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Abstract: Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain 
tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents 
such as fluorophores to increase the contrast between GBM and normal cells can help 
neurosurgeons to locate residual cancer cells during image guided surgery. In this work, 
Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The 
cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through 
overexpression of the epidermal growth factor receptor (EGFR) and “broadcasts” stronger 
pre-defined Raman signals than normal cells. The average ratio between Raman signals from 
a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity 
of these images is stable under laser illuminations without suffering from the severe photo-
bleaching that usually occurs in fluorescent imaging. Our results show that labeling and 
imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them 
from normal cells. This Raman tag based method can be used solely or integrated into an 
existing fluorescence system to improve the identification of infiltrative glial tumor cells 
around the boundary, which will further reduce GBM recurrence. In addition, it can also be 
applied/extended to other types of cancer to improve the effectiveness of image guided 
surgery. 
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1. Introduction 
Glioblastoma multiforme (GBM) is a highly malignant brain tumor which is categorized as a 
grade IV tumor by the WHO. After conventional treatment (i.e. surgery, radiation therapy), 
the median survival of the patients is approximately 13 months [1-2]. The recurrence of GBM 
is associated with the completeness of the GBM resection [1-2]. The complete removal of 
GBM through surgery is challenging due to the invasive nature of GBM tumors whose finger-
like tentacles aggressively infiltrate the normal tissue [3]. Therefore, the boundary of the 
GBM tumor is usually not clearly defined. This becomes the main obstacle to effective GBM 
treatment. Gross-total resection of GBM is not always possible, especially for the GBM 
tumor occurring at functional regions of the brain. Therefore, to precisely locate the GBM 
cells and distinguish them from normal tissue is crucial for effective treatment. 

Recently, the US FDA approved an imaging agent, ALA HCl (aminolevulinic acid 
hydrochloride), for fluorescence guided surgery to improve the accuracy of the GBM 
resection. Through metabolism, the injected ALA will lead to selective accumulation of PP-
IX (Protoporphyrin IX) in GBM cells. This phenomenon is also observed in different kinds of 
tumors. PP-IX produces fluorescence when illuminated by blue light in the 375-440 nm 
range. Although the complete mechanism of PP-IX accumulation in GBM (and some other 
tumors) is still not fully understood [4–9], ALA induced fluorescence has been utilized to 
improve the GBM resection in the past two decades [10–12]. 

However, fluorescent labels are normally fragile and can easily be photo-bleached. Once 
the targeted fluorescent signals decay, the contrast will be reduced due to the 
autofluorescence from organelles or other components of the tissue, especially under short 
wavelength (i.e. blue light) excitation. In addition, the penetration depth of blue light is 
relatively shallow compared to red light and near-infrared excitation. In addition, the photo-
toxicity of large amounts of fluorophores is still a concern. Furthermore, the broadband nature 
of fluorescence is not suitable for multiplexed imaging. 

Therefore, various imaging methods other than fluorescence imaging have recently been 
applied to brain tumor surgery such as OCT (optical coherence tomography), Raman imaging, 
intraoperative MRI, intraoperative ultrasound etc [13–21]. Among them, Raman imaging 
provides good spatial resolution and spectral features distinguishable from background 
autofluorescence. Thus, label-free and Raman tag based methods have been widely used for 
cell or tissue identification [22–25]. For the Raman tag based imaging, SERS substrates of the 
tags in most of the previous studies can be divided into three categories: single spherical 
particles, star-shaped particles, and random particle clusters. The single spherical particles 
provide limited SERS enhancement. For example, for a 50 nm gold nanoparticle at visible 
regime, SERS enhancement is on the order ~200. The star-shaped particles can provide high 
but shape-sensitive enhancement. The random particle clusters provide an unpredictable 
number of hot spots. These low or unstable SERS sources will limit their clinical applications. 
In addition, the contrast between the labeled tumor and the normal cells is not fundamentally 
estimated in the previous studies. 
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In this work, the robust and brilliant Raman tags based on core-satellite assemblies we 
recently reported [26] are functionalized with antibodies to label GBM cells. The preparation 
of these tags is straightforward and efficient. Those tags have the stable number of hot spots 
with extremely high SERS enhancement on the order of 109. In addition, the tags are stable 
through multiple surface modification. The specific binding between Raman tags and 
fixed/living GBM cells are demonstrated. The imaging intensity contrast between the targeted 
tumor cells and normal cells are experimentally assessed. Finally, the stability of the Raman 
image is evaluated. 

2. Methods 

2.1 Raman tags preparation 

The backbone of a Raman tag was composed of a 50 nm core and several 20 nm satellite gold 
nanoparticles through the polyelectrolyte linker, PAH(poly(allylamine hydrochloride), 
Sigma). For the Raman reporter embedded tags, the reporter molecules coated core particles 
via thiol bonds before the attachment of PAH and satellite particles. The detailed steps were 
described in the previous report [26]. After the formation of core-satellite assemblies (CSA), 
the silica shell was formed by hydrolysis of TEOS (tetraethyl orthosilicate, Showa). The 1 mL 
solution containing CSA and unlinked satellite particles was centrifuged at 700 g for 15 min. 
After removal of 950 uL supernatant containing unlinked satellite particles, 150 uL water, 
856 uL ethanol and 23 uL of 5 mM APTMS ((3-Aminopropyl)trimethoxysilane, Alfa Aesar) 
dissolved in ethanol were added. The amino terminal of APTMS was attached to the surface 
of CSA to form an anchor layer where silica would grow. The mixed solution was shaken for 
15 min and then 58 uL of 4 mM TEOS (dissolved in ethanol) was added. The solution was 
shaken again for 15 min. The 23.4 uL of 24.85 mM NaOH was added to keep the pH value 
basic for the formation of silica. The solution was shaken again for 15 min. The 40.45 uL of 
2.96 mM APTMS was added to increase the formation of the amino group on the surface of 
silica shell. The whole solution was incubated at 35°C and 800 rpm for 24 hr. 

2.2 Surface modifications of Raman tags 

The following surface modifications were performed in order to link anti-EGFR and silica 
shell of the Raman tags. In the first step, the amino group (-NH2) provided by APTMS was 
replaced by the carboxyl group (-COOH). The solution containing Raman tags was 
centrifuged at 700 g (for fifteen minutes) three times to remove the residual chemicals used 
for silica formation. The particle aggregates were resuspended in 291 uL DMF 
(Dimethylformamide, Alfa Aesar). Under a nitrogen environment, 208 uL of 0.1 M SA 
(Succinic anhydride, Acros Organics) was prepared in DMF and added to the colloidal 
solution. The mixed solution was incubated at 35 °C and 800 rpm. After 24 hr, the solution 
was centrifuged at 9900 g for 20 min to remove excess SA and the solvent was replaced by 
250 uL DI water. The solution was centrifuged at 700 g for 15 min twice and then 
resuspended in 200 uL DI water. The solution was centrifuged at 700 g for 15 min and then 
resuspended in 200 uL DI water twice. After the third centrifugation, the aggregates were 
resuspended in the solution described below. 

In the second step, the anti-EGFR was linked to the surface of Raman tags through an 
amide bond. This process was catalyzed by EDC (N-Ethyl-N’-(3-
dimethylaminopropyl)carbodiimide hydrochloride, Sigma-Aldrich) and sulfo-NHS (N-
Hydroxysulfosuccinimide sodium salt, Sigma-Aldrich). First, 0.1 M MES (2-(N-
morpholino)ethanesulfonic acid, Sigma-Aldrich) buffer and 1x PBS buffer (0.01 M, pH 7.2) 
were prepared. The 125 uL of 8 mM EDC (in 0.1 M MES buffer) were added in order to 
dissolve the particle aggregates from the last centrifuge. Then, 125 uL of 20 mM sulfo-NHS 
(in 0.1 M MES buffer) was added. The particle solution was incubated at room temperature, 
400 rpm for one hour to form an active ester bond. Then, the particle solution was centrifuged 
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at 9900 g for 10 min for three times and resuspended by 250 uL of PBS buffer. After the last 
centrifuge, 235 uL of PBS buffer was added to resuspend the particles and then 15 uL of 0.5 
mg/mL, EGFR antibodies were added. The mixed solution was incubated at 4°C, 80 rpm. 
After 16 hrs, the particle was centrifuged at 9900 g for 10 min three times and then finally 
resuspended in 200 uL of PBS buffer. 

2.3 Cell culture 

The GBM cells (CNS-1) were incubated in the Dulbecco’s modified eagle medium (DMEM) 
with 1% antibiotic-antimycotic solution, 0.1% gentamycin sulphate solution and 10% fetal 
bovine serum (FBS). The incubator was controlled under 37°C, 5% CO2 and 90% humidity. 
For normal cells (human astrocytes, HA), Geltrex basement membrane matrix stock solution 
was diluted 100x with DMEM and added to petri dishes. Every centimeter square of bottom 
surface needs 200 uL of the mixed solution. After one hour, the bottom surface was rinsed 
with 1x PBS buffer. The human astrocytes were cultured in a dish with DMEM containing 
0.1% gentamycin sulphate solution, 1% N-2 supplement and 10% fetal bovine serum. The 
medium in the dish was replaced every two days. The incubation condition was the same as 
CNS-1. 

Before the optical characterization, the cultured cells were transferred to the ITO-coated 
quartz substrates. First, the cells was rinsed with PBS buffer and then immersed in 500 uL of 
0.05% Trypsin to detach from the dish. The 40000 cells were injected onto an ITO-quartz 
substrate in the 35 mm dish. The 2 mL FBS free medium was added. The 19 hr incubation 
was performed for the attachment of cells to the substrate. 

2.4 Cell labeling 

Both fixed and living cells were label by Raman tags. For labeling fixed cells, after the 
attachment to ITO-coated quartz substrates, live cells were rinsed with PBS buffer, immersed 
in 2 mL of 4% paraformaldehyde (fixing agents) for 15 min and then rinsed with PBS buffer 
three times (5 min for each time). Then 25 mM NH4Cl (dissolved in PBS buffer) were added 
to minimize the background fluorescence from paraformaldehyde. After 15 min, the fixed 
cells were rinsed with PBS buffer three times and then immersed in blocking buffer (1% BSA 
in PBS buffer) for 2 hr. Then, cells were immersed in the 2 mL of diluted Raman tags 
solution at 4°C and 50 rpm. After 12 hr, the sample was rinsed with PBS buffer four times, 
dehydrated by ethanol gradient and then observed by SEM. 

For labeling living cells labeling, after the cell attachment to ITO-quartz substrates, the 
original cultured medium was replaced by 2 mL blocking buffer. After 4 hr incubation, the 
buffer was removed and 2 mL of the diluted Raman tag solutions was added for labeling. 
After 1 hr incubation, the fixing and dehydration procedures described above were performed 
on the sample for the SEM observation. 

2.5 Optical characterization 

The Raman images and spectra were acquired by a custom Raman microscope modified from 
Olympus BX51. The excitation source is a HeNe laser at 632.8 nm and three objectives were 
used: 10x (Olympus MPLFLN 10xBDP, NA = 0.25), 50x (Olympus LMPLFLN 50xBD, NA 
= 0.5) and 100x (Olympus MPLFLN 100xBDP, NA = 0.9). The diameters of laser spot from 
10x, 50x and 100x objectives are 260 um, 50 um and 25 um respectively with laser power 
~10 mW. The elastic scattered light was eliminated by the longpass filter (BLP01-633R-25, 
Semrock) and remaining Stokes Raman signals or background autofluorescence were 
captured by the spectrometer (SR303i, Andor) equipped with a 1200/mm grating and a CCD 
(iXon 888, Andor). The imaging chip was working at −60°C for the suppression of the noise 
and the EM gain is disable. 

The 100x objective was used for characterization of Raman tags in Fig. 1 Raman tags 
were deposited on a quartz substrate which barely has background fluorescence under 632.8 
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nm excitation. Therefore, the spectrum of single Raman tags or small clusters of Raman tags 
can be obtained in Fig. 1(C)(D). The entrance slit of the spectrometer is 200 um. 

The 10x objective was used for acquiring broadband images or spectra of the whole cells 
labeled by Raman tags. The broadband Raman and autofluorescence images such as Fig. 5 
were utilized to calculate intensity contrast between GBM and normal cells. The Raman 
image stability shown in Fig. 7 was evaluated by monitoring certain peaks of the Raman 
spectrum obtained from the whole single cells. The spectra of three different samples were 
utilized: the cells labeled with intrinsic Raman tags (monitored at 1587 cm−1, integration time 
= 60 s, slit = 1000 um), the cells labeled with Cy5-embedded Raman tags (monitored at  
1190 cm−1 integration time = 0.3 s, slit = 1000 um), and free Cy5 molecules (monitored at  
666 nm, integration time = 0.25 s, slit = 200 um). 

The 50x objective was used for the point-scanning single band Raman image in Fig. 6. 
The output laser power was reduced from 10 mW to 0.5 mW. Therefore, the incident intensity 
is lower than images or spectra collected by the 10x objective. The size of the whole image is 
350 um*350 um constructed by 7 um scanning step. The slit size is 1000 um. The major peak 
at 1190 cm−1 was extracted to reconstruct the single band Raman image. 

 

Fig. 1. (A) TEM image of the Raman tags. (Inset) Extinction spectrum of the plasmonic core-
satellite assemblies (B) Raman image of tags on ITO-coated quartz substrates. Raman 
spectrum of intrinsic (C) and Cy5-embedded (D) Raman tags. The spectrum in (D) is taken 
from the spot encircled by the red dashed line in (B). 

3. Results and discussion 
3.1 Properties of the Raman tags 

Raman tag design described in our recent report [26] provides an efficient way to produce a 
variety of robust and brilliant Raman tags. In Fig. 1(A), the TEM image shows that a Raman 
tag consists of a gold core-satellite assembly (CSA) and a silica shell. The linker molecules 
and Raman reporters are embedded within the gaps between core and satellite particles. The 
electromagnetic SERS enhancement within the gaps is on the order of 109. Therefore, either 
linker molecules (citrate ion, PAH) or Raman reporters (e.g. Cy5) generate traceable Raman 
signals. The 20 nm silica shell provides the protection for the CSA and also the surface for the 
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antibody functionalization. In the inset of Fig. 1(A), the extinction spectrum of Raman tag 
suspension shows that the resonance wavelength of the CSA plasmonic backbone of Raman 
tags is ~650 nm, which is compatible with the excitation laser (632.8 nm). The Raman images 
of Raman tags deposited on an ITO-coated quartz wafer is shown in Fig. 1(B). Each bright 
spot contains emission from several Raman bands associated with molecules within the gaps 
of the tags. In Fig. 1(C)(D), two Raman spectra are obtained from two kinds of Raman tags 
respectively. In Fig. 1(C) the spectrum is from the “intrinsic” Raman tags containing linker 
molecules (citrate ion, PAH) only while the spectrum in Fig. 1(D) is from Raman tags that 
have additional Raman reporters, Cy5 molecules, which contribute different and stronger 
Raman peaks. 

3.2 Functionalization of Raman tags 

Overexpression of EGFR (epidermal growth factor receptor) is the distinguishing feature of 
various kinds of tumors, including GBM [27, 28]. Therefore, functionalized Raman tags with 
the anti-EGFR antibody can be numerously attached to the GBM tumor cells. Multiple 
surface modifications are necessary to link silica surface of the Raman tags and anti-EGFR. 
Although there are several chemical routes to achieve this linkage [29], only a few of them 
can be directly applied to the colloidal system. The chemical modification of the nanoparticle 
surface may easily cause random aggregates during the process due to the abrupt change of 
the surface charge and/or exchange of the solvent. Therefore, the zeta potential of the colloids 
is monitored after each functionalization step. 

The antibody functionalized Raman tags are shown in Fig. 2(A). Compared to the tags 
without antibodies in Fig. 2 (B), there are obvious antibodies around the surface of the silica 
shells. The chemical structure of the surface after each functionalization step and the 
corresponding zeta-potential are shown in Fig. 2(C). Although the absolute value of a zeta-
potential of around 20 mV is not high enough for the long term storage of the colloids, this 
stability is enough for the time scale of the modification process and cell labeling. The 
detailed steps are described in the Methods section. The FTIR is used to ensure the 
effectiveness of each modification step, Fig. 2(D). The dip between 980 cm−1 and 1220 cm−1 
is from the silica. The vibration modes within this region result from the Si-O-Si and Si-O-H 
bond structures [30]. Therefore, this broad dip can be observed from all five spectra. The 
1633 cm−1 is from the N-H bond of the APTMS, which is used for both the anchor layer and 
the surface functionalization of the amino bond. After the SA modification, the C = O bond at 
1697 cm−1 is observed. The vibrations from C-O bond of the ester group and from SO3

2- 
group are observed after modification of the sulfo-NHS [31]. Finally, the dip at 1644 cm−1 
from amide I and 1541 cm−1 from amide II are contributed by the antibodies. The 
hydrodynamic sizes of Raman tags before and after antibody conjugation are 200 nm and 230 
nm respectively. The difference between these two sizes may indicate the adsorption the anti-
EGFR. However, these two sizes are much larger than the size measured before any surface 
modification (~160 nm) and also larger than the physical size presented by TEM. Therefore, 
slight particle aggregation probably occurs during multiple surface modification. 
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Fig. 2. TEM images (negative staining) of Raman tags coated with (A) and without (B) anti-
EGFR. Some of the anti-EGFR are highlighted by the red arrows. (C) Surface chemical 
structures, zeta potential and (D) the corresponding FTIR spectra of the intrinsic Raman tags 
after each functionalization step. 

3.3 Specific binding between Raman tags and GBM cells 

The considerable amount of functionalized Raman tags are supposed to specifically bind with 
GBM cells whose membranes have substantially more EGFR than normal cells. To verify 
this, the GBM cells (CNS-1) and normal cells (human astrocytes, HA) are separately 
incubated in the solution containing Raman tags coated with anti-EGFR. For the controls, the 
Raman tags without anti-EGFR coating (Fig. 2(B)) are used instead. The quantity of Raman 
tags adsorbed on the cells is directly observed by the SEM images. As shown in Fig. 3(A)(B), 
the GBM cells adsorb a substantial amount of functionalized Raman tags while only few tags 
are attached to the cell membranes of the normal HA cells. For the controls, adsorption of the 
Raman tags without anti-EGFR to either GBM or normal cells is not observed in Fig. 
3(C)(D). Therefore, the specific binding between anti-EGFR functionalized Raman tags and 
GBM cells is verified in the fixed cells system. 

 

Fig. 3. SEM images of the fixed GBM (A) and normal (B) cells after being incubated with 
Raman tags coated with anti-EGFR. (C) and (D) are the controls using Raman tags without 
anti-EGFR, respectively. The zoom-in images are shown in the second row. Some of the 
Raman tags are highlighted by red arrows. 

In addition to the fixed cells, the verification of the Raman tags specifically bound with 
the living GBM cells can make this Raman tag based method more practical. In Fig. 4(A)(B), 
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same with the fixed cell system, it is clear that the living GBM cells adsorb substantial 
amount of the Raman tags coated with anti-EGFR than normal cells. For the controls in Fig. 
4(C)(D), the Raman tags without anti-EGFR are not attached to either GBM or normal cells. 
This differentiation indicates that this Raman tags based method may be further applied to the 
practical surgery. 

 

Fig. 4. SEM images of the living GBM (A) and normal (B) cells after being incubated with 
Raman tags coated with anti-EGFR. (C) and (D) are the respectively controls using Raman 
tags without anti-EGFR. The zoom-in images are shown in the second row. Some of the 
Raman tags are highlighted by red arrows. 

3.4 Imaging of labeled cells and the tumor-normal ratio (TNR) 

The considerable amount of antibodies functionalized Raman tags are attached to the GBM 
cells, compared to the normal cells. We further investigate that if the difference in the 
quantity of the adsorbed Raman tags can be directly observed through the contrast of the 
broadband Raman images which can be applied to the image guided surgery. As shown in 
Fig. 5(A), the GBM cell labeled with abundant Raman tags in the SEM image has the 
corresponding optical image containing bright dots emitted by the Raman tags. However, for 
the normal cell in Fig. 5(B), there are barely any Raman tags adsorbed on the cells in the 
SEM image. In the corresponding optical image, only weak autofluorescence is observed. 

In order to quantitatively evaluate the imaging intensity contrast between the labeled 
GBM and normal cells, the GBM cells in broadband Raman images and normal cells in the 
autofluorescence images are delineated first by the clear outlines obtained from the 
corresponding bright-field images. Then, the intensity within the cell outlines are integrated, 
divided by area of the cells and then subtracted by the average background intensity in order 
to obtain the average Raman intensity, IGBM, or average autofluorescence intensity, Inormal. 
Under the same excitation conditions, for the cell labeling with intrinsic Raman tags, the 
tumor-normal ratio (TNR), IGBM/Inormal is ~5 while for using Cy5 embedded Raman tags, the 
TNR is ~15. In addition, the image collection time for cells labeled with intrinsic Raman tags 
and Cy5 embedded Raman tags is 10 s and 0.1 s, respectively. These results indicate that the 
Raman imaging based on these robust and brilliant tags has potential for real-time imaging. 

In addition to the broadband Raman and autofluorescence images used for TNR 
calculation, the point-scanning single band Raman image from the cells labeled by Cy5-
embedded Raman tags is also demonstrated in Fig. 6. The overlay image clearly shows that 
the Raman tags can effectively indicate the location of the GBM cells. 
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Fig. 5. (A) SEM image, broadband Raman image, and corresponding spectrum of a GBM cell 
labeled by intrinsic Raman tags. Please note that the resolution of the spectrum is degraded 
(compared to Fig. 1(C)) due to the increased size of the slit at the entrance of the spectrometer 
for collecting the whole cell’s signals in one acquisition. However, the main spectral features 
around 1300 cm−1 and 1587 cm−1 can still be recognized. (B) SEM image, broadband 
autofluorescence image, and corresponding spectrum of a normal cell labeled by intrinsic 
Raman tags. 

 

Fig. 6. (A) Bright field image, (B) single band Raman (1190 cm−1) image, and (C) overlay 
image of GBM cells labeled by Cy5-embedded Raman tags. 

3.5 Stability of the Raman imaging 

In order to apply Raman tag based imaging to further clinical systems, the image stability of 
the labeled cells is investigated. Our previous report [26] shows that the intrinsic Raman tags 
or Raman tags embedded with non-fluorescent reporters are more stable than the tags 
containing fluorescent reporters. For the cells labeled with Raman tags, the image intensity 
acquired from the whole cells shows a similar trend in Fig. 7. After the first five-minute 
illumination, the relative intensities drops by 15%, 50% and 85% for the images of the cell 
with intrinsic Raman tags, cell with Cy5-embedded Raman tags and free Cy5 respectively. 
For the following 15 min, the intensity of the cell with intrinsic Raman tags is steadily kept at 
80%. We suspect that the initial 15% drop results from the background fluorescence which is 
bleached in the first five min. For the cell with Cy5 embedded tags, the intensity keeps 
decreasing to 20% over 20 min. For the free Cy5 molecules, the relative intensity is below 5% 
after 10 min of excitation. This results show that both types of Raman tag provide better 
stability than fluorophores. 
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Fig. 7. Raman intensity of GBM cells labeled with intrinsic Raman tags (green) and Cy5 
embedded Raman tag (red) and fluorescence intensity of free Cy5 (blue) within the 20 min 
laser illumination. 

4. Conclusion 
In this report, GBM cells are labeled by functionalized Raman tags to increase imaging 
contrast to the normal cells. The properties of Raman tags and detailed functionalization steps 
are described. A substantial amount of functionalized Raman tags selectively bind with the 
fixed and living GBM cells rather than normal cells and is clearly verified by SEM and 
Raman images. Through Raman images, the average Raman intensity from GBM cells is 5x 
to 15x higher than the background autofluorescence from normal cells, which means that 
long-pass filtered images can clearly distinguish between tumor cells and normal cells. The 
stability of the Raman image shows that both intrinsic and fluorophore-embedded Raman tags 
may be better candidates than fluorophores as imaging agents. The work demonstrated here is 
at the individual cell level, and it can be further improved and extended to the tissue level to 
magnify the imaging contrast between GBM tissue and normal tissue, especially at the tumor 
boundaries. For the potential clinical application, the solution containing our Raman tags can 
be used to coat the inner surface of the cavity created by the primary GBM resection. The 
residual GBM cells exist on that surface may be imaged and distinguishable from normal 
cells. 

Our antibody functionalization process for Raman tags can be generally applied to other 
silica coated colloids. In addition, the specific binding between functionalized Raman tags 
and living/fixed GBM cells indicates that the Raman tag labeling cannot only be used for 
intraoperative imaging but also ex vivo tissue staining. Furthermore, Raman imaging based 
on these robust tags can be used solely or easily integrated into conventional fluorescence 
imaging system to improve the effectiveness of the image guided surgery for resection of 
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GBM or other tumors whose boundaries are also not clearly defined. Finally, the short 
integration time enable this Raman imaging to approach real-time imaging. 
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