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Abstract

Motivation: The standard protocol for detecting variation in DNA is to map millions of short

sequence reads to a known reference and find loci that differ. While this approach works well, it

cannot be applied where the sample contains dense variants or is too distant from known referen-

ces. De novo assembly or hybrid methods can recover genomic variation, but the cost of computa-

tion is often much higher. We developed a novel k-mer algorithm and software implementation,

Kestrel, capable of characterizing densely packed SNPs and large indels without mapping, assem-

bly or de Bruijn graphs.

Results: When applied to mosaic penicillin binding protein (PBP) genes in Streptococcus pneumo-

niae, we found near perfect concordance with assembled contigs at a fraction of the CPU time.

Multilocus sequence typing (MLST) with this approach was able to bypass de novo assemblies.

Kestrel has a very low false-positive rate when applied to the whole genome, and while Kestrel

identified many variants missed by other methods, limitations of a purely k-mer based approach

affect overall sensitivity.

Availability and implementation: Source code and documentation for a Java implementation of

Kestrel can be found at https://github.com/paudano/kestrel. All test code for this publication is

located at https://github.com/paudano/kescases.

Contact: paudano@gatech.edu or fredrik.vannberg@biology.gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Although modern alignment tools are designed to handle errors and

variation, a sequence read that differs significantly from the refer-

ence cannot be confidently assigned to the correct location. When

these reads are mapped, the low alignment confidence leads to low

variant call confidence, and it becomes difficult to separate true var-

iants from false calls. In some regions, the read may be clipped or

not mapped at all. As a result, variant calling algorithms that rely

solely on alignments cannot characterize these events.

Bacterial genomes are small and relatively simple, but they remain

one of the hardest informatic targets due to their variability.

Horizontal gene transfer (HGT) is one mechanism that changes sam-

ples significantly when compared to the reference, and it often leads to

drug resistance or increased virulence (Ochman et al., 2000). Bacterial

typing and surveillance methods often require whole genome assembly

(Thomsen et al., 2016), a database of known alleles (Li et al., 2016) or

multiple reference sequences (Li et al., 2012). These approaches add to

the time required to run the analysis and to maintain allele databases.

The ideal method would handle bacterial diversity with a single refer-

ence, and it would be capable of placing genomic alterations in a uni-

form context without switching references.

There are several alternative methods commonly employed, but

they are either limited in power or consume far more computing

resources than the alignment and variant-calling protocol. Calling

variants from de novo assembled contigs may work for monoploid

organisms, but since it reduces the read coverage to 1, false-calls

cannot easily be corrected (Olson et al., 2015). Building the de

Bruijn graphs that are typically employed in assembly may also
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require many gigabytes of memory or computing clusters (Li et al.,

2010). Cortex (Iqbal et al., 2012) was designed to overcome limita-

tions of the de novo assembly approach, but it still relies on de

Brujin graphs assembled over the whole genome. Platypus (Rimmer

et al., 2014) performs local assemblies, however, it incurs the over-

head of both read mapping and local assembly if variant loci are not

known a priori.

One possible approach is to use the information contained

within a set of k-mer frequencies over the sequence data. K-mers can

be represented numerically, they do not rely on sequence alignments,

and k-mer counting methods are fast. To date, sparsely spaced SNPs

have been corrected with such an approach (Gardner and Slezak,

2010; Gardner et al., 2013), but a robust variant calling algorithm

has never been shown to work. Because dense SNPs and large inser-

tions can create many k-mers very different from any reference

sequence, how such an approach could work efficiently is not imme-

diately clear.

We constructed an algorithm that relies strictly on k-mer fre-

quencies over sample sequence data and ordered k-mers in a refer-

ence sequence to call variants. This method first finds regions of

variation over the reference using disruptions in the frequency distri-

bution of expected k-mers, and by beginning with unaltered k-mers

at the flanks of such regions, it can greatly simplify the search

through k-mer space while resolving variation. Using this approach,

we show how Kestrel can re-build altered regions of the genome in a

targeted manner and resolve regions of dense variation.

2 Materials and methods

2.1 Algorithm overview
Using features in KAnalyze (Audano and Vannberg, 2014) version

2.0.0, the frequency of each k-mer in the sample is stored in an

indexed k-mer count file (IKC) (Fig. 1a). The IKC records are

grouped by a k-mer minimizer (Roberts et al., 2004) and sorted.

This structure tends to cluster k-mers from the original sequence,

and by reading it as a memory mapped file, k-mers can be rapidly

queried with low memory requirements using search optimizations

similar to those implemented in Kraken (Wood and Salzberg, 2014).

From the reference sequence, the frequencies for each k-mer and

its reverse complement are obtained from the IKC file and summed,

but these are left in order (Fig. 1b). Kestrel searches the resulting

array for loci where the frequency declines and recovers (Fig. 1c),

which suggests the k-mers of the reference and sample differ.

Analogous to the GATK (McKenna et al., 2010) HaplotypeCaller,

this low-frequency region is called an active region, and haplotypes

are reconstructed over it.

Starting with the high-frequency k-mer on the left end of the

active region, the first base is removed, all four bases are appended

to this (k - 1)-mer, and the k-mer frequency is queried for each of

the four possibilities (Fig. 1d). An equivalent process is performed

on the reverse complement k-mer, and the frequencies are summed.

The base that yields a high frequency k-mer is appended to the hap-

lotype. The new k-mer ending in that base is then used to find the

next base by the same process. If more than one of these k-mers has

a high frequency, a haplotype is assembled for each one.

A modified Smith-Waterman (Smith and Waterman, 1981) algo-

rithm guides the process by aligning the active region and the haplo-

type as it is reconstructed (Fig. 1e). By setting an initial score and

disallowing links to zero score states, alignments are anchored on the

left and are allowed to extend until an optimal alignment is obtained.

Variant calls follow trivially from the alignment (Fig. 1f and g).

By relaxing these criteria and by building in either the forward or

reverse direction, it is possible to call variants up to either end of the

reference.

2.2 Active region detection
The distribution of k-mer frequencies from a set of sequence data is

approximately uniform with a mean equal to the average read depth

of the sample, and variants disrupt this distribution over reference

k-mers. For example, a single SNP causes k k-mers of the sample to

differ from the reference. Active region detection searches for differ-

ences between neighbors that are less likely to have occurred by

chance. Then by searching for a recovery in the downstream

frequencies, it attempts to resolve the left and right breakpoints in

k-mer space. This region is bounded by the unaltered k-mers at its

flanks, which we label anchor k-mers. The low-frequency and the

anchor k-mers together comprise the active region.

The frequency difference between of two neighboring k-mers, Ni

and Niþ1, is evaluated and compared to �, the threshold required to

trigger an active region scan (jNi �Niþ1j > �). Because read depth

can vary greatly over samples, setting this parameter to some value

is unlikely to perform well on real sequence data. Therefore, Kestrel

sets � to some quantile, Q�, of the set of jNi �Niþ1j for all neighbor-

ing k-mers in the reference. The default quantile, 0.90, with an

absolute minimum of 5 was found to work well in practice.

Supplementary Section S1.3 discusses active region detection in

more detail.

Sequencing errors, PCR duplicates, GC biases and other factors

systematically work to disrupt the uniformity of the frequency distri-

bution. Therefore, any robust approach must be equipt with heuris-

tics to work around such biases. Kestrel uses an exponential decay

Fig. 1. Overview of the Kestrel process from sequence data to variant call.

(a) The sequence reads are converted to an IKC file. (b) The reference

sequence is converted into an array of k-mers and left in reference order. (c)

K-mer frequencies from the sequence reads (vertical axis) are assigned to the

ordered k-mers of the reference (horizontal axis). A decline and recovery of

the frequencies bound an active region where one or more variants are

present. The recovery threshold is degraded with an exponential decay func-

tion (red) to allow for declining read coverage. (d) Starting from the left anchor

k-mer (last k-mer with a high frequency), the first base is removed, each possi-

ble base is appended, and the base that recovers the k-mer frequency is

appended to the haplotype. (e) A modified alignment algorithm tracks haplo-

type reconstruction and terminates the process when an optimal alignment is

reached. (f) This algorithm yields an alignment of the reference sequence and

haplotype within the active region. (g) Variant calls are extracted from the

alignment (Color version of this figure is available at Bioinformatics online.)
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function over the recovery threshold, and it ignores short peaks in

the frequency distribution.

When an active region occurs over declining read coverage, the

recovery k-mer frequency may be lower than expected. As the scan

moves further from the left anchor k-mer, the expected recovery fre-

quency should be relaxed. The exponential decay function, f(x)

(Equation 1), is employed to reduce the recovery threshold as the

active region extends. f(0) is the anchor k-mer frequency, and

it approaches a lower bound, fmin, asymptotically. By default,

fmin ¼ 0:55 � f 0ð Þ to avoid ending an active region prematurely on a

large heterozygous variant region. f(x) is defined by scaling and

shifting the standard exponential decay function, h(x) (Equation 2).

f xð Þ ¼ f 0ð Þ � fminð Þ � h xð Þ þ fmin (1)

h xð Þ ¼ e�xk (2)

h(x) is parameterized by k, which must be also be set, but Kestrel does

not configure this parameter directly because it is difficult to know

how to choose a reasonable value. Instead, k is chosen by a configura-

ble parameter, a, that is defined as the proportion of the decay range,

f 0ð Þ � fmin, after 1 k-mer (Equation 3). This provides a more intuitive

way to define how rapidly the recovery threshold is allowed to decline.

h kð Þ ¼ a

e�kk ¼ a

�kk ¼ log að Þ

k ¼ �log að Þ
k

(3)

At k k-mers, the recovery threshold f kð Þ ¼ a � f 0ð Þ � fminð Þ þ fmin.

In other words, f(k) has declined in its range from f(0) to fmin by a

factor of a. This is true for all nk such that f nkð Þ ¼ an � f 0ð Þ � fminð Þ
þfmin (Equation 4). Supplementary Section S2.2 outlines active

region heuristics in more detail.

h xð Þ ¼ e�xk

¼ e�x
�log að Þ

k

¼ e log að Þ� �x
k

¼ a
x
k u

(4)

2.3 Haplotype alignment
After the endpoints of an active region are found, the actual

sequence (haplotype) from the sample must be reconstructed. This

process is similar to a local assembly from k-mers, but it is imple-

mented to keep resource usage at a minimum. Since the reference

sequence over the whole region is known and anchor k-mers have

been chosen, the search through k-mers in the sample can be greatly

simplified.

The process begins by initializing the haplotype with the left

anchor k-mer. Then by removing the left-most base of the k-mer and

appending a new base to the end, the k-mer can be shifted one base

to the right. Each nucleotide can be appended and the frequency

checked. The base that produces a k-mer with the highest frequency

is appended to the haplotype. If more than one base produces an

acceptable frequency, then the alignment is split by saving the state

of reconstruction with alternate bases, continuing with the highest-

frequency k-mer, and returning to the alternatives after the current

haplotype is built. In this way, multiple haplotypes may be built

over one active region.

While this algorithm is simple enough to build the haplotype

sequence, it does not know when to terminate. It could continue

until the right anchor k-mer is found, but such reference-naı̈ve

reconstruction would certainly waste many CPU cycles extending

erroneous sequence. Because the active region sequence and the hap-

lotype sequences are known, an alignment could be performed as it

is extended. A global alignment would be ideal except that it would

have to be recomputed each time a base is added, and performance

of such an algorithm would be unacceptable in all but the most triv-

ial of applications.

An ideal algorithm would align over the active region from end to

end, anchor the left ends of the haplotype and active region, and

allow the right end of the haplotype to extend. To accomplish this,

Kestrel employs a modified Smith-Waterman alignment. Two key

modifications were made to Smith-Waterman; (i) any subalignment

with a score of 0 cannot be extended, and (ii) the alignment must

begin with a score greater than 0. Because of these modifications, the

alignment must begin with a non-zero score, and the gap extension

penalty must be non-zero to prevent unbounded extension.

Smith-Waterman is a dynamic programming approach where

matrices track scores by updating from shorter sub-alignments as

the alignment progresses (Eddy, 2004). The active region is posi-

tioned over the vertical axis, and the haplotype is positioned over

the horizontal axis of the score matrix. We define the active region

base in row i as xi and the haplotype base in column j as yj. As hap-

lotype bases are added to the alignment, a column is appended to

the matrix. Section 2.6 discusses how this is done efficiently.

For aligned bases, Rmatch is added to the score if they agree and

Rmismatch is added if they disagree. For convenience, we define

match(i, j) (Equation 5) to return Rmatch if xi and yj match, or

Rmismatch if they do not. This implementation employs an affine gap

model that allows for distinct gap open (Ropen) and gap extension

(Rgap) penalties. This type of model requires three matrices over x and

y to track the scores. One matrix, Saln, contains scores through aligned

(matched or mismatched) bases. Two more score matrices, Sgact and

Sghap, contain scores through gaps in the active region and gaps in the

haplotype, respectively. Using these definitions, the modified Smith-

Waterman score update process is defined in Equations 6–8.

match i; jð Þ ¼
Rmatch : xi ¼ yj

Rmismatch : xi 6¼ yj

(
(5)

Saln i; jð Þ ¼ max

0

Saln i� 1; j� 1ð Þ þmatch i; jð Þ :

Saln i� 1; j� 1ð Þ > 0

Sgact i� 1; j� 1ð Þ þmatch i; jð Þ :

Sgact i� 1; j� 1ð Þ > 0

Sghap i� 1; j� 1ð Þ þmatch i; jð Þ :

Sghap i� 1; j� 1ð Þ > 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(6)

Sgact i; jð Þ ¼ max

0

Saln i; j� 1ð Þ þRopen þ Rgap :

Saln i; j� 1ð Þ > 0

Sgact i; j� 1ð Þ þ Rgap :

Sgact i; j� 1ð Þ > 0

Sghap i; j� 1ð Þ þ Ropen þRgap :

Sghap i; j� 1ð Þ > 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(7)
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Sghap i; jð Þ ¼ max

0

Saln i� 1; jð Þ þ Ropen þRgap :

Saln i� 1; jð Þ > 0

Sgact i� 1; jð Þ þ Ropen þRgap :

Sgact i� 1; jð Þ > 0

Sghap i� 1; jð Þ þ Rgap :

Sghap i� 1; jð Þ > 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(8)

To initialize the alignment, the bases of the active region are

positioned along the vertical axis of the matrices, and each base of

the anchor k-mer creates one column. The first base of the sequences

is in row and column 1. Row and column 0 exist for convenience,

but they do not align any bases. The initial alignment score, Rinit

is assigned (Saln i; ið Þ ¼ Rinit ; 0 � i � k) where k is the size of

k-mers. All other scores in all three matrices are initialized to 0.

A fourth matrix, T, contains traceback information from the

end of an alignment to Saln 0; 0ð Þ. It is initialized so that

T i; ið Þ ! T i� 1; i� 1ð Þ ; 0 < i � k. This initialization of Saln and T

creates a single path for the anchor k-mer in the alignment, and all

acceptable alignments must enter this path at Saln k; kð Þ. The align-

ment extends from the anchor k-mer as already described.

Supplementary Section S1.4-7 outlines the alignment process and

data structures in more detail.

2.4 Alignment termination
Since the alignment must cover all of the active region, only the last

row of Saln needs to be queried to find the best score for the current

alignment, Rmax (Equation 9). The maximum potential score that

might be obtained by adding more bases is determined by examining

the last column of Saln. The best possible score from Saln i; jð Þ is the

case where all subsequent bases of the active region are aligned with

matched based, maxpot(i, j) (Equation 10), and Rmaxpot is the maxi-

mum of maxpot(i, j) (Equation 11). If Rmax>Rmaxpot, haplotype

extension terminates. Supplementary Section S1.8-9 further outlines

optimal scores and alignment termination.

Rmax ¼ maxfSaln jxj; jð Þ; 0 � j � jyjg (9)

maxpot i; jð Þ ¼

0 :

Saln i; jð Þ ¼ 0

Saln i; jð Þ þ jxj � ið Þ �Rmatch :

Saln i; jð Þ > 0

8>>>>><
>>>>>:

(10)

Rmaxpot ¼ max fmaxpot i; jyjð Þ; 0 � i � jxjgð Þ (11)

2.5 Variant calling
The variants are interpreted from the alignment, and the locations

of the variants are translated with respect to the location of the

active region. The alignment provides a convenient way to identify

mismatched bases and gaps in either sequence.

If any cell of trace matrix, T, has more than one path out, then

there is more than one optimal alignment, and so there are multiple

ways to translate the alignment to variant calls. When comparing

two alignments, the one with the first non-matching base is given a

higher priority. If the non-matching bases agree (same variant), then

the next non-matching base is queried. If the non-matching bases do

not agree, then alignments are prioritized by mismatch, insertion

and deletion, in that order. This gives the algorithm predictable out-

put for cases such as a deletion in a homopolymer repeat; Kestrel

will always report that the first base was deleted even though the

alignment score would be the same for a deletion at any locus of the

repeat. The effect is to left-align variant calls.

Approximate read depth of an active region is estimated by

summing the depth of all haplotypes, which may include the refer-

ence haplotype. Similarly, summing only the haplotypes that sup-

port a variant call gives the approximate depth of the variant.

Because haplotypes may share k-mers, we use the minimum k-mer

frequency as a conservative estimate of read depth of any single

haplotype. These estimates may be useful for filtering variants with

low support.

2.6 Alignment implementation
Because of the nature of the dynamic programming algorithm, only

the last column of the score matrices (Saln, Sgact and Sghap) needs to

be stored while the next column is built. Therefore, each of these

matrices can be reduced to two arrays where one contains the last

column, and one contains the new column being added. When alter-

nate haplotypes are explored and the alignment splits, only one

array for each matrix must be saved.

The traceback matrix, T, is more complex because it is not

stored as a matrix. Instead, it is a linked-list of alignment states that

always leads back to Saln 0; 0ð Þ. When a non-zero score is added to a

score matrix, a link is added to T. For each non-zero score in score

matrices, a link from the matrix to a node in T is stored.

Since T is a linked list that is only traversed toward Saln 0; 0ð Þ,
one node of the alignment may have several links into it. Therefore,

different haplotypes may link to the same node in T where they split

and no part of T needs to be duplicated. Both haplotypes will trace

back to the point where they diverged and continue toward Saln

0;0ð Þ along the same path.

The linked list structure has another more subtle property that

Java uses to keep memory usage low. When an alignment path

reaches a dead end, the node at the end of the path has no reference

to it. This allows Java Virtual Machine (JVM) garbage collection

(GC) to detect and remove these nodes. In other words, GC can

automatically prune dead branches of T. This improves scalabilty by

reducing the memory requirements for large active regions where

many haplotypes are investigated.

3 Results

3.1 S.pneumoniae test case
We analyzed the four penicillin binding protein (PBP) genes of

Streptococcus pneumoniae (S.pneumoniae) targeted by b-lactam

compounds. According to several studies, 20% or more of a PBP

gene may be altered by inter-species recombination (Laible et al.,

1991; Martin et al., 1992), and this can create mosaic PBP genes

with a lower b-lactam binding affinity. Because these recombination

events often alter hundreds of contiguous bases, variant calling from

a standard alignment pipeline cannot characterize them.

We obtained 181 samples from 29 serotypes recently released

by the Centers for Disease Control and Prevention from NCBI

under BioProject PRJNA284954 (SRR2072210-SRR2072387,

SRR2076738-SRR2076740). These data are whole-genome 250 bp

paired-end Illumina sequence reads ranging from 15 Mbp to 1234

Mbp (median¼323 Mbp). Selecting the best reference out of more

than 10 is often necessary (Li et al., 2012), however, we tested

Kestrel’s ability to characterize variants using a single reference for

all samples, TIGR4 (NC_003028.3).
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We called all variants in four PBP genes (PBP2X, PBP1A, PBP2B

and PBP2A) using three distinct approaches. The first is a standard

alignment pipeline using BWA (Li and Durbin, 2009, 2010), Picard

and GATK (McKenna et al., 2010) HaplotypeCaller. The second is

Kestrel. The third is a de novo assembly pipeline using SPAdes

(Bankevich et al., 2012), BWA and SAMtools (Li et al., 2009).

Variants identified by the assembly where the depth of aligned con-

tigs is 1 were defined as the true variants. HaplotypeCaller and

Kestrel variant calls were compared to the true set with RTG

(Cleary et al., 2015) vcfeval.

Contamination in the PBP genes was identified in SRR2072298,

SRR2072306, SRR2072339, SRR2072342, SRR2072351 and

SRR2072379, and these samples are not included in our analysis

results. For all of these samples, there were many variant calls in the

PBP genes with a relative depth of 0.70 or less, which is unlikely in a

monoploid organism. The size of the IKC files is also larger than

expected, which supports our conclusion that they contain allelic

variation not present in the host genome (Fig. 2). Based on the IKC

files, two more samples (SRR2072345 and SRR2072352) may also

contain non-host or extra-chromosomal material, but since we saw

no evidence for this in the variant calls over the PBP genes, these

samples were included. Two other samples (SRR2072219 and

SRR2072360) did not have complete sequence data and were also

removed. They contain 10 Mbp and 37 Mbp, respectively, where

the median has 323 Mbp and the next lowest sample has 92 Mbp.

Supplementary SectionS 3.4 discusses how removed samples were

identified.

With the minimum k-mer frequency set to 5, sequence read

errors are filtered out of the distribution of k-mers. It is then inter-

esting to note that a sample has a finite set of solid k-mers, and once

this set is reached, the IKC file ceases to grow in size. BAM files

must store a record for each read, and so they grow approximately

linearly with read depth. The samples suspected of contamination

and low coverage indeed show an increase and a decrease, respec-

tively, in IKC file size (Fig. 2).

Kestrel produced 29 806 true positive (TP) variant calls with

73 false positive (FP) and 100 false negative (FN) calls (Fig. 3a)

(sensitivity¼1.00, FDR¼0.00). Because mosaic regions disrupted

the alignments, GATK was only able to produce 17 636 TP variant

calls with 12 FP and 11 777 FN calls (Fig. 3b) (sensitivity¼0.60,

FDR¼0.00). GATK tends to represent dense SNPs as insertion/dele-

tion pairs, and so the expected true variants differ between the two

approaches. This is a diverse set of samples varying in their relation-

ship with the reference and mosaic content, and a few samples con-

tribute most of the variants (Fig. 3c).

Kestrel required an average of 13.3 CPU minutes per million

250 bp reads (min/M-reads), the alignment approach required an

average of 14.5 min/M-reads, and the assembly approach required

106.2 min/M-reads (Fig. 3d). For all steps of the pipeline, Kestrel

consumed an average of 1.0 GB of memory, GATK consumed an

average of 2.7 GB, and the assembly approach consumed 9.1 GB.

Maximum memory consumption was 2.3, 3.6 and 15.7 GB respec-

tively for Kestrel, GATK and assembly (Fig. 3e). Runtime metrics

were obtained on a 12 core machine (2 x Intel Xeon E5-2620) with

32 GB of RAM (DDR3-1600), RAID-6 over SATA drives (3 GB/s,

72 K RPM) and CentOS 6.7.

3.2 MLST test case
Multilocus Sequence Typing (MLST) attempts to cluster samples by

analyzing the content of some set of genes. The current method is to

build a BLAST (Altschul et al., 1990) database from de novo

assembled contigs and to use the database for comparing each allele

to the sequence data (Jolley and Maiden, 2010; Larsen et al., 2012).

A whole-genome assembly is an expensive operation, so we tested

Kestrel’s ability to bypass it.

We obtained 7 Neisseria meningitidis (N.meningitidis) samples

from ENA study PRJEB3353 (ERR193671-ERR193677) (Reuter

et al., 2013) and allele sequences for 7 house-keeping genes (adk,

aroE, abcZ, fumC, gdh, pgm and pdhC) from pubMLST (Jolley and

Maiden, 2010). These data are whole-genome 150 bp paired-end

Illumina reads. For each sample, Kestrel identified the best allele by

using each allele as a reference sequence.

Sequence reads were assembled with SPAdes using default

options, and contigs were used to construct a BLAST database. Each

allele downloaded from pubMLST for N.meningitidis was used as a

BLAST query, and the best allele for each gene was chosen. With the

allele calls, the sequence type (ST) was identified by comparing

against sequence type profiles also obtained from pubMLST. This

set of alleles and the sequence type represents the expected results

based on the current methods.

Sequence reads were also transformed to an IKC file with

KAnalyze using 31-mers, a 15-base minimizer, a minimum k-mer

frequency of 5 and a minimum allele depth of 0.50. Each allele was

used as a reference sequence for variant calling. For each gene, the

allele with the fewest variants was chosen as the best match. If no

variants were detected for an allele, the k-mer counts over the allele

reference was checked to ensure that it was present in the sequence

data. The best allele matches were used to identify the ST by com-

paring them against types from pubMLST.

There was 100% concordance between the assembly and Kestrel

methods. All samples were called with a minimum k-mer frequency

of 5 except ERR193672, which was reduced to 2 to call gene pgm

because of low coverage.

The assembly-based MLST approach required an average of

51.6 min/M-reads and average of 7.1 GB of memory (max 7.8 GB).

The Kestrel MLST approach required 10.4 min/M-reads and 1.6 GB

of memory (max 1.7 GB).

3.3 E.coli test case
We tested Kestrel’s ability to call variants on whole genomes using

309 Escherichia coli (E.coli) samples obtained from assembled con-

tigs in the supplementary information published by Salipante et al.

(2015) (Dataset S7.tar.gz). The study reports on 312 samples, but

two were not found in the online dataset (upec-240 and upec-52)

and one consistently caused RTG vcfeval to crash (upec-9).

Fig. 2. Size of BAM files vs IKC files for each sample. Since low frequency k-

mers are removed, the size of an IKC file does not continue to grow with read

depth once a full set of representative k-mers are present. Since BAM files

have a record for each read, their size does increase with the number of

reads. Samples removed for suspected contamination and low coverage are

shown in red. Low-coverage samples lack a representative set of k-mers at

sufficient frequency, and so the file size falls below the distribution. Samples

with contamination contain k-mers that do not belong to the sample, and so

their size rises above the distribution (Color version of this figure is available

at Bioinformatics online.)

Kestrel 1663

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx753#supplementary-data
Deleted Text: ,
Deleted Text: )
Deleted Text: ,
Deleted Text: ,
Deleted Text: <bold>)</bold>
Deleted Text: s
Deleted Text: <bold>)</bold>
Deleted Text: <bold>)</bold>
Deleted Text: ,
Deleted Text: ,
Deleted Text: <bold>)</bold>
Deleted Text: ,
Deleted Text: ; <xref ref-type=
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text:  <italic>c</italic>
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx753#supplementary-data


The contigs were aligned to an E.coli K-12 reference

(NC_000913.3), and variants between the reference and contig were

identified. To minimize the effect of assembly errors, we used ART

(Huang et al., 2012) with contig sequences to simulate 150 bp

paired-end reads to an average depth of 30�. Kestrel and GATK

were run on the 4.6 Mbp reference using the same tools and

approach as the S.pneumoniae contigs where the contig depth was

at least 1 (mean 4.0 Mbp).

KAnalyze and Kestrel were applied to these simulated reads with

the same parameters as the S.pneumoniae reads (k-mer size 31, qual-

ity 30, min depth 5). An additional parameter was given to Kestrel

to discard variants over ambiguous reference bases, such as N, so

that RTG vcfeval had an equivalent set of variants from both

approaches. With all variant call sets, RTG vcfeval was used to test

the calls. Kestrel must limit the size of active regions when calling on

whole genomes or it will try to resolve erroneously large regions and

perform poorly. For larger genomes, increasing the k-mer size may

help reduce k-mer distribution noise.

In addition to a VCF, Kestrel can output a SAM file of the haplotypes

it assembles and aligns. The SAM feature was enabled for this experi-

ment so that the locations of haplotypes could be identified. Variant sta-

tistics were calculated twice; once over all regions where the alignment

depth was one and once for all regions where there was an assembled

haplotype. The current implementation of Kestrel discards active regions

with one wildtype haplotype, so the second analysis only applies to

regions where at least one variant was identified (mean 2.3 Mbp).

Over the whole genome, Kestrel yielded an FDR of 0.01, but a

sensitivity of only 0.71. GATK yielded an FDR of 0.00 (0.0029)

and a sensitivity of 0.84 If we examine only regions where Kestrel

had an active region, the sensitivity rose to 0.98 for Kestrel and

0.97 for GATK, and the FDR remained 0.01 for Kestrel and 0.00

for GATK.

Although the sensitivity was lower for Kestrel, there are regions

where Kestrel consistently makes calls that are missed by the GATK

pipeline. We compared all Kestrel TP calls that were not within

50 bp of any GATK TP call, merged the resulting calls within 50 bp,

and found 780 regions affecting 86 unique genes where calls were

missed by GATK in more than 20 samples (Supplementary Table S5

and Supplementary Fig. S7).

4 Discussion

The Kestrel algorithm is a framework for calling variants from

sequence data using evidence found only in k-mer space. It provides

a mechanism for detecting regions of variation, a method for resolv-

ing the variation to variant calls, and a set of heuristics that make

it work with real data. Inference on k-mers has been applied to

RNAseq analysis (Bray et al., 2016; Patro et al., 2014), metagenom-

ics (Wood and Salzberg, 2014), phylogenetics (Gardner and Slezak,

2010; Gardner et al., 2013) and many other problems in bioinfor-

matics. To our knowledge, Kestrel is a first-in-class variant calling

implementation using only k-mers.

Although such a method is unorthodox with respect to current

standards, it is able to capture variation in regions where alignments

are too noisy. In these cases, a k-mer approach can displace alterna-

tives that require far more computing resources and time to

Fig. 3. Results of testing Kestrel and the alignment approach using GATK over 173 S.pneumoniae samples. (a) Variant call summary for Kestrel calls depicting

TP, FP, FN calls. (b) Variant call summary for GATK calls depicting TP, FP and FN calls. (c) A plot depicting the phylogeny of all samples by ANI (inner track), the

distance from the reference (white) by ANI as a blue-yellow-red heatmap (middle track), and the relative number of variants in each sample (outer track). (d) CPU

minutes per million reads. When an assembly is required, the required CPU time increases. (e) Maximum memory usage in gigabytes (GB) for each pipeline

(Color version of this figure is available at Bioinformatics online.)
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complete, such as de novo assemblies. By applying this method to

other domains where assemblies are the current standard, such as

MLST and pathogen surveillance pipelines, this approach can have

a dramatic effect on computing resources.

Despite several advantages, a purely k-mer-based algorithm such

as this does have limitations. The most significant of these is that

paired-end and sequence read context is lost when shredding

sequence reads into k-mers. This information is valuable for resolv-

ing variants in repetitive, duplicated or low complexity regions of

the genome. Some evidence of these events is still present in k-mer

space, such as frequency peaks, and although Kestrel attempts to

work through these events, alignments or assemblies will often have

higher accuracy.

As a practical tool, Kestrel is a fast alternative to existing meth-

ods when applied to specific regions of the genome. We expect it to

find use as a targeted tool, as part of automated surveillance pipe-

lines or an orthogonal approach for other callers. In its current

form, we cannot purport it to be a whole-genome alternative for

software like Cortex or Platypus. Future developments may improve

the limitations of this approach, or the algorithm may find use in a

hybrid tool making use of k-mers and other data. For example, the

GATK HaplotypeCaller might fall-back to such a k-mer method to

rescue variants in a region where alignments suffer because of dense

SNVs or large indels.

In many cases, algorithms that are free of alignments and

assemblies can reduce the demand on computing resources. As

high-volume sequencing technology becomes faster and cheaper,

reducing the cost of data storage and analysis becomes critical

(Köser et al., 2012; Sboner et al., 2011). Kestrel’s contribution was

only marginal for calling variants where alignments would suffice,

but its ability to perform analysis without more costly methods

gives it a significant advantage. The computing resources Kestrel

requires is well within the capabilities of a modern laptop, which is

far less expensive than the powerful machines or computing clus-

ters that would be required to do the same work in the same

amount of time. Such a cost savings may conserve vital research

funds or enable routine analysis where funding and equipment are

not as readily available.
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