypical childhood epilepsy with centrotemporal spikes

ADHD attention deficit hyperactivity disorder

XiangWei et al. Page 6

Curr Opin Physiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ASD autism spectrum disorders

ATD amino terminal domain

BCE benign childhood epilepsy

BECTS benign epilepsy with centrotemporal spikes

CSWSS continuous spike-and-wave during sleep syndrome

CTD cytosolic carboxyl terminal domain

EOEE early-onset epileptic encephalopathy

EPI epilepsy/seizures

GoF gain-of-function

ID intellectual disability

IFE idiopathic focal epilepsy

LoF loss-of-function

LKS Landau-Kleffner syndrome

NMDAR N-methyl-D-aspartate receptor

SCZ schizophrenia

TM-link transmembrane domains (M1-4) and linker regions
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Highlights

1. NMDAR rare variants are associated with various neuropsychiatric disorders

2. Functional consequences of variants differ among domains

3. Evaluation of multiple parameters is necessary to define gain- or loss-of-

function

4. NMDAR variants can be positively or negatively modulated 

pharmacologically•
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Figure 1. NMDAR mutations are identified in patients with various neurodevelopmental and 
neuropsychiatric disorders
(A,B) Pie charts depict the proportion of mutation types (A) and mutations found in different 

GluN subunits (B). (C,D) Summary of the types of mutations and variants that occurred in 

NMDARs and associated phenotypes. All published mutations absent from gnomAD 

database (http://gnomad.broadinstitute.org/; assessed on August 2nd, 2017) are included. 

Many mutations have multiple phenotypes, which are only snapshot of the current literature, 

which is disproportionally weighted by different diagnostic procedures. “Others” includes 

large-scale chromosomal deletion, translocation, inversion, and duplication, ADHD: 

attention deficit hyperactivity disorder, ASD: autism spectrum disorder, EPI: epilepsy/

seizures, ID: intellectual disability (including developmental delay and mental retardation), 

SCZ: schizophrenia.
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Figure 2. Location of NMDAR mutations
(A–C) Architecture and domain organization for the NMDAR. (A) linear representation for 

a GluN subunit; (B) an NMDA receptor tetramer (side view) (83); (C) a GluN subunit 

topology (side view). (D,E) Summary of NMDAR mutation locations (missense, nonsense, 

and frame-shift mutations are included, not the splice site mutations and large-scale 

chromosomal mutations). ATD: extracellular amino terminal domain, ABD: agonist binding 

domain, TM-link: transmembrane domains (M1-4) and linker regions, including S1-M1 

linker, M1-M2 linker, M2-M3 linker, M3-S2 linker, and S2-M4 linker, CTD: intracellular 

carboxy-terminal domain.
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Figure 3. Functional consequences of mutations differ among domains
(A) Ribbon structure of a tetramer NMDA receptor (GluN1/GluN2/GluN1/GluN2). The 

CTD, carboxyl terminal domain, is not present in the crystal structure (83) and therefore not 

shown. (B) Residues harboring missense mutations with different functional consequences 

are highlighted by different colors: RED, gain-of-function (GoF); GREEN, loss-of-function 

(LoF); GRAY: functional status unclear (unclear). The mutations with functional study on 

single parameter are excluded from this summary.
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Figure 4. Estimation of overall impact of the mutations on NMDAR function
Synaptic (A) and non-synaptic activity (B) can be evaluated by integration of multiple 

parameters. (A) Representative current traces by whole-cell voltage clamp recording on 

HEK293 cells transfected with an example mutant with prolonged response time course.
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