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Abstract

Optical coherence tomography (OCT) can demonstrate early deterioration of the photoreceptor 

integrity caused by inherited retinal degeneration diseases (IRD). A machine learning method 

based on random forests was developed to automatically detect continuous areas of preserved 

ellipsoid zone structure (an easily recognizable part of the photoreceptors on OCT) in sixteen eyes 

of patients with choroideremia (a type of IRD). Pseudopodial extensions protruding from the 

preserved ellipsoid zone areas are detected separately by a local active contour routine. The 

algorithm is implemented on en face images with minimum segmentation requirements, only 

needing delineation of the Bruch’s membrane, thus evading the inaccuracies and technical 

challenges associated with automatic segmentation of the ellipsoid zone in eyes with severe retinal 

degeneration.
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1. Introduction

Choroideremia (OMIM 303100) is an X-linked recessive degenerative inherited 

chorioretinopathy resulting from mutations in the CHM gene. It typically presents with 

childhood onset nyctalopia in males, followed by a progressive loss of peripheral vision and 

ultimately deterioration of central vision starting in the fourth decade of life.1, 2 Female 

carriers are mildly affected, although some can manifest severe disease due to skewed X-

chromosome inactivation.3 Early studies reported the choriocapillaris/choroid to be the first 

*Corresponding Author: dengwang@sdnu.edu.cn, jiaya@ohsu.edu.
3These authors contributed equally to this manuscript.

Conflict of interest statement:
Oregon Health & Science University (OHSU), Yali Jia, and David Huang have a significant financial interest in Optovue, Inc. These 
potential conflicts of interest have been reviewed and managed by OHSU.

HHS Public Access
Author manuscript
J Biophotonics. Author manuscript; available in PMC 2018 May 10.

Published in final edited form as:
J Biophotonics. 2018 May ; 11(5): e201700313. doi:10.1002/jbio.201700313.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



site of degeneration, resulting in the death of retinal pigmented epithelial (RPE) cells and 

photoreceptors.4, 5 However, subsequent investigations suggested that the choriocapillaris 

was not the primary site of degeneration and revealed that death of the photoreceptors6 or 

RPE cells7–11 might occur first. To better study the timing and progression of cell death in 

choroideremia, we sought to develop image processing methods based on multimodal 

imaging technologies to visualize the damage on the different tissue simultaneously and 

non-invasively.

Multiple imaging technologies including fundus photography,12 fundus autofluorescence,13 

fluorescein angiography14, 15 and optical coherence tomography (OCT) 16–19 have been 

used to study choroideremia. The most advantageous one is OCT, which can achieve high 

axial and lateral resolution and can provide a three-dimensional map of retinal layer and 

choroidal reflectance in a few seconds. Used together with OCT angiography (OCTA)20 this 

imaging modality can characterize abnormalities in retinal morphology and circulation 

simultaneously in a single scan.11, 21, 22

Photoreceptor integrity is often evaluated by the second hyperreflective layer of the outer 

retina observed in cross-sectional OCT images, which has been identified as either the inner 

segment/outer segment junction or as the ellipsoid zone (EZ).23–25 It is very challenging to 

segment the EZ layer in this disease, since it is usually not discernible in large areas. To the 

best of our knowledge, no fully-automated algorithm has been validated to identify EZ 

region in choroideremia. This fundamental limitation has hindered accurate quantification of 

the EZ loss area, a parameter that can be useful in the assessment of disease evolution.

In this paper, we present and validate an automated algorithm based on a random forest 

classification method to identify the preserved EZ area in choroideremia. An additional post-

processing step based on local active contour is incorporated to detect outer retinal 

tubulations (ORT). Detection of EZ loss is performed using en face information produced 

with segmentation of the Bruch’s membrane interface only, significantly simplifying the 

complexity of pathological EZ segmentation and reducing the associated errors. This method 

can be used simultaneously with another algorithm previously developed by us for automatic 

assessment of choriocapillaris integrity22 to better evaluate the evolution of choroideremia 

patients.

2. Materials and methods

2.1. Patient selection and data acquisition

Sixteen eyes from nine patients with choroideremia and five healthy participants were 

recruited from the Ophthalmic Genetics clinic at the Casey Eye Institute of Oregon Health & 

Science University. All patients had clinical manifestations of choroideremia and seven have 

been genetically confirmed. All of the diseased subjects had EZ defects and preserved EZ 

areas. The study was approved by the Institutional Review Board and was in compliance 

with the Declaration of Helsinki.

OCT/OCTA data was acquired by the RTVue-XR Avanti OCT instrument (Optovue Inc., 

CA, USA), which operates at a center wavelength of 840 nm with an axial scan rate of 70 
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kHz. Each scan covered a 6×6 mm2 area with a 2 mm depth. B-scans in the fast-scanning 

direction consisted of 304 axial scans and were repeated two times at 304 lateral positions. 

A volume consisting of 608 B-scans was completed in 2.9 seconds. Another volumetric scan 

on the orthogonal fast-scanning direction was acquired and a motion correction technology 

algorithm26 registered and merged them into a single volume to reduce the effect of motion 

artifacts.27 Structural OCT images were obtained by averaging the repeated B-scans at each 

position and OCTA images were acquired by the split-spectrum amplitude decorrelation 

angiography (SSADA) algorithm.28

2.2. Algorithm overview

The flow chart of the algorithm is shown (Figure 1). A pre-processing step consisted of 

Bruch’s membrane segmentation and denoising of B-scans using Gaussian filters. A random 

forest classification method detected “islands” of partially/completely preserved EZ. 

However, it is known from previous studies that ORT with the appearance of pseudopodial 

extensions protrude from the main preserved EZ area. These pseudopods are formed by 

scrolled outer retina due to RPE/choriocapillaris’ inability to sustain it11 and they are not 

detected by the random forest routine. A post-processing step extracted the region of EZ loss 

and added the ORT undetected by the random forest using a local active contour routine. 

The algorithm was implemented with custom software written in Matlab 2013a (Mathworks, 

MA, USA).

2.3. Pre-processing

The Bruch’s membrane interface was first segmented automatically using the custom 

processing software developed for the Center for Ophthalmic Optics & Lasers-Angiography 

Reading Toolkit (COOL-ART).29 The EZ slab was approximated between 8 to 16 voxels 

above the Bruch’s membrane.11, 21 A denoising step, consisting of a Gaussian filter of 10 

pixels kernel, smoothed the B-scans before generating the en face images used to detect EZ 

loss.

2.4. Machine learning with random forest classifier

2.4.1. Random forest classifier—Supervised machine learning methods for 

classification and regression comprise boosting, Bootstrap aggregating (Bagging) and 

random forests. Random forests30 are a fast alternative that reduces classification errors by 

Bagging and overfitting of noisy datasets by boosting. Briefly, a random forest classifier is 

generated by an ensemble of multiple, non-associated decision trees. Each tree is built from 

a randomly-chosen subset of the training data. At each node, the tree receives a randomly-

chosen subset of the available features and chooses the one that maximizes the information 

gained, based on the Gini index. Then, nodes are split and a new subset of features is 

evaluated for the following node. The output of the forest for each input value is the most 

popular class voted by the trees as

p(c ∣ v) = 1
N ∑n = 1

N pn(c ∣ v) (1)
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where N is the number of decision trees, pn the classification probabilities for data point v 
falling in class c. Random forests are robust tools for classification tasks in images with low-

quality features.

We generated a random forest classifier with 50 decision trees from manually-segmented 

training data of retinal images from fifteen eyes affected by choroideremia and five healthy 

eyes. To train the trees, four features out of a total of twelve were evaluated by their Gini 

index at each level. The features were obtained from en face images and will be defined in 

section 2.4.3. Pixels forming the training set images were manually classified into two 

classes: preserved EZ and disrupted EZ. After the trees in the forest voted for the pixel’s 

probability to belong to the preserved EZ class, the main area of preserved EZ was mapped.

2.4.2. Manual grading—To train the trees, an experienced grader manually segmented the 

preserved EZ area in each image, generated by mean reflectance projection of the unfiltered 

EZ slab (Figure 2). The grader used the freehand area selection tool in ImageJ for manual 

segmentation and was instructed to select the main EZ region, excluding the ORT 

extensions. A post-processing step to detect the ORTs (section 2.5) followed the pixel 

classification step by random forest.

2.4.3. Feature selection—Based on our definition of the approximated EZ slab from 

section 2.3, each pixel within a given region could be categorized by a decision tree as 

preserved EZ or disrupted EZ. The category of preserved EZ comprises completely 

preserved and partially preserved EZ (Figure 3A–B), with the second exhibiting some 

damage but still containing functioning photoreceptors. Since the EZ slab is hyper-reflective 

in preserved EZ areas, en face images formed by projection of the maximum reflectance 

contain relevant information useful in tree training (Figure 3C). On the other hand, the areas 

of partially preserved EZ typically surround the areas of completely preserved EZ and 

exhibit sharp boundaries with completely disrupted EZ. To train for areas of partially 

preserved EZ, we calculated the minimum reflectance position within the slab by assigning a 

value of 1 to the A-lines whose minimum reflectance is located at the innermost position in 

the slab and a value of 9 if it is located at the outermost position. Projection of the minimum 

reflectance position led to dark appearance of the partially preserved regions and a random 

specked appearance (both bright and dark) in areas of completely preserved and completely 

disrupted EZ (Figure 3D). Since the completely preserved and completely disrupted regions 

are not distinguishable by the second feature, a third feature generated by projecting the 

minimum reflectance value within the slab is generated to emphasize the completely 

preserved EZ area (yellow arrow, Figure 3E).

Nine additional features were derived from the maximum reflectance projection, minimum 

reflectance position projection and minimum reflectance projection en face images in Fig. 3. 

Three median filters with progressively larger kernel size were used in maximum reflectance 

and minimum reflectance projections (Figure 4). The median filter calculates the median 

value within the specified kernel, attenuating the effects of blood vessel shadows and noise 

on classification. Progressively larger kernel filtering has been typically used to strengthen 

the classification competence of random forests.22, 31–34 Regarding the minimum reflectance 

position projections, three standard deviation filters were used to distinguish regular from 
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irregular regions (Figure 4F–H). This filter was chosen over median or Gaussian filter 

because it retains the boundaries of the preserved EZ area.

In summary, the twelve features used by the random forest classifier were three en face 
projections (mean reflectance, minimum reflectance and minimum reflectance position) and 

their corresponding filtered images for three different kernel sizes.

2.5. Post-processing

2.5.1. Region extraction—After the random forest was generated, a case that was not 

used in the training step was processed and an en face probability map of preserved EZ 

zones was generated. A median filter was applied to remove noise, Otsu thresholding35 was 

used to convert the probability map into a binary image and morphological processing to 

remove abnormally isolated small areas. Next ORTs were identified using a separate post-

processing step and added to the area detected above.

2.5.2. ORT processing—A local active contour model known as uniform modeling 

energy36 was applied on the unfiltered maximum reflectance en face projection of the EZ 

slab (Figure 5A) to detect ORT. Local active contour is a robust and accurate model that has 

been successfully applied on segmentation of a variety of biomedical images.36–38 Here, we 

first averaged the values at all locations of the preserved EZ region detected by the random 

forest (Figure 5B). Then, a small Gaussian filter (2×2 pixel) was applied to reduce gray 

value fluctuations around the ORT with minimal blurring of its boundaries. Then, the active 

contour routine detected the preserved EZ region (Figure 5D).

3. Results

To compare the automatic machine learning results with the manual delineation, we used the 

Jaccard similarity index:

J(SR, SM) =
SR ∩ SM
SR ∪ SM

(2)

where SR is the EZ region from the random forest classifier, SM is the manual delineation 

results. Large similarity results in Jaccard indices close to 1.

A total of 16 eyes with choroideremia and 5 healthy eyes were evaluated in a leave-one-out 

fashion and the similarity of the area detected automatically to the area obtained from 

manual grading was 0.845±0.089 (mean ± standard deviation) before post-processing and 

0.876±0.066 after post-processing. Healthy eyes were added to the training data to balance 

the classification problem. The random forest was trained in approximately 19 minutes and 

the average time to test the scan left out, detect ORTs and post-process it was 76 seconds. 

Qualitatively, the results from the machine leaning algorithm closely matched manual 

delineation (Figure 6). Although detection of the ORT could not be assessed by the Jaccard 

similarity metric, visual inspection of their similarity to en face mean projection images of 

the EZ slab exhibited a reasonable qualitative agreement.
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The regions of EZ defect appeared to be spatially correlated with regions of choroidal flow 

loss (Figure 7). On the other hand, the ORTs were found in areas devoid of underlying 

choriocapillaris (Figure 7). It has been hypothesized that ORT formation may be a survival 

mechanism adapted by photoreceptors after losing trophic support from the underlying RPE 

and choriocapillaris.

Five healthy cases were investigated to evaluate the prevalence of false negative pixels, 

mostly found on corners and caused by shadow artifacts (Figure 8). The percentage of pixels 

incorrectly categorized as EZ defect was 0.86% ± 0.67% (mean ± standard deviation) for the 

healthy population.

4. Discussion and conclusion

We have developed a machine learning algorithm integrated with a local active contour 

routine to automatically detect the preserved EZ area in choroideremia. Twelve features 

based on maximum reflectance, minimum reflectance and minimum reflectance position 

projections were used for classification. The classifier was trained on 20 datasets containing 

scans of diseased and healthy eyes and tested on the dataset left out. A local active contour 

model was used to detect the ORTs protruding from the main preserved EZ area detected by 

the random forest. Good agreement with manual grading results was observed.

Random forest classifiers are robust tools that have been widely used in OCT image 

processing applications such as choriocapillaris evaluation in choroideremia,22 segmentation 

of microcystic macular edema,33 retinal layer segmentation39 and multimodal segmentation 

of the optic disc.34 Whereas a larger number of trees reduces the variability of the 

classification, it also results in longer running time. In general, it is not desirable to increase 

the computational cost for the sake of a marginal classification improvement. For a small 

number of attributes, forests with no more than 128 trees have been recommended40 and 

values between 50–100 have been used in previous OCT image processing implementations.
22, 33 Here, the out-of-bag error and running times were investigated for variable forest sizes 

at a fixed tree depth and a compromise was made for 50 trees and 20 minutes training time 

(Figure 9). Doubling the forest size would result in 3% improvement of the out-of-bag error 

but a 147% increase in training time. If computational expense were not a concern, further 

improvement could be achieved if a smaller portion of the training data was sampled during 

tree definition and the number of trees was increased. Such configuration would be slower to 

converge but would result in less correlated trees and hence, can reach a lower out-of-bag 

error.

Selection of relevant features is a critical part of machine learning. In this study, we used 12 

features that can be roughly divided into three groups: maximum reflectance projection, 

minimum reflectance position projection and minimum reflectance projection. The features 

based on minimum reflectance and minimum reflectance position complemented each other 

to recognize the either partially preserved or completely preserved EZ areas. When the 

features based on maximum reflectance projection were removed (Figure 10A–C) the mean 

Jaccard similarity index of the population dropped by a 4%. On the other hand, if the 

features based on minimum reflectance and minimum position projections were removed 
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(Figure 10D), classification based on maximum reflectance projections alone would result in 

a 21% drop of the similarity index.

The main feature that helped the categorization of either partially or completely preserved 

EZ pixels were the brightness in the images generated from reflectance value projections 

and the darkness in the images generated from minimum position projection. Due to the 

characteristics of these features, shadows caused by large vessels in the inner retina, vitreous 

floaters or pupil vignetting might act as confounding factors, as evidenced by the occasional 

errors observed on healthy retinas. Although inaccuracies due to shadowing are inevitable, 

Gaussian filtering the maximum reflectance and minimum reflectance projections with 

progressively larger kernels helped minimize the effect of dark shadow pixels in the decision 

making.

Retrieval of ORT was achieved by a local active contour routine after random forest 

classification, however, in some occasions the ORT were only partially detectable. Since 

local active contour is strongly dependent on the initial contours and the intensity of the 

object, the ORTs could be missed if cut by vessel shadows (Figure 11A, C, red arrows). 

Other ORT were filled with dark pixels (Figure 11B, D) and contours could not grow either.

Although it is known that choroideremia causes progressive degeneration of the RPE, 

photoreceptors, and choroid, the primary location of pathology remains controversial. 

Accurate assessment of these layers along the course of the disease could provide a better 

understanding of the natural history and pathophysiology of choroideremia. OCTA has the 

potential to be useful for simultaneously investigating the structural and vascular22 

alterations in chorio-retinal diseases. Moreover, the method proposed in this paper can 

provide subjective quantitative parameters for monitoring disease progression and the 

response to investigational gene therapy.41, 42

In summary, we developed an automated algorithm to detect the preserved and disrupted EZ 

areas in choroideremia. The algorithm uses a random forest classifier method and twelve 

features to automatically separate pixels into EZ defect and EZ preserved categories. A post-

processing step allowed to partially retrieve the outer-retinal pseudopodial extensions 

protruding from the main preserved EZ area. The results showed good agreement with 

manual segmentation by an expert grader. This tool evaluates disruption in the EZ layer and 

can be used in tandem with an algorithm previously developed in our group using OCTA 

information for choroidal flow assessment22 in order to provide a more comprehensive 

description of disease progression.
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Figure 1. 
Flow chart of the preserved ellipsoid zone detection algorithm. A pre-processing step takes 

the Bruch’s membrane segmentation and denoises by B-scans by application of a Gaussian 

filter. Then, a random forest classifier formed by 50 decision trees, which has been trained 

on 12 features of a population of 15 choroideremia eyes and 5 healthy eyes is applied on the 

scan under scrutiny. A probabilistic map of the main body of preserved ellipsoid zone (EZ) 

region is generated by the random forest classifier. Outer retinal tubulations (ORT) with the 

form of pseudopodial extensions protruding from the main body region are not detected by 

the random forest. To identify them, the main body of preserved EZ is extracted by a 

filtering step followed by Otsu thresholding. Then, the main body of preserved EZ is 

identified in the unfiltered maximum reflectance projection and substituted by its mean 

reflectance value. This image is then filtered and fed into a local active contour routine that 

extracts the ORT.
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Figure 2. 
The ellipsoid zone (EZ) mean projection en face image (top) and the corresponding manual 

grading (bottom) of preserved EZ area in four choroideremia eyes. In the graded images, 

white color represents the preserved EZ region selected. The grader was instructed to 

overlook the outer retinal tubulations. Scale bar represents 1 mm.
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Figure 3. 
Three en face images utilized as features in the detection of preserved ellipsoid zone (EZ). 

(A) A representative B-scan. The green dotted line is the Bruch membrane interface. The EZ 

slab used for en face projection is defined between the blue and the red dotted lines. (B) 

Enlargement of the region enclosed in a blue rectangle in (A). The green arrow represents 

region of disrupted EZ; the yellow arrows represent completely preserved EZ and the blue 

arrow represents partially preserved EZ. (C) En face image generated by projection of the 

maximum reflectance within the EZ slab. (D) En face image generated by projection of the 

minimum-reflectance position within the EZ slab. (E) En face image generated by projection 

of the minimum reflectance value within the EZ slab. Scale bar represents 1 mm.
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Figure 4. 
The 12 features used to train the trees forming the random forest classifier. (A) Maximum 

reflectance en face projection. (B–D) Maximum reflectance en face projection after median 

filtering with kernels 10×10 pixels (B), 20×20 pixels (C), 30×30 pixels (D). (E) The 

minimum reflectance position en face projection. (F–H) The minimum reflectance position 

en face projection after standard deviation filters with kernels 5 × 5 pixels (F), 10 × 10 pixels 

(G), and 20 × 20 pixels (H). (I) Minimum reflectance en face projection. (J–L) The 

minimum reflectance en face projection after median filtering with kernels 10×10 pixels (J), 

20×20 pixels (K), 30×30 pixels (L). Scale bar represents 1 mm.
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Figure 5. 
ORT detection by an active local contour routine. (A) is the maximum reflectance 

projection; (B) is the result of finding the average of the whole area detected by the random 

forest in (C) and application of the Gaussian filter; (D) is the final preserved EZ region 

including the ORT. Scale bar represents 1 mm.
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Figure 6. 
Processing results in 5 cases with choroideremia. The en face images generated by mean 

projection of reflectance values show the preserved vs disrupted EZ regions. Color-coded 

probability maps generated by the random forest classifier show preserved regions in red and 

disrupted regions in blue. The overlap of automatically detected areas with manual 

segmentation show white areas detected by both (agreement) and gray areas detected by 

only one of them (disagreement). The images generated after post-processing with a local 

active contour routine shows reasonable retrieval of ORT. Scale bar represents 1 mm.
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Figure 7. 
Visual inspection of the preserved EZ area detected by the random forest classifier from 

three choroideremia eyes (transparent region outlined by a green line) overlaid (A–C) on en 
face angiograms of choroidal flow (D–F). The structural data used to identify preserved EZ 

area and the flow data used to identify choroidal loss were acquired simultaneously in a 

single scan. Scale bar represents 1 mm.
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Figure 8. 
Pixel classification by the random forest on five healthy cases. Red areas represent healthy 

tissue while blue areas represent tissue mistakenly classified as EZ defect. Scale bar 

represents 1 mm.
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Figure 9. 
Relationship between number of trees in the random forest classifier and the out-of-bag error 

performance.
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Figure 10. 
Variations in the accuracy of EZ detection of one representative scan by removing certain 

features from the random forest classifier. (A) The mean projection en face image of the EZ 

slab. (B) Classification using the twelve features, Jaccard similarity index for this scan is 

0.829. (C) Classification without features obtained from maximum reflectance projection, 

Jaccard similarity index is 0.769. (C) Classification without the eight features obtained from 

minimum reflectance and minimum reflectance position projections, Jaccard similarity 

index is 0.490. Scale bar represents 1 mm.
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Figure 11. 
Example of the ORT processing errors. The maximum reflectance projections after 

replacement of the mean value and Gaussian filtering are shown in (A) and (B). ORT 

detection is represented in (C) and (D). The red arrows show the effects of blood vessel 

shadows intercepting ORTs. Scale bar represents 1 mm.

Wang et al. Page 20

J Biophotonics. Author manuscript; available in PMC 2018 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Patient selection and data acquisition
	2.2. Algorithm overview
	2.3. Pre-processing
	2.4. Machine learning with random forest classifier
	2.4.1. Random forest classifier
	2.4.2. Manual grading
	2.4.3. Feature selection

	2.5. Post-processing
	2.5.1. Region extraction
	2.5.2. ORT processing


	3. Results
	4. Discussion and conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

