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Two new cellulolytic fungal species 
isolated from a 19th-century art 
collection
Carolina Coronado-Ruiz1,2, Roberto Avendaño1, Efraín Escudero-Leyva2,3, Geraldine Conejo-
Barboza4,5, Priscila Chaverri2,3,6 & Max Chavarría1,2,4

The archive of the Universidad de Costa Rica maintains a nineteenth-century French collection of 
drawings and lithographs in which the biodeterioration by fungi is rampant. Because of nutritional 
conditions in which these fungi grew, we suspected that they possessed an ability to degrade cellulose. 
In this work our goal was to isolate and identify the fungal species responsible for the biodegradation of 
a nineteenth-century art collection and determine their cellulolytic activity. Fungi were isolated using 
potato-dextrose-agar (PDA) and water-agar with carboxymethyl cellulose (CMC). The identification 
of the fungi was assessed through DNA sequencing (nrDNA ITS and α-actin regions) complemented 
with morphological analyses. Assays for cellulolytic activity were conducted with Gram’s iodine as 
dye. Nineteen isolates were obtained, of which seventeen were identified through DNA sequencing 
to species level, belonging mainly to genera Arthrinium, Aspergillus, Chaetomium, Cladosporium, 
Colletotrichum, Penicillium and Trichoderma. For two samples that could not be identified through 
their ITS and α-actin sequences, a morphological analysis was conducted; they were identified as new 
species, named Periconia epilithographicola sp. nov. and Coniochaeta cipronana sp. nov. Qualitative 
tests showed that the fungal collection presents important cellulolytic activity.

Variations in the composition and appearance of a material as a consequence of the action of microorgan-
isms is known as biodeterioration1. This phenomenon becomes evident with the presence of reddish-brown or 
yellowish-brown patches, microfungal structures and textural changes, which are commonly found in ancient 
documents2. These conditions apply to a nineteenth-century French collection of drawings and lithographs by 
Bernard Romain Julien (1802–1871) that is held in the archive of the School of Plastic Arts of Universidad de 
Costa Rica. The damage due to the microbial proliferation in these works of art is related to the storage condi-
tions, especially to the damp and warm environments3. To design an effective and specific treatment according to 
the species growing in the laminae led to the isolation and identification of the fungal species responsible for the 
foxing of the lithographs.

Previous investigations of the microbiota in antique documents reported the presence of fungi that belong 
mainly to genera Alternaria, Aspergillus, Chaetomium, Cladosporium, Penicillium, and Trichoderma1,2,4–7. For 
instance, El Bergadi et al. (2013) isolated, identified and characterized the microbiota of manuscripts from an 
ancient collection of the Medina of Fez and found Aspergillus niger, Aspergillus oryzae, Mucor racemus, and 
Penicillium chrysogenum, as the most frequent species from a total of 31 fungal isolates8.

Because of nutritional limitations in which these fungi grew and where cellulose of the laminae was the only 
source of carbon, the species responsible for the biodeterioration were believed to possess cellulolytic activity8,9. 
This cellulolytic activity is of interest for multiple biotechnological processes, such as treatment of agroindustrial 
residues10,11 or production of cellulases12. This condition was first deduced and published in 1903 by van Iterson 
in “La décomposition del la cellulose pas les microrganismes”7. An investigation of the microbial diversity in 
a nineteenth-century Islamic and Koranic book led to the discovery of nine fungal species with the ability to 
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degrade carboxymethylcellulose (CMC), including Aspergillus niger, A. oryzae and Hypocrea lixii8. Michaelsen 
et al. (2009) and Pinzari et al. (2006) described Aspergillus versicolor, A. nidulans, A. terreus and Chaetomium 
globosum as agents in the microbiological damage of old documents5,6.

Given the interest in the developing methods for protecting and preserving ancient documents from microbial 
degraders13 and the importance of obtaining microorganisms or enzymes with the capacity to degrade ligno-
cellulosic wastes14, the aim of the present work was to isolate and identify the fungal species responsible for the 
biodegradation of a nineteenth-century art collection and to determine their cellulolytic activity. We found 19 
fungal isolates belonging mainly to genera Arthrinium, Aspergillus, Chaetomium, Cladosporium, Colletotrichum, 
Penicillium and Trichoderma. Two samples not identified through their DNA sequences were identified through 
morphological analysis as new fungal species, namely Periconia epilithographicola sp. nov. and Coniochaeta cipro-
nana sp. nov. Qualitative tests showed that the fungus collection presents important cellulolytic activity.

Methods
Sampling and isolation of cellulolytic fungi.  A total of 13 laminae from a nineteenth-century French col-
lection of lithographs belonging to Universidad de Costa Rica with signs of biodeterioration were sampled in areas 
of critical damage (colored or discolored areas, microfungal structures or other observable textural changes in the 
paper) with sterile cotton swabs, which were subsequently submerged in Phosphate Buffered Saline (PBS, 100 µL).  
Samples (50 µL) were cultured onto potato dextrose agar (PDA; Difco Potato Dextrose agar, BD company, 
France), and onto water agar with carboxymethyl cellulose (CMC, 1%, Sigma-Aldrich) with kanamycin (km, 
50 µg/mL, Sigma-Aldrich). Morphologically distinct colonies were isolated and purified onto plates with the same 
culture media2,15–17.

Molecular identification.  To identify the various fungal isolates, DNA extraction was performed using the 
method described by Lodhi et al. (1994) with modifications18. First, two disks (diameter 0.8 cm) from each fungal 
colony were introduced into Eppendorf tubes (1.5 mL). An extraction buffer (750 µL) was added, followed by the 
vortex of the sample and an incubation period (30 min at 67 °C). DNA was then precipitated with the addition 
of a CHCl3:octanol mixture (24:1, 750 µL), separation of the supernatant, and addition of isopropanol (600 µL, 
Sigma-Aldrich) and ethanol (500 µL, 70% v/v, Sigma-Aldrich). The DNA was eventually resuspended in AE buffer 
(50 µL, Qiagen) containing RNAse (1 µL, Fermentas). PCR reactions were performed to amplify the ITS (ITS 4 
and ITS 5) and actin (Act-512F and Act-783R) regions using a reaction mix (PCR Master Mix, 10 µL, 2X, Thermo 
Scientific), water (7 µL), primers (0.5 µL, 10 μM) and DNA (2 µL, 50 ng/μL)19,20. All PCR reactions were performed 
in a thermocycler (Applied Biosystems 9902, Norwalk, USA) according to conditions described by Carbone & 
Kohn (1999) and White et al. (1990) for actin and ITS primers, respectively19,20.

The amplified products were purified with a clean-up kit (EXO-AP, Thermo Scientific, USA) and sequenced 
with a genetic analyzer (ABI 3130xl) and a reaction kit (Big Dye v.3 Terminator Cycle Sequencing Ready Reaction 
Kit, Applied Biosystems, USA), using ITS and actin primers (1 μM). Sequences were analyzed with software 
(MEGA 7), and were run through a Standard Nucleotide BLAST (Genbank, NCBI nucleotide database) to assess 
the similarity with reported sequences of fungal species. The BLAST searches were run excluding uncultured/
environmental samples in the database. To corroborate the results, the BLAST search was repeated limiting the 
search to sequences only from type material. All sequences have been deposited in the GenBank database under 
the accession numbers that appear in Supplementary Table S1.

Morphological identification.  Two species that did not have a close match to anything in Genbank, were 
examined in more detail to determine their morphological characteristics. Morphological analyses followed rec-
ommendations and techniques described by Ellis (1971) for hyphomycetous fungi and common methods in 
mycology21,22. Fungal isolates were cultured in CMD (BBL Corn Meal Dextrose agar, BD Company, France) 
and PDA (Difco Potato Dextrose agar, BD company, France) for 7 to 10 days near 25 °C. An optical microscope 
(Olympus BX-40, Japan) was used with an attached camera (18 megapixels, OMAX, Korea); software (ToupView, 
ToupTek Photonics, China) was used to measure structures.

Screening of cellulolytic activity.  Cellulase-producing microorganisms were screened on agar plates 
enriched with only CMC as a source of carbon, with Gram’s iodine as indicator (Prelab)23–26. This qualitative 
determination is based on the interaction of iodine with cellulose and its components in its degraded form, such 
that the integral biopolymer holds Gram’s iodine dye; whereas areas with cellulose hydrolyzed by enzymes result 
in clear zones or the appearance of a pale halo15,27. The halo was measured for the subsequent calculation of the 
enzymatic index (EI), a semi-quantitative estimate of the enzyme activities, according to this formula15.

EI Diameter of hydrolysis zone
Diameter of colony (1)

=

For this purpose, fungal discs (diameter 0.8 cm) were grown in a solid medium composed of water agar 
(1.6%), CMC (1%) and kanamycin (km, 50 µg/mL). After cultures were incubated (7 days, 30 °C), plates were 
flooded with Gram’s iodine stain (10 mL, 10 min) and washed with water to enable the observation, photograph-
ing and measurement of the clear zone around the fungal growth23–26. Software (ImageJ, version 1.51j8) was used 
to measure the diameters28. The experiment was repeated twice (on separate days) with duplicates of each isolate. 
Pleurotus ostreatus served as a positive control29.
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Results and Discussion
Isolation and identification of fungi isolated from drawings and lithographs.  Through the 
screening of the lithographs, the total count of fungi isolated was 19, of which eight grew directly in water agar 
with CMC-km and eleven were first isolated from PDA and then recultivated in water agar with CMC as the sole 
source of carbon. The proliferation of fungi in the latter culture medium is in accordance with the environment 
in which they were isolated (limited sources of carbon, with cellulose as sole nutrient). Laminae #5 was the most 
contaminated, with ten isolations; followed by laminae #7 and #10, with 3 isolations each (see Supplementary 
Figure S1). The fungal isolates showed diverse forms, sizes, elevations, borders, surfaces, opacity, color and growth 
rates, as shown in Fig. 1.

BLAST searches in GenBank database resulted in the classification of nineteen isolates into fifteen species and 
nine genera (Table 1). These nineteen isolates had at least a 98% similarity with known species. The most prevalent 
genus was Cladosporium. Of the nine identified genera, Aspergillus, Chaetomium, Cladosporium, Penicillium, and 
Trichoderma are reported as common microbiota in ancient works of art1,2,17,30,31. The actin region was sequenced 
to confirm the results obtained with the ITS region, and to classify to species level some samples that could not 
be done with ITS. For all cases in which both ITS and actin sequences were obtained, the fungi were classified 
within the same species, except isolate #9 in which the actin region denied conclusive results obtained with ITS.

Two isolates were only identified to genus or class levels using both ITS and actin regions. Specifically, isolate 
#19 was classified within the genus Periconia, and isolate #21 was classified within the class Sordariomycetes, both 
in the phylum Ascomycota. Since these two isolates did not have a close match to any sequence in the Genbank, 
traditional morphological analyses and descriptions (e.g. microscopy and use of taxonomic literature) were done 
to elucidate the identity of these isolates.

Description of two new fungal species.  Periconia epilithographicola C.  Coronado-Ruiz, R. Avendaño, 
E. Escudero-Leyva, G. Conejo-Barboza, P. Chaverri & M. Chavarría sp. nov. Fig. 2. Mycobank: MB825093 
GenBank: MF422162 (ITS) & MF422179 (actin). Etymology: epilithographicola, because it was found growing 
over art lithographs. Holotype: Costa Rica, San José, San Pedro de Montes de Oca, Universidad de Costa Rica; 
on art lithographs; May 19th, 2016; collected by Avendaño R.; extype culture CBS 144017, a permanently pre-
served, metabolically inactive culture (=#19). Diagnosis: Periconia species producing a pinkish to reddish pig-
ment. Straight conidiophores; globose, echinulated, golden-brown conidia. Colonies: At 25 °C after three weeks, 
on CMD, attaining 25 mm diam., colony white, cottony. On PDA, attaining 60 mm diam., colony effuse, pink-
ish (similar to OAC486), with creeping hyphae; conidiophores visible, forming small agglutinated black sticky 
drop-like structures. Conidiophores: macronematous, with creeping hyphae forming stipes 251.6–270 · 3.6–6.1 µm,  

Figure 1.  Fungal diversity in ancient lithographs. Several fungi were isolated from stained and degraded areas 
from nineteenth-century drawing laminae. On the top row from left to right are isolates #5, #10, #19, #9, #8, 
and #15. On the bottom row from left to right are isolates #16, #22, #21, #11, #23 and #26. Samples in the image 
were grown in PDA during 6 days. We thank Dr. Salomón Chaves (Instituto de Investigaciones en Arte) for 
authorizing the use of images from the collection of drawings by Bernard Romain Julien in this manuscript.
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straight, branched singly near the base, seven or more septate, grayish to black. Conidiogenous cells: holoblastic, 
(5.1−) 7 · 10 (−11.5) µm (n = 15), sub-globose to ellipsoid, finely roughened, yellowish to brown (slightly more bril-
liant than OAC757). Conidia: globose, (7.8−) 9.2 (−10.7) µm diam. (n = 30), golden to brown (similar to OAC705), 
echinulated, catenated, sometimes forming long chains. Habitat: Growing on aged lithographs of Instituto de 
Investigaciones en Arte (Universidad de Costa Rica). Notes: Several Periconia species share similar characteristics 
of the conidiophore, differing mainly in the conidia size. Periconia pseudobyssoides conidia are larger, (12−) 15–17 
(−20) µm diam. and brown-reddish32; P. byssoides conidia are 10–15 µm in diam21.; P. saraswatiurensis conidia are 
9–12 µm diam., also secreting dark green to purple pigments in culture21. The only species with a similar conidial size 
is P. jabalpurensis but it lacks septa in the conidiophores; P. macrospinosa shows conidia of up to 35 µm diam. with 
long spines (<2 µm)21, which does not fit Periconia epilithographicola.

Coniochaeta cipronana C.  Coronado-Ruiz, R. Avendaño, E. Escudero-Leyva, G. Conejo-Barboza, P. Chaverri & 
M. Chavarría sp. nov. Fig. 3. Mycobank: MB825094 GenBank: MF422164 (ITS) & MF422181 (actin). Etymology: 
as a reference to Centro de Investigaciones en Productos Naturales (CIPRONA, Universidad de Costa Rica) for 
the impact and transcendence of the research in the field of natural products over 38 years. Holotype: Costa Rica, 
San José, San Pedro de Montes de Oca, Universidad de Costa Rica; from art lithograph; May 19th, 2016; collected 
by Avendaño R.; extype culture CBS 144016, a permanently preserved, metabolically inactive culture (=#21). 

Isolate# Identification

ITS and closest accesion number Actin and closest accesion number

Accession Identity Coverage Accession Identity Coverage

4 Cladosporium sphaerospermum KP701988.1 100% 100% EU570272.1 98% 99%

5 Penicillium chrysogenuma KC009774.1 100% 100% AM920435.1 97% 100%

6 Penicillium westlingiib JN617668.1 100% 100% AM920435.1 83% 55%

7 Cladosporium tenuissimumc KP701937.1*
KJ596320.1* 100% 100% LN834582.1 100% 99%

8 Aspergillus niger KJ365316.1 100% 100% AM270331.1 99% 99%

9 Cladosporium sp. KP701937.1* 
KJ596320.1* 100% 100% — — —

10 Arthrinium arundinisb KF144889.1 100% 100% AY951865.1 76% 76%

11 Cladosporium angustisporumc

MG250413.1* 
MG199960.1*
KP701978.1*
KP701964.1*
KP701938.1*
KP701935.1*
KP701930.1*
KP701908.1*

100% 100% LN834540.1 100% 100%

12 Aspergillus versicolor NR_131277.1 100% 95% — — —

13 Chaetomium cf. subglobosumb NR_144826.1 96% 99% KF545191.1 99% 100%

15 Cladosporium angustisporumc

MG250413.1* 
MG199960.1*
KP701978.1*
KP701964.1*
KP701938.1*
KP701935.1*
KP701930.1*
KP701908.1*

100% 100% LN834540.1 100% 100%

16 Cladosporium cladosporioidesc

MG250413.1* 
MG199960.1*
KP701978.1*
KP701964.1*
KP701938.1*
KP701935.1*
KP701930.1*
KP701908.1*

100% 100% KT600582.1 99% 96%

17 Chaetomium cf. subglobosumb NR_144826.1 100% 99% KF545191.1 99% 100%

19 Periconia sp.d HQ608027.1 99% 100% KP184118.1 83% 95%

20 Chaetomium cf. subglobosumb NR_144826.1 99% 99% KF545191.1 99% 100%

21 Coniochaeta sp.d KX869958.1 99% 100% AY579255.1 71% 100%

22 Aspergillus niger KJ365316.1 100% 100% AM270331.1 99% 99%

23 Trichoderma cf. 
Longibrachiatumb KT336509.1 100% 100% JQ238613.1 98% 99%

26 Colletotrichum kahawaec NR_144787.1 100% 98% JX009431.1 99% 100%

Table 1.  Molecular identification of isolated fungi using ITS and actin regions. aIsolates had homology with two 
fungi of different species with the ITS region analysis, but through sequencing of the actin region it was possible 
to confirm the identification. bNo register in the NCBI GenBank database for actin sequencing regions. cITS 
region sequencing allowed to identify only the isolates at genus level; the actin region enabled an identification 
at specie level. dNo register in the NCBI GenBank database for either ITS or actin sequencing regions. 
*Accessions with same similarity.
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Diagnosis: Nodulisporium-like conidiophore, with macro- and microconidia, hyaline, macroconidia 5–7-septate 
slightly curved, fusiform, microconidia cylindrical 1–2-septate. Colonies: At 25 °C after 3 weeks on CMD, reach-
ing 20 mm diam., hyaline to white. On PDA attaining 25 mm diam., colony white, then turning purple (similar to 
OAC555), cracking and turning the media dull orange (lighter than OAC789). Conidiophores: Nodulisporium-like. 
Conidiogenous cells: Simple, mainly straight or sometimes curled, cylindrical, (5.8−) 21.8 (−28.8) · (2.2−) 2.8 
(−3) μm (n = 15), arising directly from hyphae and stretching toward the apex, sometimes dichotomously branched, 
dimorphic, without collarete, hyaline. Short conidiophores (3−) 4.8 (−5) · 2 μm (n = 15). Conidia: macroconidia 
fusiform, (40.1−) 60.6 (−74.6) · (3−) 3.5 (−5) μm (n = 30), 5–7-septate, slightly curved, hyaline, smooth; microco-
nida cylindrical (11.6−) 16.5 (−25) · (2.2−) 2.8 (−3.6) μm (n = 30), 1–2-septate, hyaline, smooth. Habitat: Growing 
on aged lithographs of Instituto de Investigaciones en Arte (Universidad de Costa Rica). Notes: This species, because 
of the Nodulisporium-like conidiophore, is similar to Coniochaeta ershadii, especially in the size of the conidiogenous 
cells. The conidia produced by C. ershadii are prominently smaller33 than those present in C. cipronana; the presence 
of macro- and microconidia is also a distinguishing character.

The new fungal species described belong to Periconia Tode and Coniochaeta (Sacc.) Cooke genera 
(see Supplementary Figures S2 and S3). Periconia is a polyphyletic genus Pleosporales (Dothideomycetes, 
Ascomycota), with a complicated taxonomy and a poorly understood phylogeny32. This genus has been widely 
reported as a common endophyte from the roots of several plants, like a Periconia species isolated from Piper 
longum producing metabolites with a high pharmacological potential34 and the melanized hyphae are believed 
to protect the fungi from environmental oxidation35. Some species have been reported as parasites in leaves 
of Xanthium strumarium and Ipomea muricara in India and others as decomposers in bamboo statches36. 
Coniochaeta (Coniochaetaceae, Coniochaetales, Sordariomycetes, Ascomycota) was introduced as a subgenus 
of Rosellinia De Not. for species with hairy perithecia but differing by the absence of amyloid asci in their sex-
ual stages33. Many Coniochaeta conidiophores produce Lecytophora-like structures. Like Periconia, Coniochaeta 
requires further taxonomic and phylogenetic studies37. About 70 species and six synonyms are included in the 
genus Coniochaeta and most of the isolates are reported from dung, necrotic wood, soil and plant surfaces38.

Figure 2.  Periconia epigraphicola. (A) PDA Culture ca 6 days. (B), PDA Culture ca 20 days. (C) Conidiogenous 
cell forming conidia. (D) Conidiogenous cell. (E) Catenated spinulose conidia. (F) Spinulose conidia.
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Cellulase activity of the fungal isolates.  Assay of the cellulase activity showed that 95% of the samples 
produce extracellular enzymes that break down cellulose into smaller oligosaccharides or monosaccharides, as 
evident from the clear zone observed after staining the plates with Gram’s iodine (see Table 2 and Supplementary 
Figure S4). This fraction that includes the two new species (sample #19: Periconia epilithographicola and sample 
#21: Coniochaeta cipronana) also comprehends species of Arthrinium, Aspergillus, Chaetomium, Cladosporium, 
Colletotrichum, Penicillium, and Trichoderma, being the first four commonly reported with cellulolytic activ-
ity31,39–45. These observations are congruent with the habitat of restricted carbon sources, in which sheets or lami-
nae made of fibers of cellulose pulp were the support material for the growth of microorganisms.

Importantly, 32% of the total isolates had a significantly superior enzymatic index relative to a positive con-
trol (P. ostreatus), i.e., isolates #5 (Penicillium chrysogenum), #7 (Cladosporium tenuissimum), #11 (Cladosporium 
angustisporum) and #23 (Trichoderma cf. longibrachiatum). Other studies have characterized these species as 
effective cellulase producers16,40. Isolates #5 (Penicillium chrysogenum) and #23 (Trichoderma cf. longibrachiatum) 
had an outstanding performance relative to the positive control and the rest of the isolated fungi. Specifically, iso-
late #5 presented an enzymatic index for cellulose activity almost twice of that of the positive control. Isolates of 
these species not only have presented important cellulase activity but also have been the object of study for their 
capacity to produce xylanases46, or tanases47.

The case of isolate # 23 (Trichoderma cf. longibrachiatum) was even more striking. For this fungus, EI is 
reported for 24 h (see Table 2) because after 7 days (the period in which the other isolates were measured) the 
microorganism had covered the entire Petri plate, evidence of an accelerated growth and a large capacity to use 
the CMC as the sole source of carbon. The result (1.39 ± 0.03) was slightly smaller than the positive control 
(1.8 ± 0.1, measured after seven days). However, as previously mentioned, isolate # 23 was measured at 24 h. This 
result implies a large rate of enzymatic (cellulase) production from fungus #23 in a medium rich in cellulose, 
relative to the rest of the fungi studied, which is important for the development of biotechnological applications 

Figure 3.  Coniochaeta cipronana. (A) PDA Culture ca 6 days. (B) PDA Culture ca 20 days. (C–E) 
Conidiogenous cell with small conidia. (F) Dicotomic conidiophore. (G) Macroconidia 5–7 septate.
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and industry. Many studies have featured this species as a fungus with great cellulase activity48–51. Many commer-
cial cellulases can be purchased in purified form after production with this species (e.g. C9748 Sigma-Aldrich or 
E-CELTR from Megazyme). Investigations with isolation # 23 will continue to evaluate its potential to degrade 
lignocellulosic residues from agricultural activity in Costa Rica (e.g., wastes from pineapple production).

In summary, in isolating, identifying and characterizing the cellulolytic activity of the fungi responsible for the 
biodegradation of a nineteenth-century collection, several species of fungi were found to have the ability to produce 
cellulases. In addition, two new species of fungi were identified and named Periconia epilithographicola sp. nov. 
and Coniochaeta cipronana sp. nov., which also have cellulolytic activity. A knowledge of the microorganisms that 
colonized the Bernard Romain Julien collection belonging to Universidad de Costa Rica will allow the development 
of strategies directed to the conservation of these ancient lithographs. This work also contributes to the knowl-
edge of new species with cellulolytic activity, which is a topic of perennial interest for biotechnology because of the 
important role of fungal cellulolytic enzymes in commercial food processing, performing the hydrolysis of cellulose 
during drying of beans, in the textile industry and laundry detergents, in the conversion of biomass into industrially 
important solvents or fuels, and their potential application for the bioremediation of wastes.
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