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Abstract

Motivation: Tumor genome sequencing offers great promise for guiding research and therapy, but

spurious variant calls can arise from multiple sources. Mouse contamination can generate many

spurious calls when sequencing patient-derived xenografts. Paralogous genome sequences can

also generate spurious calls when sequencing any tumor. We developed a BLAST-based algo-

rithm, Mouse And Paralog EXterminator (MAPEX), to identify and filter out spurious calls from

both these sources.

Results: When calling variants from xenografts, MAPEX has similar sensitivity and specificity to

more complex algorithms. When applied to any tumor, MAPEX also automatically flags calls that

potentially arise from paralogous sequences. Our implementation, mapexr, runs quickly and easily

on a desktop computer. MAPEX is thus a useful addition to almost any pipeline for calling genetic

variants in tumors.

Availability and implementation: The mapexr package for R is available at https://github.com/

bmannakee/mapexr under the MIT license.

Contact: mannakee@email.arizona.edu or rgutenk@email.arizona.edu or eknudsen@email.arizona.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecular characterization of tumors is an important tool in cancer

research, and the large-scale sequencing of cancer genomes has led

to a deeper understanding of many aspects of the biology of cancer

(Stratton, 2011). It is now common to sequence tumors from large

cohorts of patients, as well as patient-derived xenograft (PDX) mod-

els from individual patients. Such sequencing enables identification

of mutational signatures (Alexandrov et al., 2013), functionally

important variants (Ding et al., 2012) and evolutionary history of

the tumor (Carter et al., 2012; Nik-Zainal et al., 2012). These

genetic features are relevant in evaluating etiological mechanisms

(Yachida et al., 2010), prognostic subtypes (Park et al., 2010; Shah

et al., 2009), and acquired therapeutic resistance (Witkiewicz et al.,

2015). All these applications of tumor sequencing depend on sensi-

tive and specific characterization of low-frequency mutations, and

as a result may be biased by spurious variant calls. Here, we focus

on two specific sources of spurious calls, mouse cell contamination

in PDX tumors and mis-alignment of paralogous sequences.

PDX models serve as avatars for individual patient tumors

when studying intra-tumor heterogeneity and metastasis and when
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screening anti-cancer compounds (Allaway et al., 2016; Bruna et al.,

2016; Dawson et al., 2012; Day et al., 2015; Knudsen et al., 2017).

The primary difficulty in sequencing these models is that mouse

stroma is present in all PDX tumors. The high genetic similarity

between mouse and human then causes bias when variants are called

using bioinformatic pipelines originally developed for primary

tumors (Rossello et al., 2013; Tso et al., 2014). Several methods

have been developed to facilitate the accurate calling of variants in

PDX models. Experimentally, human-specific fluorescence tags can

be used to label and isolate human cells prior to DNA extraction

(Schneeberger et al., 2016). Bioinformatically, sequence reads can

be aligned to both human and mouse reference genomes, either sepa-

rately (Conway et al., 2012; Khandelwal et al., 2017) or simultane-

ously (Bruna et al., 2016), to filter out mouse reads prior to variant

calling. Although these approaches greatly improve the reliability of

variant calls from PDX models, they entail substantial experimental

or bioinformatic burdens. Here, we describe a light-weight filtering

algorithm that achieves equivalent reliability and can be easily

added to standard bioinformatic pipelines, because it uses the same

reference genome for alignment as primary tumors.

Many human genes have highly similar paralogous sequences in

the genome. Spurious variant calls arising from such paralogs have

been recognized as an important source of false positives in the study

of rare disease-associated germline variants (Jia et al., 2012;

Mandelker et al., 2016; Ng et al., 2010; Zhou et al., 2015).

Similarly, paralogs have led to false positives in the study of cancer,

including TUBB in non-small cell lung cancer (Kelley et al., 2001),

PIK3CA in hepatocellular carcinoma (Müller et al., 2007; Tanaka

et al., 2006) and MLL3 in myelodysplastic syndrome (Bowler et al.,

2014). To address the paralog problem, some variant callers, such

as MuTect2 [currently in beta but included in the Genome Analysis

Toolkit (GATK; McKenna et al., 2010)], filter clustered variants,

which often result from mis-alignment of paralogous sequences.

Many labs also keep lists of suspect genes that tend to suffer from

paralog problems and simply ignore any variants called in these

genes. These approaches introduce their own biases. Our approach

automatically identifies potential spurious calls from paralogs and

enables flexible evidence-based filtering.

Here, we fully describe and characterize MAPEX (the Mouse

And Paralog EXterminator), a BLASTN-based algorithm for filter-

ing variants that was previously introduced by Knudsen et al.

(2017). We also present mapexr, a fast and light-weight implemen-

tation in R. The MAPEX algorithm is aimed at three use cases.

1. Labs that sequence PDX tumors using services that align to the

human reference can easily and accurately filter mouse contami-

nation with mapexr.

2. Bioinformatically sophisticated labs could align against both the

human and mouse genomes to use other filtering approaches,

but mapexr enables additional variant-level assessment of

results.

3. Any tumor genomics lab can use mapexr as a light-weight

approach to identify potentially spurious variants created by

paralogous sequences.

We show that, when applied to PDX samples, MAPEX generates

calls that are highly similar to other methods, without the need to

perform special alignments. We also show that, when applied to pri-

mary samples, MAPEX effectively filters paralogs while avoiding

biases of existing heuristics. MAPEX is thus a useful addition to

many tumor variant calling pipelines.

2 Approach

2.1 Workflow
The MAPEX algorithm is a post-variant-calling filter designed to

fit into a standard tumor variant calling pipeline and flag variants

which may arise from mis-alignment of mouse reads or from

paralogous sequences (Fig. 1). The input for MAPEX is a BAM

file containing tumor reads aligned to the human reference

genome and a variant callset generated from that alignment.

Variant-supporting reads are then BLASTed against the appropri-

ate reference genome(s). Variants are scored by the fraction of

supporting reads that align to the called site of the variant in the

human genome.

2.2 Algorithm
Each read supporting a variant is BLASTed against the appropriate

reference genome for the application. For PDX applications, this is

the combined human/mouse reference, and for primary tumor

applications, this is just the human reference. The best hit for each

read is determined by bit score. Reads for which the best hit over-

laps the called variant location are classified as ‘on target’ and

assigned a score of 1. Reads for which the best hit is a different

region of the human genome or a region of the mouse genome are

classified as ‘off target’ or ‘mouse,’ respectively, and assigned a

score of 0. Reads from genes with close paralogs in the human

genome may generate multiple best hits (ties). In this case, the read

score is averaged over all best hits, and the read is classified based

on the most common result from the best hits. Each variant is then

assigned a score that is the average score of all reads supporting

that variant and is classified based on the most common classifica-

tion of the supporting reads.

Fig. 1. Illustration of MAPEX applied to a PDX sample. MAPEX begins with

variants called from tumor reads aligned to the human genome. For each var-

iant, the supporting reads are BLASTed against the combined human and

mouse reference genomes. Variants are then scored by the fraction of sup-

porting reads that align to the called site of the variant in the human genome
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2.3 Implementation
We have implemented the MAPEX algorithm as an R package

(mapexr). The package leverages the Bioconductor packages

Rsamtools, GenomicAlignments and GenomicRanges for fast

and memory-efficient BAM file handling and read sequence extrac-

tion (Lawrence et al., 2013; Morgan et al., 2017). The package

requires a local BLASTN installation and a BLAST database con-

structed from either a combined human/mouse reference genome or

a human reference genome, depending on the application.

3 Materials and methods

3.1 Samples
To characterize the performance of MAPEX, we used whole exome

sequence trimmed fastq reads obtained from pancreatic ductal

adenocarcinoma (PDAC) samples described previously by Knudsen

et al. (2017) (PDX) and Witkiewicz et al. (2015) (primary). For the

PDX analysis, we analyzed a total of 34 PDXs derived from 9 pri-

mary tumors, sequenced to mean coverage depth of 124x. For the

paralog analysis, we analyzed 93 primary tumors sequenced to a

mean coverage depth of 40x.

3.2 Alignments and variant callers
All alignments were done using bwa-mem with default parameter

settings (Li and Durbin, 2009). For initial variant calling, we aligned

all reads in the samples to the human reference genome GRCh37.

We then called variants using MuTect version 1.1.1 (Cibulskis et al.,

2013), MuTect2 (as part of the GATK version 3.6, McKenna et al.,

2010) and Varscan 2 (Koboldt et al., 2012), all with default parame-

ters. MuTect 1 and 2 variant calls were used without any post-

filtering, but for Varscan 2 we used the built-in processSomatic

and fpfilter functions with default parameters to generate a set

of high-confidence variant calls. Variants were annotated with

Oncotator (Ramos et al., 2015) and the annotation database

oncotator_v1_ds_April052016. We considered only non-

synonymous single nucleotide variants when comparing between

methods. For paralog filtering, we used a conservative variant score

cutoff of 0.8.

For comparison with Bruna et al. (2016), we aligned reads to a

combined human/mouse reference genome GRCh37/mm9 and called

variants using MuTect 1.1.1. We calculated the fraction of mouse

contamination using the method described in Bruna et al. (2016).

Briefly, they generated data comparing the fraction of mouse cells in

a sample with the fraction of total reads aligned to the mouse por-

tion of a combined reference genome. We used this data to fit a

LOESS regression model for contamination fraction versus fraction

aligned, and used this to predict mouse contamination based on the

fraction of reads aligned to the mouse genome in our samples.

For comparison with bamcmp (Khandelwal et al., 2017), we

aligned reads separately to the human and mouse reference genomes

and ran bamcmp with default parameters. The output of bamcmp

includes alignment files for reads that aligned to only the human

reference and that aligned to both references but with a higher

human alignment score. We merged these two alignments, per-

formed indel re-alignment and base score re-calibration using the

GATK, and used the merged alignment to call variants with Mutect

version 1.1.1. All scripts (doi: 10.5281/zenodo.1112101) and the

version of mapexr (doi: 10.5281/zenodo.1112234) used to conduct

the analysis have been archived with Zenodo.

4 Results and discussion

4.1 Methodological
MAPEX is a light-weight filtering algorithm that adds little over-

head or complexity to existing tumor variant-calling pipelines. The

runtime for mapexr is linear in the number of variants to be filtered,

processing roughly 250 variants per minute on a 4-core machine

(Supplementary Fig. S1).

MAPEX has only one tunable parameter, the minimum mapping

quality score required for a variant read. The default minimum score

is 1, which includes all reads with an unambiguous best mapping. In

pipelines in which a minimum mapping quality score is used for var-

iant calling, that score should also be supplied to mapexr, to pre-

vent evaluating reads that were not used by the variant caller. The

output from mapexr is an R data frame with four columns—chro-

mosome, start location, variant score and variant classification—

and one row for each variant evaluated. Users may also optionally

provide a file path to mapexr which will generate a tab-delimited

file with BLAST results and scores at the read level. The user can

choose the variant score threshold used to classify variants as

human- or mouse-derived. Here, we use a threshold of 0.5, so that a

variant is flagged as spurious if less than half of the supporting reads

BLAST as ‘on target.’ In practice, the distribution of variant scores

is bimodal and highly concentrated at 0 and 1, so results are insensi-

tive to the exact threshold (Supplementary Fig. S2).

4.2 Filtering mouse calls from PDX samples
One important use case for MAPEX is as a post-variant-calling filter

for PDX samples that have been aligned to a human reference

genome. To test the precision of MAPEX, we compared variant calls

from aligning reads to the human reference and filtering with

MAPEX to calls from two other methods. The first alternate method

is to align reads to a combined human and mouse reference and then

call variants (Bruna et al., 2016), which we refer to as the ‘combined

reference’ method. This requires similar CPU time to using MAPEX.

The second method is to align reads separately to human and mouse

references and call variants using only those reads that align better

to the human reference, which is the method implemented in

bamcmp (Khandelwal et al., 2017). This requires twice as much

CPU time for alignment as MAPEX, and the post-alignment step is

typically shorter for MAPEX, although it can be longer for samples

with very high mouse contamination (Supplementary Fig. S3). For

three representative PDX tumors, all three methods yield similar

callsets (Fig. 2A). The differences are primarily confined to low-

frequency variants, and almost all high-frequency variants are called

by all three methods (Fig. 2B). MAPEX might reduce power to iden-

tify low-frequency subclonal variants, if some of the few reads sup-

porting a variant BLASTed to incorrect locations. This would yield

an intermediate variant score. Because variant scores are strongly

bimodal (Supplementary Fig. S2), we expect that MAPEX causes lit-

tle to no reduction in power. Across 34 PDX tumors, all three meth-

ods yield a similar dramatic reduction in called variants (Fig. 2C).

To further validate MAPEX, we compared PDX variant calls

before and after filtering to the primary tumor from which the PDX

was derived, where mouse contamination is not an issue. Across 34

PDX tumors derived from 9 primaries, MAPEX dramatically

enriches PDX calls for variants that were also found in the primary

tumor and removes few PDX calls that were found in the primary

tumor. Among variants in the PDXs, only 0.3% to 10% called

before MAPEX filtering were also found in the primary tumor, but

23% to 90% of variants called after MAPEX filtering were found in

the primary tumor (Supplementary Table S1). This suggests that
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MAPEX enriches strongly for true variants. Among variants found

both in the primary after MAPEX filtering and in the PDX before

MAPEX filtering, 97% to 100% were retained in the PDX after

MAPEX filtering (Supplementary Table S1). Only one variant iden-

tified in each of two primary tumors was filtered by mapexr in a

derived PDX. In primary tumor EMC1222, only 60% (slightly

above the 50% cutoff) of variant reads mapped on-target for the pri-

mary variant (suggesting that it may be a spurious variant caused by

a paralogous sequence), while in the PDXs only 20–45% (slightly

below the cutoff) of variant reads mapped on-target. In EMC226,

the variant appears to be from human wild-type to mouse wild-type,

so 55% of variant reads (in a PDX with 57% mouse contamina-

tion), mapped to the mouse genome. Together these results suggest

that MAPEX removes few true variants.

To validate the usefulness of MAPEX in practice, we focused on

calls within known cancer-associated genes, using the COSMIC

database. Among the PDAC samples in COSMIC, 34 genes are

mutated in more than 3% of samples. Before filtering with MAPEX,

910 variants were found in these genes among the 34 PDXs we

studied. After filtering with MAPEX, only 70 variants were retained.

These results suggest that MAPEX removes many false positives,

dramatically simplifying variant interpretation. Of particular

interest are KRAS, TP53 and SMAD4, which are the most com-

monly mutated genes in PDAC (Table 1). All of the KRAS mutations

filtered by MAPEX are I187V mutants, which result from aligning

wild-type mouse KRAS reads to human KRAS, and all 34 PDXs

retained the KRAS mutation found in their primary tumor. All of

the SMAD4 and TP53 mutations that were retained by MAPEX in

the PDXs also appeared in the corresponding primary tumors, and

all of those filtered were not found in the corresponding primary

tumors. ARID1A is particularly susceptible to spurious variants

caused by mouse contamination; only one of the 131 variants origi-

nally called in ARID1A was retained by MAPEX. We confirmed

that the single retained variant was found in the primary tumor

from which the PDX was derived, while none of the 130 rejected

variants were found in their corresponding primaries.

4.3 Effects of variant call filters on PDXs
We carried out our primary analyses with the variant caller MuTect

1.1.1, but to test the performance of MAPEX with other variants

callers, we also considered MuTect2 and Varscan 2.

If mouse contamination were perfectly filtered, the number of

called variants should not depend on the level of mouse contamina-

tion. For all three variant callers the number of raw calls was strongly

correlated with estimated mouse contamination (Fig. 3A–C), although

MuTect2 and Varscan2 did produce substantially fewer calls overall

than MuTect 1. After filtering with MAPEX, the numbers of variants

called by all three callers was not significantly correlated with the

level of mouse contamination (Fig. 3D–F).

Importantly, as a post-variant-calling filter, MAPEX can not

evaluate variants that were not initially called. Filters implemented

with a variant caller, generally designed to improve results from pri-

mary tumors, can cause problems when using MAPEX. For exam-

ple, MuTect2 applies a clustered event filter designed to reduce the

number of false-positive variant calls due to mis-alignment of highly

paralogous sequences. In regions of high similarity between mouse

and human, this filter can remove true variants. For instance,

Figure 4 shows the result of aligning a PDX with modest mouse con-

tamination to the human reference for a small portion of the KRAS

oncogene. MuTect 1.1.1 and Varscan 2 both called three variants at

this locus, and MAPEX correctly rejected the two spurious variants

arising from mouse contamination and retained the true G12D var-

iant. MuTect2 fails to call any of these variants, because they are fil-

tered as likely homologous mapping events, so MAPEX does not see

and cannot retain the true G12D variant. In our PDX samples, we

Fig. 2. Comparison of MuTect 1.1.1 variants calls between MAPEX, combined

reference, and bamcmp methods. (A) Detailed breakdown of variant call over-

lap between the unfiltered human alignment (squares), MAPEX filtered

human alignment (right circles), bamcmp filtered human alignment (top

circles) and unfiltered combined alignment (bottom circles) for representative

PDXs created from three different primary tumors. (B) Variant allele frequen-

cies for calls in 34 PDX samples that are concordant (n¼ 1663 variants) and

discordant (n¼552 variants) between the methods. (C) Comparison of total

calls between the methods, n¼34 PDX samples. Boxplots depict 25th and

75th percentile with 1.5 � IQR whiskers. Notches are Median 6 1.58 � IQR/

sqrt(n), and represent rough estimates of 95% confidence interval around the

median

Table 1. Variants detected in PDX samples for important PDAC

genes

Gene before MAPEX after MAPEX

Total Samples with Total COSMIC

variants a variant variants prevalence

KRAS 56 34 34 0.64

TP53 9 9 7 0.39

SMAD4 5 5 5 0.14

SYNE1 3 3 0 0.05

CSMD3 96 25 0 0.05

GNAS 6 6 6 0.05

HMCN1 10 5 0 0.04

APC 12 11 0 0.04

NEB 31 17 0 0.04

WDFY4 6 4 1 0.04

LRP1B 32 18 1 0.04

ARID1A 131 33 1 0.04
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found instances of the clustered event filter removing true variants

from other PDAC oncogenes, including SMAD4 and TP53.

Overall, the performance of MAPEX does not depend sensitively on

the variant caller used, but callers can introduce specific biases. In partic-

ular, the default parameters for Varscan 2 yield high sensitivity but low

specificity, so the use of the built-in post-call variant filters is necessary

to prevent excessive false positives (Supplementary Fig. S4). In contrast,

the default parameters for MuTect2 yield much higher specificity, but at

the cost of sensitivity in the PDX context. Currently, the clustered event

filter cannot be disabled in MuTect2. We thus advise that users pairing

MAPEX with MuTect2 be cautious when interpreting callsets from

PDX samples in genes with high similarity between human and mouse.

4.4 Flagging potential false positives resulting from

paralogous sequences
In addition to removing mouse contamination from PDX samples,

MAPEX can also filter potential paralogs in primary samples.

Across 93 PDAC primary tumors, a mean of 11% of total variant

calls were flagged by MAPEX as potential paralogs, with a range of

2–33%. The genes in which variants were most frequently flagged

as potentially arising from paralogous sequences include members

of large gene families, such as mucins, zinc-finger nucleases and the

PRAME family (Table 2). Variants in citrate synthase (CS) were also

frequently flagged (Table 2). CS has a known pseudogene NCBI:

LOC440514 that was responsible for all of the spurious calls. We

called variants with MuTect 1.1.1 and filtered with MAPEX, but

MuTect2 includes new clustered event and read-mapping quality fil-

ters to prevent calling variants caused by paralogs. Using MAPEX

yielded call sets that were identical with MuTect2 for all the genes

in Table 2, with the exception of MUC12 and MUC5B, which dif-

fered by three variants. MAPEX can thus be efficiently and confi-

dently used to remove variants that likely arise from paralogous

sequences, with the additional benefit that the reason for classifying

a variant as a potential paralog, as well as the genomic locations of

the paralogous sequences, can be investigated.

5 Conclusion

Genome sequencing is an increasingly important tool in cancer

research, but spurious variant calls remain a challenge. MAPEX is

an algorithm designed to filter spurious variants caused by mouse

reads in PDXs and caused by paralogous sequences in primary

tumors. We showed that MAPEX is as sensitive and specific as more

computationally intensive methods for calling variants from PDX

tumors. We also showed that MAPEX successfully flags variant calls

in potentially problematic gene families in primary tumors. Our

implementation, mapexr, fits cleanly into standard tumor variant-

calling pipelines and runs quickly on modern desktop computers.

MAPEX is thus a potentially useful new component for many tumor

variant-calling pipelines.
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Fig. 3. Effects of variant caller on analyzing xenograft samples with MAPEX.

(A–C) For all three calling algorithms and 34 xenograft samples (black dots),

the number of raw variants called was strongly dependent on estimated

mouse contamination. (D–F) After filtering with MAPEX, the number of calls

was independent of mouse contamination for all three callers. Lines show lin-

ear regressions and shading denotes 95% confidence intervals

Fig. 4. This Integrative Genomics Viewer (Thorvaldsdóttir et al., 2013) window

covers a portion of the human KRAS gene. The C>T variant is the classic

KRAS G12D mutation that appears in many PDAC tumors. The A>G and

T>C variants both result from aligning wild-type mouse reads to the human

sequence. When used with MuTect 1.1.1 or Varscan 2, MAPEX correctly

retains only the G12D variant. MuTect2, however, filters all three variants, so

the G12D variant cannot be retained

Table 2. Top genes for which MAPEX flagged variants as poten-

tially arising from paralogs

Gene Variants Samples with

flagged a flagged variant

ZNF814 15 15

CS 12 7

IGFN1 8 6

KMT2C 7 7

FRG1 6 6

LILRB3 6 6

MUC12 6 6

RGPD3 6 6

USP6 6 3

FCGBP 5 4

MUC5B 5 5

NBPF1 5 3

PRAMEF11 5 4

PRB4 5 3

RGPD8 5 4
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