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Abstract

It is essential to monitor tissue perfusion during and after reconstructive surgery, as restricted 

blood flow can result in graft failures. Current clinical procedures are insufficient to monitor tissue 

perfusion, as they are intermittent and often subjective. To address this unmet clinical need, a 
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compact, low-cost, multimodal diffuse correlation spectroscopy and diffuse reflectance 

spectroscopy system was developed. We verified system performance via tissue phantoms and 

experimental protocols for rigorous bench testing. Quantitative data analysis methods were 

employed and tested to enable the extraction of tissue perfusion parameters. This design 

verification study assures data integrity in future in vivo studies.
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1. INTRODUCTION

Tissue perfusion monitoring is essential during and after reconstructive surgery, as restricted 

blood flow can rapidly result in graft failures. Current clinical procedures for monitoring 

tissue perfusion are insufficient: they are intermittent and often subjective. To address this 

unmet clinical need, we developed a compact, low-cost, multimodal diffuse correlation 

spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS) system. This non-invasive 

system uses fiber-optic probes embedded in adherent skin patches to detect tissue perfusion 

continuously and automatically.

In this study, we verified the DCS-DRS system’s performance by designing tissue-

simulating phantoms and experimental protocols for rigorous bench testing. We employed 

and tested quantitative data analysis methods to enable the real-time extraction of several 

perfusion parameters, including blood flow indices as well as hemoglobin concentration.

For the DCS sub-system, we constructed a flow phantom to assess the accuracy of the sub-

system’s flow parameter estimates. For the DRS sub-system, we constructed a liquid 

phantom with scattering and absorption coefficients of physiological relevant values to test 

accuracy using an inverse model. We anticipate this design verification study will help to 

assure data integrity in future pre-clinical and clinical studies.

2. METHODS

2.1 Instrumentation

We have developed a multimodal device capable of taking measurements on in vivo tissues 

using DCS and DRS in rapid succession. A DCS instrument was constructed consisting of 

two Near-Infrared (785 nm) diode lasers, two cooled avalanche photodiodes operated in 

Geiger mode for single photon detection, and a custom-made correlation and laser control 

board. The instrument automates DRS spectral collection using a white LED as a broadband 

source and a miniaturized spectrometer (Avantes) to acquire a reflectance spectrum (450 ~ 

650 nm). All raw photon count time stamps, as well as correlation curves and DRS spectra, 

are collected and saved by the device to a laptop running a custom GUI written in C#. 

Further details on instrument construction can be found in [REF 1–5].
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To verify the device’s performance, we designed and tested tissue-simulating flow phantoms 

on customized multimodal patches. Flow speed was controlled via a peristaltic pump (Fisher 
Scientific, CAT# 138764). The multimodal patches were designed to acquire data on skin 

flaps whose geometry is planar in nature, while our liquid phantoms flowed through 

cylindrical tubing. Due to the incongruence between the patch’s source-detector geometry 

and our phantom geometry, DRS and DCS measurements were taken on separate phantoms. 

The experimental setup can be viewed in Figure 1 below.

2.2 Phantom Making

For both DCS and DRS phantoms, we used deionized water as the flow medium and 

flexelene (Eldon James SFX 1–2, ID = 1/16″, OD = 1/8″) for the tubing. For scattering 

agents, we used titanium oxide in the DCS phantom and polystyrene microspheres (0.99μm, 

Polysciences Inc., μs′ = 10 cm−1) in the DRS phantom. For the DRS phantom, we added 

differing concentrations of hemoglobin (0, 5, 10, 15, 20 μM) as an absorbing agent.

2.3 Data Analysis: DCS

We developed an algorithm to convert photon intensity into a value for meaningfully 

describing flow changes. An autocorrelation function was generated for each scan in the 

experiment and then normalized according to its Beta value as defined by the Siegert 

equation (2.31). For details on the Siegert equation and on how the curves were generated 

from DCS data, refer to the cited SPIE proceedings.1–4,6 The curves were smoothed using 

logarithmic interpolation.

g2(q; τ) = 1 + β[g1(q; τ)]2 (2.31)

The Beta value is a product of an experimental setup that fluctuates throughout the 

experiment. A feature-scaling technique was used to normalize the Beta values for each scan 

by fitting a sigmoidal curve to the calculated g2 function. Specifically, Min-Max scaling was 

used to fix the bounds of the autocorrelation function from 0 to 1. Normalized Beta values 

allowed for more accuracy in detecting changes in the perfusion as opposed to simply 

monitoring instrument setup and noise. A nonlinear least-squares solver was used to find the 

parameters of the sigmoid given by equation 2.32. These parameters were used to calculate 

the maximum and minimum values needed for normalization. They were then used to scale 

the calculated autocorrelation curves by equation 2.33.

g2 decay model = A
e−Bx + C (2.32)
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g2
norm =

g2 − g2
min

g2
max − g2

min (2.33)

To obtain a quantitative parameter related to fluid flow, we then calculated a tau-half value 

(the value that corresponds to one-half the maximum of the normalized g2) for each scan 

from the scaled autocorrelation function. Our algorithm calculated tau-half values in the 

following manner:

A mean value for the ‘start’ and ‘end’ of the region of interest in the autocorrelation curve 

was calculated from g2 values within two predetermined ranges at the beginning and end of 

the g2 curves. For relatively “clean” DCS data, these ranges represent the points at the 

beginning and end of the DCS curve where the slope is zero. The average of the ‘start’ and 

‘end’ g2 values was calculated and the tau-half value was determined by interpolating the tau 

value corresponding to this average.

To account for varying amounts of noise between different autocorrelation curves, for each 

scan a series of 81 tau-half values were calculated using combinations of nine different start 

and end ranges. A representative tau-half value was then determined from the average of the 

81 tau-half values. An overview of the final algorithm developed for DCS data analysis is 

given in Figure 2. A more in-depth description of the theory behind the DCS analysis can be 

found in [Ref 6 and 8–12].

2.4 Data Analysis: DRS

To estimate total hemoglobin concentration and tissue oxygen saturation, a Monte Carlo 

lookup table (MCLUT)-based inverse method was employed to fit the measured reflectance 

spectra.3,7 Technical details on algorithm implementation are described in [REF 1].

3. RESULTS

3.1 DCS results

We took DCS measurements using the perfusion-monitoring device on two different flow 

conditions: no flow and dial 10 on the peristaltic pump, corresponding to a flow rate of 

~1.5×10−7 m3s−1. For no flow, the liquid phantom was stationary within the tubing. For each 

condition, 6 scans were taken at 5-second intervals for 30 seconds. Normalized 

autocorrelation curves were generated for each scan measured. One representative scan from 

each condition is shown in Figure 3.

To obtain a quantitative parameter related to flow rate, we also calculated the mean tau-half 

values for each flow condition from the normalized curves. For both flow conditions, the 

tau-half values from each of the 6 scans were averaged, and the results are discussed in 

section 4.1.
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3.2 DRS results

As described in section 2.2, DRS data was taken separately from DCS data. Hemoglobin 

concentrations were estimated from the reflectance spectra using an MCLUT-based 

algorithm. Figure 4 displays the reflectance spectra of 5 different Hb concentrations taken on 

flow phantoms set to a dial speed corresponding to ~1.8×10−7m3s−1. Table 1 displays the 

measured and extrapolated percent increases in hemoglobin.

4. DISCUSSION

4.1 DCS

We explored a number of methods for DCS data analysis to extrapolate consistent data, and 

feature scaling was found to best represent the data. We also tried creating a filter using the 

median tau-half values, which were directly calculated from non-normalized autocorrelation 

curves. There was concern that tau-half values with noisy start and end range combinations 

could heavily skew the means. To filter these specific tau-half values, a median filter was 

tested. If the tau-half value was an outlier (±1.5 times the inter-quartile range), the tau-half 

value was removed from the set before averaging. However, when these newly-calculated 

mean tau-half values were compared to the autocorrelation curves, the tau-half values did 

not represent the curves’ trends (curves shifted more to the right did not always have greater 

tau-half values). Normalizing autocorrelation curves removed the need to filter certain tau-

half values, and the final mean tau-half values for each curve were consistent with the 

curves’ trends.

The acquired autocorrelation curves shown in Figure 3 shifted to the right as flow from the 

pump was turned off, indicating a clear decrease in flow speed. Note that although there was 

no directed flow in the no-flow condition, the autocorrelation curve still displayed a 

sigmoidal shape due to diffusion of the scattering particles. The no-flow and flow conditions 

were found to have mean tau-half values of 8.4±1.4×10−4s and 5.2±0.2×10−5s respectively, 

supporting the inverse trend between fluid flow and tau-half value implied by the 

autocorrelation curves.

4.2 DRS

As anticipated, the reflectance spectra in Figure 4 display an increasingly prominent “double 

dip” shape for increasing hemoglobin concentrations. Looking at Table 1, it is evident that 

our computer algorithm produces hemoglobin estimates that follow the expected trend 

(increasing estimated Hb as more Hb was added), but differ from the exact concentration. 

This suggests that our DRS system in combination with our MCLUT algorithm can reliably 

assess relative changes in hemoglobin concentration.

5. CONCLUSION

We have bench tested a low-cost, multimodal DRS-DCS system on a variety of flow 

phantoms with physiologically relevant absorption and scattering coefficients. Our results 

suggest that the device can reliably detect relative changes in flow and hemoglobin 
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concentration. We are confident that this study lends data integrity to future in vivo studies 

with this system.
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Figure 1. 
Diagram of Experimental Setup – Fiber optic patches were secured to tubing as the 

perfusion monitoring device detected fluid flow. (MMF: multi-mode fiber; SMF: single-

mode fiber)
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Figure 2. 
Diagram of DCS data analysis
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Figure 3. 
Normalized autocorrelation curves of the flexelene flow phantom with no flow in tubing and 

flow at dial 10 on peristaltic pump
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Figure 4. 
DRS results for flow at dial 10 on the peristaltic pump
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Table 1

Comparison between extrapolated and actual percent increase in Hb concentration over the course of the 

experiment

Hb Concentration (μM) Estimated % Increase in Hb Actual % Increase

0 N/A N/A

5 N/A N/A

10 61.7 100

15 40.2 50

20 26.7 33.3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 May 11.


	Abstract
	1. INTRODUCTION
	2. METHODS
	2.1 Instrumentation
	2.2 Phantom Making
	2.3 Data Analysis: DCS
	2.4 Data Analysis: DRS

	3. RESULTS
	3.1 DCS results
	3.2 DRS results

	4. DISCUSSION
	4.1 DCS
	4.2 DRS

	5. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

