

doi: 10.1093/femsyr/foy024 Advance Access Publication Date: 8 March 2018 Research Article

RESEARCH ARTICLE

Yeast screen for modifiers of C9orf72 poly(glycine-arginine) dipeptide repeat toxicity

Noori Chai^{1,2} and Aaron D. Gitler^{1,*}

¹Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305, USA and ²Neurosciences Graduate Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305, USA

*Corresponding author: Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305, USA. Tel: (650) 725-6991; E-mail: agitler@stanford.edu

One sentence summary: A genetic screen in yeast reveals insight into Lou Gehrig's disease mechanisms. Editor: Brooke Bevis

ABSTRACT

A hexanucleotide repeat expansion in the *C9orf72* gene has been identified as the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. The expanded hexanucleotide repeat is translated by an unconventional mechanism to produce five species of dipeptide repeat (DPR) proteins, glycine-proline (GP), glycine-alanine (GA), glycine-arginine (GR), proline-alanine (PA) and proline-arginine (PR). Of these, the arginine-rich ones, PR and GR, are highly toxic in a variety of model systems, ranging from human cells, to *Drosophila*, to even the budding yeast, *Saccharomyces cerevisiae*. We recently performed a genetic screen in yeast for modifiers of PR toxicity and identified suppressors and enhancers, many of which function in nucleocytoplasmic transport. Whether or not GR toxicity involves similar mechanisms to PR is unresolved. Therefore, we performed a genetic screen in yeast to identify modifiers of GR toxicity and compared the results of the GR screen to results from our previous PR screen. Surprisingly, there was only a small degree of overlap between the two screens, suggesting potential for distinct toxicity mechanisms between PR and GR.

Keywords: ALS; C9orf72; yeast; dipeptide repeat protein; screen; GR

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating human neurodegenerative disorders (Swinnen and Robberecht 2014). The most common genetic cause of ALS and FTD is mutations in the C9orf72 gene (Renton, Chiò and Traynor 2014). C9orf72 mutations can cause either disease or sometimes both (Taylor, Brown and Cleveland 2016). The disease-causing mutation is a massive GGGGCC hexanucleotide repeat expansion in the first intron of the C9orf72 gene (DeJesus-Hernandez et al. 2011; Renton et al. 2011). Normally, the C9orf72 gene harbors between 2 and 25 repeats and repeat expansions from hundreds to thousands are considered pathogenic (DeJesus-Hernandez et al. 2011; Renton et al. 2011). Since C9orf72 mutations are the common cause of ALS and FTD, there is intense interest in defining the mechanisms by which they cause disease so that insight could be harnessed to develop therapeutic strategies.

Several potential mechanisms could explain how the C9orf72 repeat expansion causes disease. First, the large GGGGCC repeat in the regulatory regions of C9orf72 interferes with gene expression, resulting in reduced levels of C9orf72 transcript and protein—the loss of function could contribute to disease (DeJesus-Hernandez et al. 2011; Waite et al. 2014). Second, the expanded repeat region is bidirectionally transcribed to form distinct RNA secondary structures that could be toxic by sequestering RNA-binding proteins and splicing factors (DeJesus-Hernandez et al. 2011; Gendron et al. 2013; Haeusler et al. 2014).

Received: 14 December 2017; Accepted: 5 March 2018

[©] FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Third, the sense and anti-sense repeat-containing RNAs are translated in multiple frames, despite the absence of a start codon, by an unconventional form of translation, called RAN (repeat-associated <u>n</u>on-AUG) translation (Zu et al. 2011), to produce dipeptide repeat (DPR) proteins (Ash et al. 2013; Mori et al. 2013; Zu et al. 2013). The sense transcript produces glycine-alanine (GA), glycine-arginine (GR) and glycine-proline (GP) DPRs, while the anti-sense transcript produces proline-alanine (PA), proline-arginine (PR) and GP DPRs. These DPRs are themselves aggregation prone and accumulate in the brain of C9orf72 mutation carriers and could thus contribute to disease by a toxic gain-of-function mechanism (Ash et al. 2013; Mori et al. 2013; Zu et al. 2013). These three proposed mechanisms are not mutually exclusive and there is compelling evidence for and against each of them (Gitler and Tsuiji 2016).

Of the five distinct DPRs produced from the C9orf72 repeat (GA, PA, GP, GR and PR), the arginine-rich ones (GR and PR) are particularly toxic. They are potently toxic to human cells and cause neurodegeneration in Drosophila melanogaster and human motor neurons derived from induced pluripotent stem cells (iP-SCs) (Kwon et al. 2014; Mizielinska et al. 2014; Wen et al. 2014). These phenotypes do not depend on the repeat itself, because synthetic DPRs or use of constructs codon optimized to produce the DPRs without the GGGGCC or GGCCCC repeat sequence still cause cell death (Kwon et al. 2014; Mizielinska et al. 2014). This permits interrogation of DPR-specific toxicity pathways and their contributions to disease, without confounds of potential RNA-mediated toxicity.

Just like for human cells and Drosophila, GR and PR DPRs are also toxic in yeast cells. We recently used this toxicity as the basis for a genetic screen for modifiers of DPR toxicity (Jovičić et al. 2015). We focused on PR and identified several yeast genes that suppressed and enhanced toxicity. These studies illuminated genes in the nucleocytoplasmic transport pathway as potent modifiers of PR toxicity in yeast (Jovičić et al. 2015). Studies in other systems, including Drosophila and iPSC-derived neurons also provided evidence that C9orf72 mutations disrupt nucleocytoplasmic transport (Zhang et al. 2015; Freibaum et al. 2015; Boeynaems et al. 2016). Since our previous study focused on PR, in this paper, we performed additional screens to identify modifiers of GR toxicity, to define the commonalities and differences between how GR and PR elicit toxicity.

MATERIALS AND METHODS

Yeast strains, media and plasmids

Yeast cells were grown in rich media or in synthetic media lacking uracil and containing 2% glucose (SD/-Ura), raffinose (SRaf/-Ura) or galactose (SGal/-Ura). To generate yeast expressing a GR dipeptide protein containing 100 repeats (GR₁₀₀), we utilized a codon-optimized GR sequence, as described previously (Jovičić *et al.* 2015). The ATG-DPR construct was synthesized by Genscript (Piscataway, USA) and was flanked by attB sites. Constructs were further subcloned into a pDONR221 plasmid and subsequently used in Gateway LR reactions with pAG416GAL-ccdB (Alberti, Gitler and Lindquist 2007) to produce yeast expression vectors. The resulting pAG416GAL-GR₁₀₀ construct was transformed into Y7092 yeast using the PEG/lithium acetate method. Spotting assays verified GR₁₀₀ toxicity in yeast.

Yeast transformation and spotting assays

Yeast procedures were performed according to the standard protocols. We used the PEG/lithium acetate method to transform yeast with plasmid DNA. For spotting assays, yeast cells were grown overnight at 30° C in liquid media containing SRaf/-Ura until they reached log or mid-log phase. Cultures were then normalized for OD₆₀₀, serially diluted and spotted with a Frogger (V&P Scientific, San Diego, USA) onto synthetic solid media containing glucose (SD/-Ura) or galactose (SGal/-Ura) lacking uracil and were grown at 30° C for 2–3 days.

Yeast genetic screen

We used synthetic genetic array analysis (Tong and Boone 2006) to identify nonessential yeast deletions that modify C9orf72 GR₁₀₀ toxicity. We performed this screen as described in Jovičić et al. (2015), using a Singer RoToR HAD (Singer Instruments, Emeryville, USA). We mated MAT α strain expressing GR₁₀₀ under galactose promoter control to the yeast haploid deletion collection of nonessential genes (MATa, each gene deleted with KanMX cassette conferring resistance to G418). Following diploid selection and sporulation, we selected haploids carrying both deletion and GR₁₀₀ expression cassette. Colony sizes were measured using the ht-colony-measurer software (Collins et al. 2006). We performed the entire screen for three independent times. Individual hits were validated by independent transformations and spotting assays.

RESULTS

We screened a library of all 4850 nonessential yeast gene knockouts to identify deletions that could suppress GR₁₀₀ toxicity (Fig. 1A and B). These types of genetic modifiers are an interesting class (gene deletions that suppress a phenotype) because they could represent potential drug targets. We identified 133 yeast deletions that suppressed GR₁₀₀ toxicity (Table 1). We validated several modifiers from a variety of functional categories by individual transformations and spotting assays (Fig. 1C). Gene ontology analysis via YeastMine revealed an enrichment for cytoplasmic translation (P = 7.292e-7) and ribosomal small subunit biogenesis (P = 3.323e - 4). The majority of the genes found in these categories encode ribosomal proteins and proteins involved in rRNA processing and ribosome synthesis in the nucleolus (Table 1). These ribosome-associated modifiers could act by reducing translation of the toxic GR100 protein. However, we did not identify these modifiers as suppressors of toxicity in deletion screens for other toxic proteins (PR₅₀, FUS, and TDP-43) (Sun et al. 2011; Armakola et al. 2012; Jovičić et al. 2015), suggesting that loss of these ribosomal proteins does not reduce expression of toxic proteins in general, but instead selectively affects GR100. Immunoblots to quantify GR100 were inconclusive (data not shown) and so the specific mechanism of action for these ribosomal hits remains to be determined.

Though ribosomal genes were statistically enriched in the screen, additional functional clusters emerged (Table 1). One such cluster consisted of six ADE genes (P = 3.488e-5) and BAS1, all of which are involved in purine nucleotide biosynthesis (Cherry et al. 2012). Similarly, DNA damage repair genes including RAD50, RAD51 and RAD52 were identified in the screen, and this specific pathway has been implicated in GR toxicity in iPSC-derived neurons (Cherry et al. 2012; Lopez-Gonzalez et al. 2016). We also identified numerous genes involved with various forms of RNA-interacting processes including nucleocytoplasmic transport, tRNA synthesis and the mRNA life cycle. Similar genes, or in the case of NUP107, identical genes, involved in nucleocytoplasmic transport and RNA export and degradation were also been identified in GGGGCC repeat and PR toxicity

Figure 1. A yeast deletion screen reveals genetic suppressors of GR₁₀₀ toxicity. (A) GR toxicity is length-dependent and less severe than PR toxicity in yeast. Five-fold serial dilutions of yeast cells were spotted onto glucose- or galactose-containing plates. Galactose induced expression of GR or PR in yeast, while glucose repressed DPR expression. (B) Schematic of the yeast deletion screen. (C) Example spotting assays validating specific hits from the deletion screen. Expression of GR is no longer toxic in strains lacking Nup188 (nuclear pore protein), Rad50 (double stranded break repair protein), Erd1 (ER protein), Nop16 (nucleolar protein), Gis2 (translational activator of specific mRNAs), Stm1 (ribosome preservation factor), Bud21 (ribosomal biogenesis protein) or Ski2 (RNA helicase).

screens in Drosophila (Freibaum et al. 2015; Zhang et al. 2015; Boeynaems et al. 2016).

We next compared the hits from the GR_{100} to hits from other screens we have performed on ALS-related proteins, including PR₅₀, FUS and TDP-43 (Table 1). Six of the hits from the GR screen were also hits in the PR screen. This number is small, in part because there were only 13 hits from the PR deletion screen (Jovičić et al. 2015) and because some hits from the PR screen were identified in only two out of three rounds of the GR screen. Nevertheless, the overlapping hits are informative, pointing to a role for the shared arginine content in the way these genes interact with and modify these arginine-rich DPRs. Also, while the individual genes between the PR and GR yeast screens diverged, the classes of genetic modifiers that have emerged from this GR₁₀₀ screen have been implicated in GR and PR biology in Drosophila and mammalian cell systems (Kwon et al. 2014; Boeynaems et al. 2016, 2017; Lee et al. 2016). There was no overlap with the TDP-43 screen (Armakola et al. 2012). Surprisingly, the biggest overlap of hits came from the GR₁₀₀ and FUS screens, with 22 shared suppressors of toxicity (Table 1) (Sun et al. 2011). This result could be due to the fact that the FUS protein contains several domains containing arginine/glycine/glycine (RGG) repetitive sequences (Boeynaems et al. 2017; Ozdilek et al. 2017) that may behave similarly to the repetitive GR₁₀₀ sequence when overexpressed in yeast.

DISCUSSION

Here, we have used a yeast genetic screen to identify suppressors of C9orf72 GR_{100} toxicity, which provide clues into the potential mechanisms of GR toxicity. While recent studies have focused on the highly toxic PR species or grouped GR and PR together due to their shared arginine content, there has been little done to parse apart potential differences in GR and PR biology,

even though such differences exist. From our screen, we have discovered that there is divergence in the genes that suppress GR and PR toxicity when deleted in yeast.

Several factors could contribute to this divergence. First, PR is more toxic than GR (Fig. 1A). This increased toxicity might contribute to the low number of genetic modifiers identified in the PR deletion screen (13) compared to the GR screen (133) (Jovičić et al. 2015), since the threshold for suppressing PR toxicity is greater than for GR toxicity. In that case, we could be missing real commonalities between PR and GR, which may be detectable with a less-toxic PR species. And indeed, in other experimental systems, nucleolar and ribosomal proteins, which were modifiers of GR toxicity in yeast, can interact physically with PR (Lee et al. 2016; Lin et al. 2016; Boeynaems et al. 2017). Both PR and GR have also been shown to disrupt the nucleolus and ribosome biogenesis (Kwon et al. 2014). The positively charged arginines in both species most likely contribute to these interactions.

However, when we consider the biochemistry of these species, it is important to consider the glycines and prolines in addition to the arginines. Glycine, with a single hydrogen for a sidechain, is dramatically different from proline, which contains a large cyclic side chain that imparts a high degree of structural rigidity to proline-containing peptides. Understanding why the proline content appears to confer increased toxicity at shorter lengths will be an important next step in the field. Furthermore, the specific glycine content is also biologically relevant, as repetitive glycine/arginine rich (GAR) domains occur in numerous proteins and is in fact the second-most common RNA binding domain in the human genome (Ozdilek *et al.* 2017).

The existence of GAR domains, as opposed to proline/arginine rich domains, provides an opportunity for the GR dipeptide species to have a unique impact on the cell. The GR repeats could mimic a protein's GAR domain, thereby wreaking havoc when inserted within specific GAR domain-mediated

Table 1. List of yeast	deletion strains	that suppress	GR100 toxicity.
			100

GR100	Systematic	PR ₅₀	FUS	TDP-43		Human
suppressors	name	suppressor	suppressor	suppressor	Function	ortholog(s)
Ribosomalem	all subunit biog	enesis (16/122 D	- 3 323e-4)			
rps0a∆	YGR214W	10/100,1	- 5.5256-1)		ribosomal 40S subunit protein; rRNA maturation	RPSA
rɒs1b∆	YML063W				ribosomal 40S subunit protein	RPS3A
rps6a∆	YPL090C		rps6b∆		ribosomal 40S subunit protein	RPS6
rps8a∆	YBL072C		ves		ribosomal 40S subunit protein	RPS8
rps11a∆	YDR025W		2		ribosomal 40S subunit protein	RPS11
rps11b∆	YBR048W				ribosomal 40S subunit protein	RPS11
rps16b∆	YDL083C				ribosomal 40S subunit protein	RPS16
rps18a∆	YDR450W				ribosomal 40S subunit protein	RPS18
rps24a∆	YER074W				ribosomal 40S subunit protein	RPS24
sac3∆	YDR159W				ribosome biogenesis; mRNA export	SAC3D1/MCM3AP
nsr1 Δ	YGR159C	yes	yes		pre-rRNA processing; ribosome biogenesis	
ltv1∆	YKL143W		yes		Ribosomal small subunit export	LTV1
hcr1∆	YLR192C		,		pre-rRNA processing; translation initiation	EIF3J
tsr2 Δ	YLR435W		yes		potential role in pre-rRNA processing	TSR2
bud21 Δ	YOR078W				part of the ribosomal small	
bud22 Δ	YMR014W				rRNA maturation; ribosome	SRFBP1
Additional rib	osomal proteins	and ribosome-a	ssociated proces	see (23/133)	Diogenesis	
rnl12a A	VFI 054C	and moosonie-a	ssociated proces	363 (23/133)	ribosomal 605 subunit protein	RDI 12
rpl12uA rnl19hA	YBL027W		Ves		ribosomal 60S subunit protein	RPL19
rpl15b∆ rpl21h∧	YPL079W		yes		ribosomal 60S subunit protein	RPL21
rpl210A	YFR056C-A				ribosomal 60S subunit protein	RPI 34
rp137a A	YLR185W				ribosomal 605 subunit protein	RPL37
ipio) u	I BICIOS W				pre-rRNA processing	Id Lo,
m 138 Λ	YLR325C				ribosomal 60S subunit protein	RPI.38
rps29a∧	YLR388W				ribosomal 40S subunit protein	RPS29
$rpp1b\Delta$	YDL130W				component of the ribosomal stalk	RPLP1
rpp2b∆	YDR382W		ves		component of the ribosomal stalk	RPLP2
$cgr1\Delta$	YGL029W		2		pre-rRNA processing; nucleolar	CCDC86
5					integrity	
hpm1 Δ	YIL110W				methyltransferase; modification of ribosomal protein	METTL18
jjj1∆	YNL227C				ribosome biogenesis	
kap120∆	YPL125W				karyopherin; nuclear import of	IPO11
					ribosomal maturation factor Rpf1p	
kns1∆	YLL019C				serine/threonine kinase; ribosome and tRNA biogenesis; rRNA	CLK1-4
nop12∆	YOL041C				transcription pre-rRNA processing; ribosome	HNRNPD/DL/A0/AB
16.	10000000				biogenesis	NORAC
$nop16\Delta$	YER002W		yes		ribosome biogenesis	NOP16
rrp8∆	YDR083W				ribosomal protein; pre-rRNA	KKP8
stm1∆	YLR150W				processing translation and ribosome preservation during nutrient stress: binds G-quadrupleyes	SERBP1, HABP4
tif4631∆	YGR162W				ribosome biogenesis; translation initiation	EIF4G
syh1∆	YPL105C				unknown function, but associates with nuclear pore and ribosomes	GIGYF1/2
tma19A	YKI.056C				associates with ribosomes	TPT1, 1P8
ygl088w∆	YGL088W		yes		unknown function, but partially	,
yor309c∆	YOR309C		yes		overlaps with a snokNA dubious open reading frame (ORF), but partially overlaps with NOP58	

Table 1. – continued

GR100 suppressors	Systematic name	PR50 suppressor	FUS suppressor	TDP-43 suppressor	Function	Human ortholog(s)	
RNA-related processes (15/133)							
caf120∆	YNL278W				part of a transcriptional regulatory complex; mRNA initiation,	PAK2	
cgi121∆	YML036W		yes		elongation, degradation part of a tRNA modification complex	TPRKB	
ebs1 Δ	YDR206W				nonsense mediated decay; translation inhibition	SMG5/6/7	
gim3∆	YNL153C				part of a prefoldin complex; transcriptional elongation	PFDN4	
gis2 Δ	YNL255C		yes		activation of translation of IRES-containing mRNAs		
$lrp1\Delta$	YHR081W				RNA processing, degradation, export	C1D	
nup188∆	YML103C				part of nuclear pore complex, nucleocytoplasmic transport	NUP188	
nup84∆	YDL116W		yes		part of nuclear pore complex, nucleocytoplasmic transport	NUP107	
she4 Δ	YOR035C				regulation of myosin function; asymmetric mRNA localization	STIP1	
ski2 Δ	YLR398C				RNA helicase; RNA degradation		
ski8∆	YGL213C	yes			RNA helicase; RNA degradation		
sky1∆	YMR216C				serine/arginine kinase; regulation of proteins involved in mRNA	SRPK1/2/3	
stp1 Δ	YDR463W	yes			transcription factor; potential role		
tex1 Δ	YNL253W				mRNA export	THOC3	
tif1∆	YKR059W				translation initiation; RNA	EIF4A2	
5					helicase		
Mitochondrial	and NADPH-relat	ted metabolic pa	thways (12/133)				
$aco2\Delta$	YJL200C				mitochondrial aconitase isozyme		
flx1∆	YIL134W				mitochondrial flavin adenine dinucleotide transporter	SLC25A32	
idh2∆	YOR136W				mitochondrial NAD(+)-dependent isocitrate dehydrogenase	IDH3A	
oxa1∆	YER154W				mitochondrial inner membrane insertase	OXA1L	
rcf2∆	YNR018W				cytochrome c oxidase subunit		
zwf1∆	YNL241C				glucose-6-phosphate dehydrogenase	H6PD, G6PD	
gor1∆	YNL274C				mitochondrial glyoxylate reductase	GRHPR	
gpd2∆	YOL059W				NAD-dependent glycerol 3-phosphate dehydrogenase	GPD1, 1L	
gph1∆	YPR160W				glycogen phosphorylase; mobilization of glycogen	PYGL/B/M	
stb5∆	YHR178W				transcription factor; oxidative stress, stress response		
$nnr2\Delta$	YKL151C	yes			NADHX dehydratase	CARKD	
ald6∆	YPL061W				aldehyde dehydrogenase	ALDH1A1/A2/A3, ALDH2	
Nucleotide bios	synthetic pathwa	ay (7/133, $P = 3.4$	88e–5)			24400	
ade1∆	YAR015W				purine nucleotide biosynthesis	PAICS	
ade2∆	YOR128C				purine nucleotide biosynthesis		
ade4 Δ	YMR300C				purine nucleotide biosynthesis	PPAT	
ade5, 7∆	YGL234W				purine nucleotide biosynthesis		
ade6∆	S000003293				purine nucleotide biosynthesis	PFAS	
ade8∆	YDR408C				purine nucleotide biosynthesis		
bas1 Δ	YKR099W				purine nucleotide biosynthesis; transcription factor		

Table 1. – continued

GR100 suppressors	Systematic name	PR50 suppressor	FUS suppressor	TDP-43 suppressor	Function	Human ortholog(s)		
Amino acid and	Amino acid and other molecular biosynthetic nathways (10/133)							
alt1∆	YLR089C				alanine transaminase; alanine	CCBL1/2, GPT1/2		
ara1 4					amino acid synthesis and catabolism synthesis of chorismate, an amino			
ulo12	IDKIZ7 W				acid precursor			
cho2 Δ	YGR157W				methyltransferase; phosphatidylcholine biosynthesis			
dph6∆	YLR143W				diphthamide biosynthesis	DPH6		
elo3∆	YLR372W				fatty acid and sphingolipid biosynthesis			
ilv1∆	YER086W				threonine deaminase; isoleucine			
ino1 Δ	YJL153C				inositol, inositol-containing	ISYNA1		
ink1 A	VDR315C		VAC		synthesis of phytate	זססע		
mot2			yes		mothioning biosynthesis	IIIK		
met22	VOL064C				methionine biosynthesis			
FR-related proc	101004C				methonnie biosynthesis			
ord1 A	VDP/11/C				lumonal FP protain rotantian			
erul A	IDR414C				insertion of proteins into the FR	WDD		
getIA	I GLUZUC				membrane	WRB		
lhs1∆	YKL073W				chaperone of the ER lumen;			
					protein translocation and folding			
sse1∆	YPL106C		Yes		HSP90 chaperone complex; binds unfolded proteins	HSPA4/A4L/H1		
GTPase-related	proteins (7/133)							
aim 44Δ	YPL158C				cytokinesis; regulates Rho1p			
tus1∆	YLR425W				GEF for Rho1p activity			
lte1∆	YAL024C				similar to GDP/GTP exchange factors	RASGEF1A-C		
msb3 Δ	YNL293W				Rab GTPase activation;	TBC1D, SGSM3		
gtr1 Δ	YML121W	yes			part of TORC1-stimulating GTPase	RRAGA/B		
	1001400117				complex			
tco89A	YPL180W				TORCI subunit	1 (200		
tor1	YJR066W				TORCI subunit	MTOR		
DNA repair (//1	133)				, ,,			
asj1∆	YJL115W				nucleosome assembly; recovery after double-stranded DNA break repair	ASF1A/B		
rad50∆	YNL250W		yes		processing double-stranded DNA breaks	RAD50		
rad51∆	YER095W				double-stranded DNA break repair	RAD51		
rad52 Δ	YML032C				double-stranded DNA break repair	RAD52		
vps75∆	YNL246W				histone chaperone;	SET/SIP, TSPYs,		
r mms22∆	YLR320W				double-stranded DNA break repair E3 ubiquitin ligase complex	FAM197Y1		
slx5 Δ	YDL013W				involved in replication repair SUMO-targed ubiquitin ligase			
					complex; DNA repair			
Serine/threonin	ne and serine mo	difiers (8/133)						
fus3∆	YBL016W				mitogen-activated serine/threonine protein kinase	MAPK1,3,4,5,6 or NLK		
$ptk2\Delta$	YJR059W				serine/threonine protein kinase; regulation of ion transport	TSSKs		
yck3∆	YER123W				vacuolar membrane serine/threonine kinase; vacuole			
pph21∆	YDL134C				catalytic subunit of protein phosphatase 2a (serine/threonine phosphatase); mitosis			

Table 1. – continued

GR100 suppressors	Systematic name	PR50 suppressor	FUS suppressor	TDP-43 suppressor	Function	Human ortholog(s)
ppm1∆	YDR435C		Yes		methyltransferase; methylates the C terminus of Pph21p	LCMT1
rts1 Δ	YOR014W				regulatory subunit of protein	PPP2R5C/D
kex2 Δ	YNL238W				calcium-dependent serine protease	
prb1∆	YEL060C				vacuolar serine protease	
Acetyltransfera	ases (3/133)				1	
eaf6∆	YJR082C				part of acetyltransferase complex;	MEAF6
hna3 A	VELOGEW				D-Amino acid N-acetyltransferase:	
npusz	I LLOOD W				histone acetylation	
mak10∧	YEL053C				NatC N-terminal acetyltransferase	NAA35
Other (8/133)						
alf1 Δ	YNL148C		yes		alpha-tubulin folding; microtubule maintenance	TBCB, CLIP3/4
atx1∧	YNL259C				cytosolic copper metallochaperone	ATOX1
$cdc50\Delta$	YCR094W				endosomal protein; involved with	TMEM30A/B/C
clh2∧	YPR119W		ves		cell cycle progression	CNTD2
fcv22A	YER060W-A		yee		purine-cytosine permease	GITIBE
fen2∧	YCR028C				H ⁺ -pantothenate symporterH	
sho1∆	YER118C				transmembrane osmosensor for	
vps64 Δ	YDR200C		yes		cytoplasm to vacuole targeting of	TRAF3IP3, SLMAP,
Uncharacterize	ed proteins (13/1	33)			proteins	
brn1∧	YGL007W				protein of unknown function	
fvv1∧	YDR024W				dubious ORF	
fvv6∆	YNL133C				protein of unknown function	
ads1∆	YOR355W				protein of unknown function	
hhy1 Δ	YEL059W				dubious ORF	
irc14∆	YOR135C				dubious ORF	
mtc7 Δ	YEL033W				protein of unknown function	
rtc 4Δ	YNL254C				protein of unknown function	
sdd1∆	YEL057C				- protein of unknown function	
ydr417c∆	YDR417C		yes		- dubious ORF	
ygl165c∆	YGL165C		yes		dubious ORF	
ynl198c∆	YNL198C	yes			dubious ORF	
ynr005c∆	YNR005C		yes		dubious ORF	

RNA/protein or protein/protein interactions within the cell. The results from our screen suggest that this is possible, given the large number of shared hits between screens for modifiers of FUS toxicity and GR₁₀₀ toxicity (Table 1). It would be interesting to see whether ectopic expression of other proteins containing GAR domains would be toxic, and if so, whether they would share significant overlap in toxicity modifiers.

Furthermore, in yeast, the majority of GAR domain proteins are nucleolar proteins involved in ribosomal biogenesis (e.g. Gar1, Nsr1, Nop1, Nop3 and Ssb1) or proteins involved in mRNA handling (e.g. Scd6, Npl3, Gbp2, Nab2, Sbp1, etc.), two major groups identified in our screen for modifiers of GR toxicity (Girard et al. 1992; Inoue et al. 2000; McBride et al. 2009; Rajyaguru and Parker 2012). Nsr1, which contains GAR domains, was identified in both the PR and GR screens and GR-specific hits such as Rrp8 and EIF4G have been shown to directly interact with many of the GAR domain-containing proteins listed above (Bousquet-Antonelli et al. 2000; Rajyaguru, She and Parker 2012), lending credence to the possibility that GR₁₀₀ toxicity occurs by interfering with the activity of GAR domain-containing proteins. Additional experiments to investigate exactly how GR_{100} impacts these pathways are required, but overall, this screen has given us a look into the ways through which GR DPRs produced by the C9orf72 repeat expansion might contribute to disease, and provide potential druggable targets to ameliorate DPR toxicity. The surprising lack of overlap between hits from our GR screen here and our previous PR screen (Jovičić *et al.* 2015) underscores the importance of considering GR and PR toxic mechanisms as distinct and in pursuing approaches to deal with them separately.

FUNDING

This work was supported by NIH grant R35NS097263 (A.D.G.), the Robert Packard Center for ALS Research at Johns Hopkins (A.D.G.), Target ALS (A.D.G.) and the Stanford Brain Rejuvenation Project of the Stanford Neurosciences Institute (A.D.G.).

Conflict of interest. None declared.

REFERENCES

- Alberti S, Gitler AD, Lindquist S. A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 2007;**24**:913–9.
- Armakola M, Higgins MJ, Figley MD et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 2012;44:1302–9.
- Ash PE, Bieniek KF, Gendron TF et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. *Neuron* 2013;**77**:639–46.
- Boeynaems S, Bogaert E, Kovacs D et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell 2017;65:1044–55. e5.
- Boeynaems S, Bogaert E, Michiels E et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci Rep 2016;6:20877.
- Bousquet-Antonelli C, Vanrobays E, Gélugne J-P *et al.* Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2. RNA 2000;**6**:826–43.
- Cherry JM, Hong EL, Amundsen C et al. Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res 2012;40:D700–5.
- Collins SR, Schuldiner M, Krogan NJ et al. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. *Genome Biol* 2006;**7**:R63.
- DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. *Neu*ron 2011;**72**:245–56.
- Freibaum BD, Lu Y, Lopez-Gonzalez R et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015;525:129–33.
- Gendron TF, Bieniek KF, Zhang YJ et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 2013;**126**:829–44.
- Girard JP, Lehtonen H, Caizergues-Ferrer M et al. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J 1992;11:673–82.
- Gitler AD, Tsuiji H. There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res 2016;**1647**:19–29.
- Haeusler AR, Donnelly CJ, Periz G et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. *Nature* 2014;**507**:195–200.
- Inoue K, Mizuno T, Wada K et al. Novel RING finger proteins, Air1p and Air2p, interact with Hmt1p and inhibit the arginine methylation of Npl3p. J Biol Chem 2000;**275**:32793–9.
- Jovičić A, Mertens J, Boeynaems S et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 2015;**18**:1226–9.
- Kwon I, Xiang S, Kato M *et al*. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. *Science* 2014;**345**:1139–45.
- Lee KH, Zhang P, Kim HJ et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. *Cell* 2016;**167**:774–88. e17.

- Lin Y, Mori E, Kato M et al. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. *Cell* 2016;**167**:789–802. e12.
- Lopez-Gonzalez R, Lu Y, Gendron TF et al. Poly(GR) in C9ORF72related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 2016;92:383–91.
- McBride AE, Conboy AK, Brown SP et al. Specific sequences within arginine-glycine-rich domains affect mRNA-binding protein function. Nucleic Acids Res 2009;**37**:4322–30.
- Mizielinska S, Gronke S, Niccoli T et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014;345:1192–4.
- Mori K, Arzberger T, Grasser FA et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 2013;126:881–93.
- Ozdilek BA, Thompson VF, Ahmed NS et al. Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Res 2017;**45**:7984–96.
- Rajyaguru P, Parker R. RGG motif proteins: modulators of mRNA functional states. *Cell Cycle* 2012;**11**:2594–9.
- Rajyaguru P, She M, Parker R. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell 2012;45:244–54.
- Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17:17–23.
- Renton AE, Majounie E, Waite A et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;**72**:257–68.
- Sun Z, Diaz Z, Fang X et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 2011;9:e1000614.
- Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 2014;10:661–70.
- Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016;**539**:197–206.
- Tong AH, Boone C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol 2006;**313**:171–92.
- Waite AJ, Baumer D, East S *et al.* Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. *Neurobiol Aging* 2014;**35**:1779.e5– 13.
- Wen X, Tan W, Westergard T et al. Antisense Proline-Arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014;84:1213–25.
- Zhang K, Donnelly CJ, Haeusler AR et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015;525:56–61.
- Zu T, Gibbens B, Doty NS et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci 2011;108:260–5.
- Zu T, Liu Y, Banez-Coronel M et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci 2013;110: E4968–77.