Skip to main content
. 2018 May 4;9:235. doi: 10.3389/fneur.2018.00235

Algorithm 1.

Estimation of the general and individual cortical thickness decrease with the MCMC-SAEM algorithm.

Input: Longitudinal dataset y = (yi,j)i, j of measurement maps, with the corresponding ages (ti,j)i, j.
   Initial parameters θ0 and latent variables z0.
   Geometrically decreasing sequence of step-sizes ρk.
   Sufficient statistics Sk
Initialization: set k = 0 and S0 = S(z0).
repeat
   Simulation: foreach block of latent variables zb do
    Draw a candidate zbcpb(.|zbk).
    Set zc=z1k+1,…,zb-1k+1,zbc,zb+1k,…,znbk.
    Compute the acceptation ratio ω=min1,qzc|y,θkqzk|y,θk.
   end
   Stochastic approx.: Sk+1Sk+ρk[S(Zk+1)Sk].
   Maximization: θk+1θ*(Sk+1).
   Increment: set k ← k + 1.
until convergence;
output: Estimation of θ*.
    Samples (zs)s approximately distributed following q(z|y).