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Abstract

Sickle cell disease (SCD) is associated with intravascular hemolysis
and oxidative inhibition of nitric oxide (NO) signaling. BAY 54-6544
is a small-molecule activator of oxidized soluble guanylate cyclase
(sGC), which, unlike endogenous NO and the sGC stimulator,
BAY 41-8543, preferentially binds and activates heme-free, NO-
insensitive sGC to restore enzymatic cGMP production. We tested
orally delivered sGC activator, BAY 54-6544 (17 mg/kg/d), sGC
stimulator, BAY 41-8543, sildenafil, and placebo for 4–12 weeks in
the Berkeley transgenic mousemodel of SCD (BERK-SCD) and their
hemizygous (Hemi) littermate controls (BERK-Hemi). Right
ventricular (RV) maximum systolic pressure (RVmaxSP) was
measured using micro right-heart catheterization. RV hypertrophy
(RVH)was determinedusingFulton’s index andRVcorrectedweight
(ratio of RV to tibia). Pulmonary artery vasoreactivity was tested for
endothelium-dependent and -independent vessel relaxation. Right-
heart catheterization revealed higher RVmaxSP and RVH in BERK-

SCD versus BERK-Hemi, which worsened with age. Treatment
with the sGC activator more effectively lowered RVmaxSP and
RVH, with 90-day treatment delivering superior results, when
compared with other treatments and placebo groups. In
myography experiments, acetylcholine-induced (endothelium-
dependent) and sodium-nitroprusside–induced (endothelium-
independentNOdonor) relaxationof thepulmonaryarteryharvested
from placebo-treated BERK-SCD was impaired relative to BERK-
Hemi but improved after therapy with sGC activator. By contrast, no
significant effect for sGC stimulator or sildenafil was observed in
BERK-SCD. These findings suggest that sGC is oxidized in the
pulmonary arteries of transgenic SCD mice, leading to blunted
responses to NO, and that the sGC activator, BAY 54-6544, may
represent a novel therapy for SCD-associated pulmonary arterial
hypertension and cardiac remodeling.
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Nitric oxide (NO) is an endothelial-derived
mediator of vasodilation and vascular
homeostasis, and has been proposed as a
therapy for patients with sickle cell disease
(SCD)–associated pulmonary arterial
hypertension (PAH) (1–4). Under
physiological conditions, NO activates
soluble guanylate cyclase (sGC) by binding
to the ferrous (Fe21) heme active site in the
b subunit of the sGC, which stimulates the
enzyme to convert GTP to cGMP and
promotes downstream vascular smooth
muscle relaxation through protein kinase G
(5–7). It is known that reactive oxygen
species (ROS) can oxidize sGC heme iron
from its ferrous to ferric (Fe31) form. The
consequence is a weak affinity for NO that
also destabilizes the binding of the heme
group and leads to heme-free sGC, which is
insensitive to NO (8–10). Although we
hypothesize that sGC heme oxidation, and
subsequent heme loss, contribute to
impaired NO signaling in SCD, this has
not been assessed experimentally. The
oxidative and proinflammatory stress that
characterizes SCD (1, 11–14) can inactivate
many proteins and enzymes involved
in pathways that regulate vascular
homeostasis, suggesting that similar effects

on sGC are likely (15–18). Determining
the redox state of the sGC heme in
pulmonary hypertension (PH) is now possible
with the development of experimental drugs
that can specifically bind to and activate the
heme-dependent and heme-independent
forms of sGC (19). Indeed, the class of drug
referred to as an sGC activator (BAY 54-6544
used in the current studies) can bind to the
oxidized Fe31 heme and heme-free sGC (apo
sGC), activating sGC even in the absence of
NO (20). A second class of sGC-targeting
drug is referred to as an sGC stimulator (BAY
41-8543 in the current studies), which requires
the Fe21 heme iron of the nonoxidized sGC.
It both stimulates the sGC independently
of NO and amplifies cGMP signaling in
the presence of NO (21, 22). Differential
responses to the two drugs provide a
molecular probe to assess sGC redox state.

Currently, hydroxyurea is the only
U.S. Food and Drug Administration
(FDA)–approved treatment for patients with
SCD. Although highly effective, only about
one-half of patients take the medication and
responses can be incomplete (23). PDE5
inhibitors, such as sildenafil, have been
effective on other forms of PAH (24);
however, they require adequate NO
bioavailability and sGC in its Fe21 reduced
form. Their failure to improve outcomes
in patients with SCD has largely been
associated with an apparent amplification of
pain (25). Targeting vascular smooth muscle
cell sGC directly may have important
therapeutic potential in SCD, where NO
bioavailability and synthesis is low, and
oxidative burden is high, likely contributing
to oxidation of sGC and formation of apo
sGC (1, 10, 26). Indeed, a small molecule
activator may be advantageous when
compared with authentic endogenous or
therapeutically applied NO, as the latter will
react with ROS to form peroxynitrite and
other potentially deleterious reactive
nitrogen species.

Two phase II studies in patients with
group I and group IV PH (NCT02562235,
CT02191137) showed significant benefit for
patients treated with the sGC stimulator,
riociguat (27, 28). The stimulator achieved
FDA approval in 2013 for the treatment
of PAH and chronic thromboembolic
pulmonary hypertension, and is currently
distributed as Adempas (Bayer Healthcare
Pharmaceuticals) (29, 30). In addition, the
sGC stimulator, riociguat, was shown to
improve cardiac output, stroke volume, and
pulmonary vascular resistance (PVR) in

patients with PH associated with systolic
left ventricular (LV) dysfunction in a phase
IIb double-blind, randomized, placebo-
controlled study (31). Interestingly, in these
studies, there was no evident limb or back
pain, or muscle aches, as have been
observed in clinical studies of PDE5
inhibitors. Taking into consideration that
the sGC stimulators target the heme-
containing enzyme, it might be of specific
interest to study the sGC activators, which
target the oxidized sGC form that may play
an even more important role in SCD.

The present study compares oral
treatment of sGC stimulator, BAY 41-8543,
and the sGC activator, BAY 54-6544, in
an animal model of SCD that has been
shown to develop PAH spontaneously
with advancing age (6–7 mo). Previous
studies by our group using the Berkeley
transgenic mouse model of SCD (BERK-
SCD) mouse have shown that this mouse
develops a hematologic, vascular, and
pulmonary phenotype with age that is
similar to the human phenotype (32, 33):
severe hemolytic anemia, intravascular
leukocytosis and congestion of pulmonary
vessels, elevated PVR, decreased pulmonary
and global NO bioavailability and
responsiveness, spontaneous right ventricular
(RV) hypertrophy and elevated pulmonary
and RV pressures with right heart failure (1,
34). The current study reports superior effects
for the sGC activator, BAY 54-6544, in SCD-
associated PH, which suggests a major role
for sGC oxidation and formation of apo sGC
in the development of the disease.

Methods

SCD mice (BERK-SCD) and their littermate
controls (BERK-hemizygous [Hemi]) with
transgene insertions encoding for human
a- and b-sickle hemoglobin used in studies
were 2–4 months of age. Genomic DNA of
BERK-SCD and BERK-Hemi mice was
analyzed by PCR as previously described (33).
Hemoglobin electrophoresis, performed with
the Sebia Capillary System (Sebia), using the
manufacturer’s reagents and guidelines, was
used to confirm BERK-SCD and BERK-Hemi
hemoglobin phenotypes.

Mice were placed on the following
experimental treatment diets for 5, 30, or
90 days: placebo; sGC stimulator (BAY
41-8543, 150 ppm); sGC activator (BAY
54-6544, 80 ppm) manufactured by Sniff
Spezialdiäten GmbH (Soest) and provided

Clinical Relevance

The clinical and scientific importance
of the findings reported in this
manuscript are highly relevant to the
pulmonary vasculopathy of sickle cell
disease (SCD) and other group V
hemolytic diseases, whereby chronic
intravascular hemolysis promotes
endothelial dysfunction and
pulmonary vascular remodeling with
progressive resistance to blood flow,
facilitating the development of
pulmonary hypertension. The
submitted manuscript reports the
first preclinical data for a direct
comparison between soluble guanylate
cyclase (sGC) activators versus sGC
stimulators for the treatment of
pulmonary vasculopathy in SCD. The
study shows that bypassing the nitric
oxide pathway and activating sGC
directly to increase cGMP and induce
vaso-relaxation may offer a much-
needed therapeutic advantage for
pulmonary arterial hypertension in
patients with SCD.
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by Bayer AG; or sildenafil (Pfizer)
compounded (1,500 ppm) with Transgenic
Dough diet chow (Bio-Serv). The effects of
treatment diets on plasma drug levels and
hemodynamic measurements were
determined in plasma using high-
performance liquid chromatography
coupled to mass spectrometry and a
radiotelemetry system (PA-C10; Data
Science International), respectively. The
circadian rhythm of mean arterial pressure
and heart rate (HR) was monitored for 3–4
days in conscious, unrestrained mice, as
described previously (35).

Microcatheterization studies of RV
maximum systolic pressure (RVmaxSP)
were performed using isoflurane for
sedation and etomidate/urethane for
anesthesia. Using a closed-chest approach,
mice were catheterized via the external
jugular vein, from which a micro
pressure–volume catheter was advanced

through the right atrium into the RV of the
heart. The catheter was allowed to stabilize
in the center of the RV for 2–5 minutes
before recording pressure and volume for
later offline analysis using IOX2 Software
(EMKA Technologies).

Complete and cellular differential counts,
which included data on hemoglobin,
hematocrit, mean corpuscular volume (MCV),
and red blood cell distribution width (RDW),
were measured using the HemaVet HV950
(Drew Scientific Inc.) in EDTA-anticoagulated
blood samples collected from animals after
RVmaxSP recording. Reticulocyte counts were
acquired using thiazole orange (Sigma) and
flow cytometry, as described in a previously
validated method (36).

Endothelium-dependent and
-independent relaxation responses of
second-order pulmonary arteries to
cumulative doses of acetylcholine (Ach) and
sodium nitroprusside (SNP) were evaluated

using two-pin wire myography (Multiple
Myograph Model 610 M; DMT).

Statistical Analysis
Results are presented as mean (6SEM).
Only microcatheterization-derived data
satisfying the following criteria was deemed
suitable for inclusion in statistical analyses:
artifact-free RV pressure waveform; HR of
400 bpm or greater; and RVmaxSP of
15 mm Hg or greater.

Statistical analysis of all data was
performed offline with PRISM data analysis
software (GraphPad 7.0a; GraphPad
Software). A value of P less than 0.05 was
considered statistically significant. Response
data between groups were analyzed using
Student’s unpaired t test.

Details on chemicals, mice, experimental
treatments, genotyping, pharmacokinetics,
anesthesia, radiotelemetry measurements
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Figure 1. Therapeutic drug levels of soluble guanylate cyclase (sGC) modulators, BAY 41-8543 and BAY 54-6544, do not affect systemic blood pressure
and heart rate (HR) in wild-type C57/Bl6 mice. Mean arterial pressures (MAPs) and HR in mice treated for 5 days with placebo versus the sGC modulators, BAY
41-8543 (150 ppm, n=4 [A]), BAY 54-6544 (80 ppm, n=5 [B]), or the PDE5 inhibitor, sildenafil (1,500 ppm, n = 7 [C]), during active and inactive (rest) states.
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of blood pressure, closed chest
microcatheterization of the RV for
RVmaxSP, hematological phenotyping, and
wire myography are presented in the data
supplement.

Results

Pharmacokinetic and Systemic
Hemodynamic Effects of Orally Dosed
sGC Modulators
To establish oral dosing that did not change
mean arterial blood pressures, C57B/l6 mice
were treated with rodent chow compounded
with placebo, sGC activator (BAY 54-6544,
17 mg/kg/d), sGC stimulator (BAY 41-8543;
30 mg/kg/d), or the PDE5 inhibitor,
sildenafil, as previously described (37).
Plasma drug levels were measured
by using high-performance liquid
chromatography coupled to mass
spectrometry, as previously described (32).

After 5 days of treatment, arterial blood
pressures (systolic, diastolic, and mean)
and HR measurements were made using
surgically implanted radiotelemetry devices
(Figures 1A–1C). Mice were maintained
without anesthesia or restraint during the
acquisition of blood pressure and HR data.
No significant effect was seen for the
experimental treatment protocols on BP and
HR, whether measured during periods of
activity (night) or inactivity (day). In a
separate group of animals, BAY 54-6544 and
BAY 41-8543 in chow were fed to BERK-
SCD mice for 30 days. Average plasma drug
levels for BAY 54-6544 and BAY 41-8543
were approximately 28.5 ug/L and
approximately 17.5 ug/L, respectively
(see Figure E1 in the data supplement).
These pilot data informed the dose selection
for subsequent studies using the sGC
modulators or sildenafil for PAH therapy in
BERK mice.

Severe Hemolytic Anemia in BERK-SCD
Mice Is Not Affected by 30-Day
Treatment with sGC Modulators
To determine if there are systemic effects
of the drugs that modulate the SCD
phenotype, we evaluated hematological
indices before and after therapy. We
measured hemoglobin, hematocrit, MCV,
RDW, and reticulocyte count in animals
treated for 30 days with the sGC modulator
or placebo chow, using same-age littermates
for controls. Importantly, we observed no
statistically significant difference in the
groups treated with sGC activator, BAY
54-6544, or sGC stimulator, BAY 41-8543,
when compared with the placebo group
(Table 1).

Effects of 30-Day sGC Modulator
Treatment on RVmaxSP and RV
Remodeling in BERK-SCD Mice
The development of PAH by 6 months of
age in the humanized, transgenic mouse
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Figure 1. (Continued).
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model of SCD (referred to as BERK-SCD)
used in our study was confirmed in a pilot
study by measurements of RVmaxSP
(Figure E2), corrected RV weight (RV

weight adjusted for tibia length), and
Fulton’s index (RV divided by the LV
plus septal [S] weight; RV / LV1 S) (data
not shown).

The activator, BAY 54-6544, and
stimulator, BAY 41-8543, were subsequently
examined for their effects on the PAH
cardiophenotype. Additional age-matched

Table 1. Blood Cell Indices for Berkeley-Hemizygous (Control) Versus Berkeley–Sickle Cell Disease Mice with/without Treatments

BERK-Hemi Placebo (n = 13–30)

BERK-SCD

Placebo BAY 54-6544 BAY 41-8543
(n = 10–17) (n = 6–8) (n = 7–8)

Hct, % 36.76 1.3 18.76 0.8* 17.36 1.2* 18.16 2.1*
Hgb, g/dL 10.76 0.3 5.16 0.2† 4.86 0.3† 4.96 0.5†

MCV, fL 34.26 1.7 39.66 0.9* 38.26 0.4‡ 37.76 0.5‡

RDW, % 20.76 0.3 28.06 0.7* 27.76 0.6† 26.96 0.4‡

Retic, 106 6.46 1.9 46.96 7.1* 46.16 0.9* 39.66 2.1‡

WBC, 103 5.96 0.9 22.96 4.0† 21.66 4.7‡ 16.96 7.4x

PLT, 103 566.16 52.8 367.86 40.8† 257.36 75.6‡ 308.66 53.7

Definition of abbreviations: BERK = Berkeley; Hct = hematocrit; hemi = hemizygous; Hgb = total hemoglobin; MCV =mean corpuscular volume; PLT =
platelets; RDW= red blood cell distribution width; Retic = reticulocytes; SCD = sickle cell disease; WBC= leukocytes.
Values are6 SEM using unpaired Student’s t test. Red cell indices for control (BERK-Hemi) and SCD mice with/out soluble guanylate cyclase modulators.
*P, 0.0001 versus control.
†P, 0.0005 versus control.
‡P, 0.05 versus control.
xP, 0.005 versus control.
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Figure 1. (Continued).
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groups of mice were treated with placebo
or the PDE5 inhibitor, sildenafil, for
comparison purposes. After 30 days of
treatment in chow, mice were anesthetized
with etomidate/urethane and closed-chest
microcatheterization measurements of
RVmaxSP were made. BERK-SCD mice
(placebo) had significantly higher RVmaxSP
in comparison to the BERK-Hemi group
(P = 0.048 by Student’s t test). BAY 54-6544
decreased RVmaxSP in BERK-SCD mice
when compared with the placebo group
(P = 0.047; Figure 2B). By contrast, the BAY
41-8543 and sildenafil groups showed no
treatment-associated change in RVmaxSP
when compared with placebo. There was no
effect of the sGC activator, BAY 54-6544, on
measures of cardiac remodeling that often
accompanies PAH (Figures 2C and 2D).
Unexpectedly, the sGC stimulator, BAY 41-
8543, enlarged the Fulton’s index (P = 0.048)
and corrected RV weight (P = 0.064) in
BERK-SCD mice when compared with their
counterparts treated with placebo (Figures
2C and 2D). The PDE5 inhibitor, sildenafil,
produced the greatest RV enlargement when
measured by Fulton’s index (P = 0.0009) and
corrected RV weight (P = 0.002) compared
with placebo (Figures 2C and 2D). BERK-
SCD mice exhibited left-heart remodeling, as
measured by corrected LV weight (LV1 S /
tibia), when compared with BERK-Hemi
controls (P, 0.0001), which none of the
treatments was effective at normalizing.

Oral BAY 54-6544 Treatment
Improves Pulmonary Endothelial Cell
Function in SCD Mice
Experiments using wire myography were
conducted to test the endothelial function
of second-order pulmonary arteries in
6-month-old BERK-SCD mice. Consistent
with the impaired NO responsiveness seen
in patients with SCD (4), ex vivo relaxation
responses of pulmonary arteries from the
BERK-SCD group (n = 5) stimulated with
the NO donor, SNP, were blunted when
compared with the age-matched littermate
BERK-Hemi control group (P, 0.05 at
1029–1027 M; Figure 2F). Relaxation
responses of vessels from BERK-SCD mice
were also significantly blunted to the
endothelial cell-dependent vasodilator,
Ach, when compared with vessels from
the BERK-Hemi group (P, 0.05 at
concentrations 1027–1024 M; Figure 2G,
Table 2). Importantly, 30-day treatment
with the sGC activator, BAY 54-6544,
improved Ach-mediated (concentrations
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Figure 2. Right ventricular (RV) systolic pressure (RVmaxSP) in 6- and 7-month-old Berkeley
(BERK)–sickle cell disease (SCD) mice is attenuated by 30 days of treatment with the sGC activator,
BAY 54-6544. (A) Schematic of 30-day treatment protocol and closed-chest right-heart catheterization
approach. (B) Right-heart catheterization measurements of RVmaxSP in BERK-hemizygous (Hemi; control,
n=25) and BERK-SCD mice treated with placebo (BERK-Placebo, n=21), BAY 54-6544 (BERK-
Activator, n=9), BAY 41-8543 (BERK-Stimulator, n=6), and Sildenafil (BERK-Sildenafil, n=10). (C)
Fulton’s index in BERK-Hemi (control, n=26) and BERK-SCD mice treated with placebo (BERK-Placebo,
n=24), BAY 54-6544 (BERK-Activator, n=14), BAY 41-8543 (BERK-Stimulator, n=8), and Sildenafil
(BERK-Sildenafil, n=4). (D and E) Corrected weights for RV and left ventricle (LV)1 septum (LV1 S),
determined by ratio of ventricle weight to tibia length, in BERK-Hemi (control, n=28) and BERK-SCD mice
treated with placebo (BERK-Placebo, n=19), BAY 54-6544 (BERK-Activator, n=10), BAY 41-8543
(BERK-Stimulator, n=8), or Sildenafil (BERK-Sildenafil, n=4) for 30 days. Myography studies indicate
endothelial cell dysfunction in pulmonary arteries of 6-month-old BERK-SCD mice that is attenuated by
acute treatment with the sGC activator BAY 54-6544. (F) Measurements of sodium nitroprusside (SNP)–
stimulated dilation of pulmonary arteries from BERK-SCD mice relative to control mice (BERK-Hemi) (n=5
per group). All statistical analyses performed using unpaired Student’s t test: *P, 0.05, **P, 0.005, ***P,
0.001, ****P , 0.0001. (G) Measurements of acetylcholine (Ach)-stimulated dilation of pulmonary arteries
from control mice (BERK-Hemi, n=5), BERK-SCD mice treated with placebo (BERK-Placebo, n=3),
BAY54-6544 (BERK-Activator, n=7), or BAY 41-8543 (BERK-Stimulator, n=4) for 30 days. *P,0.05 for
BERK-SCD (Placebo) versus BERK-Hemi; #P, 0.05 for BERK-SCD (BAY 54-6544) versus BERK-Hemi,
and &P, 0.05 for BERK-SCD (BAY 41-8543) versus BERK-Hemi using unpaired Student’s t test.
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1027, 1025–1024 M) relaxation in
pulmonary arteries from BERK-SCD mice
relative to the BERK-Hemi group
(Figure 2G, Table 2). By contrast, 30-day

treatment with the sGC stimulator, BAY
41-8543, was largely without effect
(Figure 2G, Table 2). These data are
consistent with the endothelial cell

dysfunction and NO resistance that has
been described in the pulmonary
vasculature of BERK-SCD mice and
patients with SCD (4, 38), and apparent
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improvements after 30-day exposure to
sGC activator (1, 17).

Effects of 90-Day sGC Modulator
Treatment on RVmaxSP and RV
Remodeling in BERK-SCD Mice
To determine whether the reduction in
RVmaxSP by the 30-day sGC activator
treatment could improve RV function in
BERK-SCD mice with earlier and longer
treatment, separate studies were conducted
using 90-day feeding of the sGC activator,
BAY 54-6544, initiated at 4 months of age
and terminated 3 months later (Figure 3A).
Plasma cGMP levels did not differ between
groups (Figure E3), a likely consequence of
their long half-life and regulation by the
particulate, rather than soluble, form of
guanylate cyclase (39–41). However,
RVmaxSP in the BERK-SCD mice was
significantly attenuated by the 90-day
treatment with the sGC activator, BAY 54-
6544 (n = 11; 23.76 0.9; P = 0.0001), when
compared with placebo (n = 7, 30.76 2.4)
(Figure 3B). RV remodeling, as measured
by Fulton’s index (Figure 3C), tended
to improve in the BERK-SCD mice treated
with the activator, BAY 54-6544 (n = 11,
0.286 0.009; P = 0.056) when compared
with placebo (n = 7, 0.306 0.006).
RVmaxSP and Fulton’s index were
significantly correlated (Figure 3D). The
sGC activator treatment also improved the
corrected RV weight (RV:tibia ratio, P =
0.007; Figure 3E) and decreased medial
layer thickness (P = 0.057; Figure E4). The
LV weight (LV1 S:tibia ratio) was also
increased in the SCD mice (BERK-Placebo
versus BERK-Hemi, P = 0.001), and
likewise improved with activator therapy
(Figure 3F). Notably, effects for the sGC
activator on RVmaxSP in the SCD mice
(BERK-Activator) did not associate with
changes to systemic blood pressure

(Figure 3G) or HR (Figure 3H). The
persistent insensitivity to NO signaling that
was detected in isolated pulmonary arteries
from the BAY 54-6544–treated animals,
as measured by ex vivo myography
experiments with SNP, is consistent with
reported NO-independent beneficial effects
for the sGC activator on vascular smooth
muscle function (Figure E5).

Discussion

In SCD, chronic intravascular hemolysis
promotes endothelial dysfunction and
pulmonary vascular remodeling with
progressive resistance to blood flow,
facilitating the development of PH (17).
There are currently no proven therapies
to directly manage vasculopathy in
SCD patients. A recent phase II trial of
sildenafil for the treatment of PH in SCD
(NCT00492531) was halted secondary to
significant increases in the rate of
hospitalization for pain, renewing the
urgent need for novel drugs with effective
and safe therapeutic profiles (25, 42).
Several recent studies have demonstrated
the effectiveness of the sGC stimulator,
riociguat, for PAH and chronic
thromboembolic pulmonary hypertension,
two forms of PH that can affect patients
with SCD (29, 30). However, the 12-week
treatment period was well tolerated, with
no increase in adverse clinical events, and
the rate of mortality and heart failure
hospitalization were lower when compared
with placebo (43).

The sGC stimulators bind to the native
reduced (Fe21) form of the sGC enzyme,
and stimulate the enzyme even when low
levels of the NO ligand are available (26).
By contrast, the sGC activators work on
sGC enzymes with oxidized heme groups or

the heme -free apo-enzyme, irrespective
of NO availability. Consistent with this
mechanism, studies uniformly identify a
more potent response to the sGC activator,
cinaciguat, in situations of high oxidative stress
(1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one
or hyperoxia) (20). SCD drives significant
intravascular oxidative stress, wherein ROS
are generated by Fenton chemistry and
peroxidase reactions of cell-free plasma
hemoglobin and heme, up-regulated
expression and activity of oxidative
enzymes (nicotinamide adenine
dinucleotide phosphate-oxidase and
xanthine oxidase), and increase elaboration
from mitochrondia (18, 44–46). This
oxidative milieu impairs normal NO
signaling mechanisms, including the
NO→sGC→cGMP pathway. NO activation
of sGC to produce cGMP requires the sGC
enzyme’s heme to be reduced (Fe21 form).
NO-scavenging, ROS-driven oxidation
of sGC and suppressed activity or
expression of the sGC heme iron reductase,
cytochrome b5 reductase 3, may combine
to produce a relative NO-insensitive sGC in
SCD. Indeed, a state of NO insensitivity
has been linked to the development of
PH in other models (1, 47, 48). Therefore,
sGC activators may be superior to sGC
stimulators for the treatment of vasculopathy
in SCD, but preclinical data and a direct
comparison are yet to be explored.

After 30 days of treatment, the
sGC activator outperformed the sGC
stimulator at lowering RVmaxSP in our
murine model of SCD-associated PAH.
After 90 days of treatment with the
activator, less cardiac remodeling was
observed, suggesting reverse remodeling
with sustained reductions in PVR. PAH
is typically associated with structural,
hypertrophic change to the right heart due
to elevated PVR, which is usually detected
by comparing RV free wall mass to LV1 S
mass (Fulton’s index) (49). We also
observed left-heart hypertrophy in these
mice. The calculations of corrected RV and
LV weights (RV / tibia and LV1 S / tibia,
respectively) that confirm a therapeutic
effect for the sGC activator on heart
remodeling in this study also indicate
concomitant improvement in left-heart
hypertrophy in the BERK-SCD mice.
Importantly, the hemodynamic and cardiac
remodeling effects of the sGC activator
were independent of changes in systemic
blood pressure and HR, which appeared
unaffected using this oral dosing regimen.

Table 2. Ex vivo Pulmonary Artery Vasorelaxation Responses to Acetylcholine Dose
Response

Placebo BAY 54-6544 BAY 41-8543

Ach 1028 0.301 0.622 0.458
Ach 1027 0.032 0.239 0.032
Ach 1026 0.005 0.027 0.001
Ach 1025 0.008 0.065 0.005
Ach 1024 0.006 0.199 0.017

Definition of abbreviation: Ach = acetylcholine.
P values for Berkeley–sickle cell disease with indicated treatment versus BERK-hemizygous. Data
analyzed by unpaired Student’s t test.
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Data from our ex vivo studies of
pulmonary artery relaxation responses to
the sGC modulators support our in vivo
data. Our findings showing altered NO
signaling in SNP- and Ach-stimulated
pulmonary arteries from the BERK-SCD
mice agree with a state of NO resistance in
SCD. Blood flow responses to infusions of
NO donor treatments in humans and mice
with SCD have previously been shown to
be similarly impaired (1–4, 50). The ability

of the NO-independent activator, BAY
54-6544, to improve relaxation responses of
the BERK-SCD vessels to Ach, which works
via endothelial-dependent activity, indicates
an important role for sGC in restoring
normal vascular homeostasis. Although the
mechanism for this improvement is not
clear at this time, the restoration of the
enzyme’s cGMP-producing activity
effectively improves vasodilation (2, 51–54),
which could be expected to lessen red blood

cell activation and adhesion/occlusion
events that promote endothelial cell injury
(55, 56). Although we cannot rule out an
effect for enhanced red blood cell sGC
activity in the improved pulmonary
hemodynamics achieved with the BAY 54-
6544 activator therapy, our observation of
similar reticulocyte counts, MCV, RDW,
total hemoglobin, and hematocrit among
the BERK-SCD groups, irrespective of
treatment, suggest little direct effect for the
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Figure 3. BAY 54-6544 treatment for 90 days lowers RVmaxSP and cardiac remodeling in 6- and 7-month-old BERK–SCD mice. (A) Schematic of
90-day treatment protocol in BERK-Hemi (control, n = 8) and BERK-SCD mice treated with placebo (BERK-Placebo, n = 7) or BAY 54-6544 (BERK-
Activator, n = 11). (B and C) Measurements of RVmaxSP and Fulton’s index. Student’s t test used for statistical analysis of RVmaxSP data. (D) RVmaxSP
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(G and H) Systemic blood pressure (BP) and HR versus RVmaxSP analyzed by Pearson’s correlation coefficient. **P = 0.0019, ****P, 0.0001.
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BAY 54-6544 activator on red blood cell
rheology. NO-independent cytoprotective
effects for cGMP-sensitive endothelial
HO-1 gene may also account for the
observed effects (57). The ability of Ach
to dilate arterioles by hyperpolarization
via potassium channels is not entirely
dependent on sGC (58), and may
involve effects on calcium handling
(59).

Bypassing the NO pathway and
activating sGC directly to increase cGMP
and induce vasorelaxation may offer a
potential therapeutic advantage for PAH in
hemolytic diseases such as SCD, wherein
the oxidative stress in the vasculature
may render much of the sGC oxidized
and inactive. Raat and colleagues (41)
recently demonstrated in rats that
plasma cell-free hemoglobin causes
vasoconstriction that is unresponsive to
an NO donor or sildenafil treatment, but
is responsive to sGC modulators. It is
now appreciated that the pain episodes
that brought the phase II trial of sildenafil
to a halt are a class effect of the PDE5
inhibitor medications, which cause limb,
back, and muscle aches and pains. The first
two major FDA registration trials of
riociguat were not accompanied by similar
reports of pain, suggesting an improved
safety profile for the sGC stimulator (29, 30,
60). These preclinical findings suggest

promising therapeutic potential for the
NO-independent sGC activator in this
and other group 5 hemolytic disease
states, in which pulmonary hypertension
develops in the context of oxidative
stress (61).

Cinaciguat was studied in randomized,
double-blind, placebo-controlled studies
in patients in acute decompensated
heart failure with (COMPOSE 1 and 2) or
without (COMPOSE EARLY) invasive
hemodynamic monitoring. For cinaciguat, a
large and sudden drop in systemic blood
pressure was observed in some patients. The
findings of the COMPOSE studies were the
end of the development of the intravenous
cinaciguat for acute decompensated heart
failure (62, 63). However, it is important to
recognize that these studies used the
intravenous formulation of the drug; an
oral sGC activator will have a different
pharmacokinetic and clinical profile. The
pharmacokinetics of the oral formulation
are different, and do not produce the same
acute changes in blood pressure that have
been seen with IV dosing (64). On the
beneficial side, cinaciguat produced
improvements in the pulmonary capillary
wedge pressures, indicating therapeutic
effects for the sGC activator on LV end-
diastolic volume overload (62, 63).
Although the clinical data so far argue
against the use of cinaciguat for therapeutic

management of acute hemodynamic events,
the preclinical data on hand suggest that
sGC activators may offer protection against
organ remodeling that occurs over the long
term (65, 66). Indeed, our findings of a
normalized RVmaxSP and Fulton’s index,
independent of any effect on systemic blood
pressure and HR, in adult SCD mice
administered long-term (90-d) treatment
with the sGC activator suggest possible
benefit.

In conclusion, we have demonstrated in
this study that chronic oral administration
of these sGC modulators do not affect
systemic blood pressure in mice in the doses
used. We show that NO-independent sGC
activator improved endothelial function and
reversed pulmonary hypertension and
cardiac remodeling in a mouse model of
SCD. Although these studies show promise
for use of an sGC activator, additional
studies are needed to likewise discern the
safety profile of the sGC activator and its
potential for effectively treating PH in
patients with SCD. n
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