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Abstract

Motivation: Studies, mostly from the operations/management literature, have shown that the rate

of human error increases with task complexity. What is not known is how many errors make it into

the published literature, given that they must slip by peer-review. By identifying paired, dependent

values within text for reported calculations of varying complexity, we can identify discrepancies,

quantify error rates and identify mitigating factors.

Results: We extracted statistical ratios from MEDLINE abstracts (hazard ratio, odds ratio, relative

risk), their 95% CIs, and their P-values. We re-calculated the ratios and P-values using the reported

CIs. For comparison, we also extracted percent–ratio pairs, one of the simplest calculation tasks.

Over 486 000 published values were found and analyzed for discrepancies, allowing for rounding

and significant figures. Per reported item, discrepancies were less frequent in percent–ratio calcula-

tions (2.7%) than in ratio–CI and P-value calculations (5.6–7.5%), and smaller discrepancies were

more frequent than large ones. Systematic discrepancies (multiple incorrect calculations of the

same type) were higher for more complex tasks (14.3%) than simple ones (6.7%). Discrepancy rates

decreased with increasing journal impact factor (JIF) and increasing number of authors, but with

diminishing returns and JIF accounting for most of the effect. Approximately 87% of the 81 937

extracted P-values were � 0.05.

Conclusion: Using a simple, yet accurate, approach to identifying paired values within text,

we offer the first quantitative evaluation of published error frequencies within these types of

calculations.

Contact: jonathan-wren@omrf.org or jdwren@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background

Errors are part of the scientific experience, if not the human experi-

ence, but are particularly undesirable when it comes to reported

findings in the published literature. Errors range in their severity

from the inconsequential (e.g. a spelling error that is easily recog-

nized as such) to those that affect the conclusions of a study (e.g. a

P-value suggesting a key result is significant when it is not). Some

may be detectable based upon the text, while others may not. This is

particularly relevant in light of the recent concern regarding scien-

tific reproducibility (Begley and Ioannidis, 2015; Collins and Tabak,

2014; Prinz et al., 2011). By understanding more about the types

and nature of errors that are published, and what factors affect the
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rate of error commission and entry into the literature, we can not

only identify ways to potentially mitigate them, but also identify

where peer-review efforts are best focused.

Previous studies, mostly from the literature on management and

operations research, have established that there is a baseline human

error rate in performing tasks, one that generally increases with the

complexity of the task, decreases with task-taker expertise, and

decreases in proportion to the ability and motivation to re-examine

work for errors (Allwood, 1984; Grudin, 1983; Mattson and Baars,

1992; Tsao, 1990; Wing and Baddeley, 1980). These studies have

also found that people are generally worse at detecting errors made

by others than they are in detecting their own errors, that errors of

commission (e.g. calculating something wrong) are easier to detect

than errors of omission (i.e. leaving important details out), and that

errors in logic are particularly hard to detect (e.g. applying the

wrong statistical test, or using the wrong variable in an otherwise

correct formula) (Allwood, 1984).

Thus, when authors compile a body of work for publication, we

would expect errors to occur at some baseline rate that is a function

of task complexity, author expertise and re-examination of the com-

piled results. But in the context of peer-review and scientific publish-

ing, there are several things not yet known. First, how does the

number of co-authors affect the error rate? On one hand, more

authors means more people potentially checking for errors, but it’s

also possible that coordinating content authored by multiple people

may increase the overall complexity of the task (e.g. a corrected error

may accidentally be changed back in later edits or authors may

assume someone else must be checking calculations and therefore not

look as closely). One prior study found no relationship between

P-value error rate and having two authors double-checking statistics,

but was field-specific (six psychology journals) and only examined

one versus two authors rather than the effects of the total number of

authors (Veldkamp et al., 2014). Second, how effective is peer-review

at catching errors? It is generally believed that journal impact factor

(JIF) correlates with the rigor of peer-review scrutiny, but this has not

been quantitatively established, nor is it known how effective it is.

There have been reports of journals with higher impact factors having

higher retraction rates, and it has been argued that this, in part may

be a consequence of the desire to publish the most striking results

(Fang and Casadevall, 2011), but this could also be due to increased

scrutiny. Third, do factors such as JIF or number of authors affect all

error rates equally or does their impact depend on the type of error?

Since expertise is a factor in detecting errors, it is possible that

reviewers in some fields may be better at catching some types of errors

and worse at others. Finally, what fraction of errors is systematic (i.e.

multiple incorrect calculations of the same nature)? Systematic errors

may be due to lack of expertise (e.g. not knowing how to perform a

calculation) or may be due to the way calculations were set up (e.g.

spreadsheets or programs referencing values encoded elsewhere rather

than entering them directly). Systematically incorrect calculations

would seem more likely to affect the overall conclusions of a study

than random errors. And a high systematic error rate would also sug-

gest that the scientific community would benefit from a standardized

solution/procedure designed to eliminate it.

In previous studies we found that �12% of URLs were mis-

spelled (Wren, 2004), and later �3% of Digital Object Identifiers

(Hennessey et al., 2014). Similarly, we found slightly <1% of pub-

lished National Clinical Trial IDs led to an error page (but were

unable to quantify how many may have been erroneous IDs that led

to the wrong clinical trial) (Wren, 2017). These errors were slightly

unexpected because we thought authors would likely ‘cut and paste’

such items, but it emphasizes that we do not know the source of the

errors nor can we assume that all authors will approach tasks the

same way. Similarly, other studies have found errors in reference

formatting (Aronsky et al., 2005) , and a recent large-scale auto-

mated survey of the psychology literature for P-value errors reported

in APA style found 12.9% of papers had a grossly inconsistent

P-value (error affecting significance at P � 0.05) (Nuijten et al.,

2015). Our first goal in this report was to quantify and contrast

error rates in very simple calculations versus more complex calcula-

tions. Second, we wanted to see how additional scrutinizing factors

such as rigor of peer-review and increasing number of authors per

paper affected the probability of an error being published. Finally,

we wanted to see whether error rates over time were relatively con-

stant or if technological advances might be impacting them, either

positively (e.g. increased availability and ease of software packages)

or negatively (e.g. by lack of standardization).

To answer these questions, we focused on MEDLINE abstracts

because they tend to contain the most important findings of a study

and, thus, errors in the abstract are more likely of potential concern.

We algorithmically scanned all MEDLINE abstracts to identify pub-

lished percent–ratio pairs [e.g. ‘7/10 (70%)’], which are simple calcula-

tions requiring minimal expertise and for which tools (e.g. calculators)

are ubiquitous. Complex calculations included the reporting of odds

ratios (OR), hazard ratio (HR) and relative risk (aka ‘risk ratio’) (RR)

estimates along with their 95% CI and P-values when provided (e.g.

OR ¼ 0.42, 95% CI ¼ 0.16–1.13, P < 0.05). We extracted these pairs

of reported values, recalculated them based on the full set of reported

numbers, then compared the recomputed values with the reported ones,

looking for discrepancies. We focused on extracting high-confidence

patterns for this study, prioritizing a low false-positive (FP) rate over

minimization of the false-negative (FN) rate. Although there are cer-

tainly more sophisticated methods that could be used to extract paired

values, we found regular expressions worked quite well, particularly for

the statistical ratios, and the primary focus of this study was on quanti-

fying the rate by which erroneous calculations make it into the pub-

lished literature, and the factors that influence the rate of published

errors.

We did not want to count as ‘discrepancies’ any instances that

could be attributable to rounding differences (up or down) in the recal-

culated values, so we based our calculations upon the number of

reported significant figures in the primary item (OR/HR/RR). We

allowed for rounding in the CI as well, calculating a range of possible

unrounded CI values, and only counted it as a discrepancy if it fell out-

side all possible rounding scenarios. We divided errors into three cate-

gories based on the log10 magnitude of discrepancy between the

reported and re-calculated values: Potentially minor (>1% and

<10%), potentially serious (�10% and <100%) and potentially egre-

gious errors (�100%). We also identified ‘boundary violations’, which

were those in which the ratio point estimator appeared outside of its

CI (which should never happen), as well as P-value errors in which the

conclusion of significance would be changed at a level of P < 0.05,

and P-values that were an order of magnitude off in the wrong direc-

tion (e.g. reported P¼ 0.001 but recalculated P¼ 0.01).

A list of all reported values and their recomputed counterparts

that were extracted, along with their associated PubMed IDs and sur-

rounding sentence context, are available as Supplementary Material

S1–S3, along with higher resolution versions of Figures 1–5.

2 Materials and methods

The MEDLINE database was downloaded from NCBI (http://www.

ncbi.nlm.nih.gov/) on April 26, 2016 in XML format and parsed to
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obtain the title, abstract, journal name and PubMed ID (PMID).

JIFs were obtained online for the year 2013. The 5-year JIF was

used, as it should better reflect long-term JIF than the regular 2-year

JIF, but 2-year JIF was used when the 5-year was not available.

A total of 82 747 JIFs could not be mapped for the 486 325 analyz-

able items extracted (17%). This is a limitation of the study, as

many of the journals that could not be mapped appeared to be low-

impact journals.

2.1 Algorithmic approach to find paired values for re-

calculation and comparison
Each MEDLINE abstract was scanned for ‘analyzable items’ (i.e.

percent–ratio pairs, OR/HR/RR with paired 95% CIs, and P-val-

ues). The error detection algorithm entailed a series of textual varia-

bility reduction steps (e.g. changing all instances of ‘less than’ to

‘<’), followed by a series of regular expressions to detect items of

interest. For example, words that begin with parenthetical state-

ments that include standard abbreviations [e.g. ‘(OR¼ )’or

‘(RR¼ ’)] or their full forms [e.g. ‘(Odds Ratio¼’)] were then

expanded to the next matching parenthesis, accounting for inter-

mediate separators, and checked for the presence of a 95% CI or

95% CL (confidence limit) within. Then, a series of iterative filters

reduced the widespread variability in reportable parameters [e.g.

replacing CI(95) with 95% CI]. Additional heuristics were applied

to screen out FPs. The scripts used to identify these values are at

https://github.com/jdwren/ASEC and the sentence context, values,

Fig. 1. Comparison of reported versus recalculated percent–ratio pairs in

log10 scale. A density plot of how many reported observations of each value

is shown at bottom

Fig. 2. Statistical ratio (OR, HR and RR) scatterplot of reported versus re-calcu-

lated (based upon their reported CI) values in log10 scale. Shown at bottom is

a density plot reflecting the number of observations within that range of

reported values

Fig. 3. Histogram of the discrepancies identified (y-axis cutoff at 3000 to better

show the tail of the distribution)

Fig. 4. Comparison of reported P-values versus their recalculated values,

based upon the reported 95% CIs. Red asterisks indicate instances where

there was a discrepancy between the reported and recalculated ratio–CI, sug-

gesting potential causality for a discrepancy. The density histogram shows

the bias towards the reporting of low P-values, as 87% of all reported P-values

were P � 0.05. The histogram was truncated at 12 000 (36 420 reported P-val-

ues were �0.01). A vertical cluster of values can be seen where the reported

P-value ¼ 0.05
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and recalculations themselves are provided as supplementary

information.

2.2 Estimating the algorithmic error rate of extracting

reported values
To estimate the algorithm’s FP rate, we first took a random sample

of 500 extracted ratio–CI pairs and examined them manually. In

this subset, there were no errors in extracting the ratio or the CI

pairs (100% precision). There were 144 P-values within this subset,

2 not detected by the algorithm (FN) and 3 that had incorrect values

extracted (which count as both FP and FN), giving P-value extrac-

tion a precision of 98%. Similarly, for 500 percent–ratio pairs, all

values were extracted accurately (100% precision). It’s important to

caution that because errors are sparse, this precision estimate is

approximate and does not equate to 100% precision in identifying

discrepancies. For example, if literature discrepancies occur at a rate

of 2% and the algorithm has a 0.5% FP rate, then �20% (0.5%/

2.5%) of the identified discrepancies will be FP. It is for this reason

we chose to emphasize precision over recall and have also manually

looked over all detected discrepancies �10% and removed errors we

were able to spot before we began analysis. Within the 200 ratio–CI

pairs with the highest discrepancies we only found 10 erroneously

extracted values (5%). Thus, the per-item precision is close to

100%, and the per error precision is �95%.

Estimating the algorithmic FN rate is more difficult since ratio–

CI reports are relatively sparse in the literature as a whole.

However, they are more prevalent in the epidemiology literature, so

we output a subset of 100 abstracts from the American Journal of

Epidemiology and manually identified all references to HR, OR and

RR. We did not count references to ‘adjusted’ ratios since we did

not set out to extract those. Within the 100 abstracts manually

examined, we found 94 ratio–CI pairs, and the algorithm identified

44 of them (47% recall). Of the 50 ratio–CI pairs not identified, 30

(60%) were instances where multiple pairs were reported as a list

(e.g. ‘ORs ¼ 4.3, 5.1, 6.2 and CIs¼. . .’). A limitation of this evalua-

tion method is that some journals may have or encourage specific

styles of reporting ratio–CI pairs, which may in turn influence algo-

rithmic accuracy. For percent–division pairs, the algorithm identi-

fied 18/47 (38% recall) of the manually identified instances.

2.3 Detecting percent–ratio errors
Ratios are often paired with percents [e.g. ‘. . . 11/20 (55%) of our

patients. . .’] immediately proximal to each other in text. Correct

identification of percent–ratio patterns had the largest error rate due

to ratio–percent-like terms that were not actually numerator–

denominator pairs (e.g. tumor grades, genotypes/ribotypes, visual

acuity changes, and HPV types). We found looking for papers with

every reported item detected as erroneous was an effective way to

identify such exceptions and screen them out before the final run.

We flagged such keywords to subject these instances to higher scru-

tiny, but there were simply too many instances to investigate all esti-

mated errors in detail. Thus, in our list, it is possible some patterns

may be counted as percent–ratio errors, but may be a field-specific

means of denoting something else and we did not catch them. We

also did not try to infer meaning. For example, if an author wrote

‘the sequences were 99% (1/100) similar’, it could be reasonably

inferred that the 1/100 referred to the mismatches identified and not

the similarity. However, such instances were rare and the general

rule by far is that ratio–percent patterns like this are paired values,

so it would be counted as a published error.

If the words preceding the ratio–percent pair indicated that it

was greater than (e.g. ‘over’, ‘more than’) or less than (e.g. ‘under’,

‘less than’), then we excluded that pattern from analysis under the

presumption that it was not intended to be considered an exact cal-

culation. Although most instances of these phrases did not have dis-

crepancies, which suggest the authors were merely indicating the

number was rounded, we chose to err on the side of caution.

For ratio–percent pairs, one source of FPs that was extremely dif-

ficult to control for were anaphora-like references. That is, instances

where the ratio preceding a percent is a subset of a larger number

that was mentioned earlier in the sentence or abstract. For example,

‘We recruited 50 patients, but had to exclude ten of them, 6/10

(12%) because of prior illness and 4/10 (8%) because they were oth-

erwise ineligible’—in this case the 12 and 8% refer to the 50

patients, not the ratios immediately preceding them. Because ana-

phora resolution is still a computationally difficult task, requires a

different approach and cannot be properly benchmarked without a

gold standard, and is relatively rare, we chose to estimate the num-

ber of FPs caused by anaphora rather than try to correct it.

2.4 Extracting ratio–CI pairs and associated values from

text
OR, RR and HR reports most frequently followed the format ‘(R ¼ X,

95% CI ¼ L-U, P < C)’, where R is HR/RR/OR, X is the value for R,

L is the lower CI boundary, U is the upper CI boundary, and C is the

P-value (when given, which was �33% of the time). The delimiters

used to separate the values frequently varied, as did the order of

the variables. Commas within numbers containing less than four

digits were presumed to be decimals for the purpose of calculation

(e.g. ‘CI¼ 4, 6�7, 8’).

Point estimates of OR, HR and RR were re-calculated by log-

transforming the reported two-sided 95% CI limits, then exponenti-

ating the middle value. Standard statistical procedures for estimating

such ratios (e.g. logistic regression) perform linearly into the log

space, hence correct ratios should be equidistant from each log-

transformed boundary of the two-sided CI (roughly 2 SD in the case

of 95% CIs). As such, we relied upon the two reported CI limits for

Fig. 5. Reported versus re-calculated P-values shown on a log10 scale with

density histogram at bottom. The most dominant vertical lines match stand-

ard significance thresholds used in reporting P-values [e.g. �1.3 ¼ log(0.05)

and �2 ¼ log(0.01)]
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our calculations, assuming they were computed in log space and

transformed back through exponentiation, hence positive. A number

of reports had incomplete information such as no ratio being given

despite the two CIs, only one CI limit provided (although surround-

ing context suggested two-sided analysis). Some had mathematically

incorrect values such as the CI limits being negative, suggesting

either they were log-transformed but not explicitly declared as such,

or a statistical procedure unsuitable for estimating ratios (e.g. stand-

ard linear regression) was used in estimation. These types of occur-

rences were considered either formatting errors or errors of

omission and were not included in our estimates of errors of com-

mission based upon reported value recalculations.

2.5 Re-calculation of reported ratio–CI values
Assuming standard statistical practices for estimating ratio CIs (OR,

RR and HR), the reported ratio should be equidistant from each CI

limit in log space. That is, it should equal the geometric mean of the

CI limits, the recalculated value X:

X ¼ e

ln Lð Þþln Uð Þ
2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L �U

p
(1.1)

Where L and U are the lower and upper CI boundaries, respectively.

Discrepancies between reported (R) and re-calculated (X) values

were assessed by computing the relative difference:

diff ¼ X� Rj j
minðX;RÞ

� �
(1.2)

diff ¼ ejlnðX=RÞj � 1 (1.3)

Formula (1.2) is equivalent to taking the absolute log ratio and re-

exponentiating it back to a percent value [formula (1.3)], to make

differences symmetric. With the exception of P-values, discrepancies

are presented as percent differences because they are more intuitive

to interpret than log values.

Difference values were furthermore only counted if the calculated

value fell outside the buffer range allowed by rounding the CI both up

and down to the next significant digit. For example, if the reported CI

was 1.1–3.1, then the ratio value was recalculated using a CI of 1.05–

3.05 (the lowest it could have been prior to rounding up) and maximum

of 1.15–3.15 (the highest it could have been prior to rounding down).

Only when the reported ratio fell outside the range between the lowest

and highest recalculated ratio values was it counted as a discrepancy

and was presumed to be the lesser of the two rounding possibilities.

2.6 Recalculation of P-values for ratio–CI pairs
We recalculated P-values based upon the CIs, relying on the duality

between the two-sided CI region and the accepted region of a two-

sided test with the same level of confidence. Again, we assumed the

reported figures were the result of standard practices in CI deriva-

tion and testing for ratios such as ORs: More specifically we

assumed the estimation uses the log-transformed space, the reference

value of interest to compare a ratio against is 1, and the reported

P-value is the output of a two-sided test using this reference value as

the null hypothesis and relying on the asymptotic normality of the

log ratio estimator. Some straightforward symbol manipulation in

this context yields the P-value recalculation formula:

Pval ¼ 2 �U �q � log U þ log Lj j
log U � log L

� �
(2.1)

Where [L, U] are lower and upper reported CI limits for the ratio, A
is the Gaussian cumulative distribution function and q is the (1–a/2)

Gaussian quantile where a is the CI confidence level (e.g. q ¼ 1.96

for two-sided 95% CI). Even without a formula, there are instances

were discrepancies between reported P-values and CI can be spotted

right away, without any math, during the paper review: e.g. if the P-

value shows significance at level a then the 1�a CI should not

include the reference value 1 (and the opposite). Note the log ratio

estimator normality requires large samples, which is often the case

in clinical and genetic studies (e.g. GWAS), and we found ratios

were commonly associated with these contexts. In any case, using

the asymptotic normality assumption for small to moderate samples

will lead to optimistic estimation of significance levels, and may

underestimate the rate of erroneously reporting significant results.

For simplicity, we choose to ignore potential corrections for

small samples such as using exact versions of the estimators or speci-

alized tests for contingency tables (e.g. Fisher). Since the exact and

the asymptotic tests should give similar results under ordinary situa-

tions, we compensated by increasing the difference threshold

between the reported and recomputed P-value considered to be an

error.

2.7 Determination of discrepancies that constitute an

‘error’ in P-values
One type of P-value error is when the evaluation of significance at

P � 0.05 is incorrect, whether reported as non-significant and re-

calculated as significant or vice-versa. Magnitude discrepancies in

P-values, in terms of whether or not it is potentially concerning, is

probably best modeled in log terms, particularly since most tend

to be very small numbers. For example, the difference between

P ¼ 0.001 and 0.002 might seem large when expressed as a percent,

but would not likely be of concern in terms of how it might affect

one’s evaluation of the significance. But an order of magnitude dif-

ference between a reported P ¼ 0.001 and re-calculated P ¼ 0.01

suggests that the level of confidence has been misrepresented even if

the significance at P < 0.05 did not change. However, because there

is also some point where order of magnitude differences also do

not change confidence (e.g. P < 1 � 10�20 versus P < 1 � 10�19),

we limit order of magnitude analyses to values between P ¼ 1 and

P � 0.0001. For the ratio–CI pairs extracted, this range represents

about 98% of all reported P-values. Furthermore, under an assump-

tion similar to rounding, P-value discrepancies are only counted as

discrepancies if the recalculated value is higher when the authors

report (P < X or P � X). If it is lower, it is presumed the authors

reported a ‘capped’ P-value to reflect precision limitations and all

re-calculated values lower than this are counted as zero discrepancy.

Similarly, if the authors report (P > X or P � X) and the re-

calculated value is higher, it is not counted as a discrepancy.

However, when the P-value is reported as exact (P ¼ X), all discrep-

ancies are counted.

After extracting P-values, we found 15 were invalid; 8 were >1

and 7 <0, most of which appeared to be typos (e.g. the re-calculated

P-values for those < 0 matched their absolute value). A total of 704

were exactly zero, which goes against standard P-value reporting

conventions, but many had their decimal points carried out further

(e.g. P ¼ 0.000), suggesting a convention whereby the authors were

indicating that the P-value was effectively zero, and that the preci-

sion of the estimate corresponded to the number of zeros after the

decimal. So, in these cases, for analysis of discrepancies, we added a

5 after the final zero (e.g. P < 0.000 becomes P < 0.0005), and

92.7% of the re-calculated P-values were equal to or less than this

modified number, suggesting it is a reasonable approximation. Also,

2308 ratios had one CI boundary exactly equal to 1, which suggests
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the possibility the significance calculation could have been with

reference to one side of the interval only. Note that because a CI is

used to illustrate the precision of the effect size estimate and not

directly for testing, such reporting would be poor practice. Even

from the point of view of constructing onesided CIs, since the inter-

val limit is either 0 or infinity, replacing this with 1 will substantially

reduce the interval confidence level.

For all values, when neither CI limit equals 1, the two-sided

P-value is closer to the reported value 91% of the time. However, in

cases with one CI limit equal 1, the two-sided recomputed P-value

was closer than the one-sided recomputed P-value, to the reported

P-value 63% of the time. So for the CI ¼ 1 cases, if the one-sided

recalculated P-value was closer to the reported value, we assumed it

was a one-sided test and used the one-sided P-value for discrepancy

calculations. But, in these cases, the assumption of the ratio being

equidistant from both the CI boundaries in log space is no longer

valid, and we lack part of the necessary information for recomputing

the true value of the ratio, so these instances were removed from the

analysis of discrepancies between reported and recomputed ratios.

2.8 Identifying systematic errors
Errors could be the result of a mistake not easily attributed to any

single cause, or they could be systematic in nature. For example, a

problem either in the setup of calculations or the expertise of the

authors may lend itself to repeated errors. Modeling the error occur-

rence by a Poisson distribution, for each abstract we calculated the

P-value of finding at least as many errors as observed, considering

the total number of all analyzable items reported, just by random

chance. Then from it, adjusting for multiple testing, we computed

the false discovery rate (FDR) over all abstracts reporting items of

the same type.

We estimated systematic errors by summing the true discovery

rate (¼1�FDR) over all abstracts with more than one analyzable

item, yielding an approximation of how many abstracts had system-

atic errors, then dividing by the number of abstracts with more than

one analyzable item. Note that, considering the rather low overall

error rate occurrence, abstracts with single or no reported errors

will end up having a FDR ¼ 1 hence would not contribute to the

sum anyway, matching the common sense expectation that errors in

such abstracts are not systematic.

3 Results

A total of 486 318 analyzable items were identified within and

extracted from 196 278 unique abstracts across 5652 journals.

Figure 1 shows discrepancies between reported and re-calculated

percent–ratio pairs, while Figure 2 gives an overview of the compari-

sons between all reported and recalculated statistical ratio–CI pairs,

scaled to their log10 values.

In Figures 1 and 2, the main diagonal reflects instances where

the recalculated values matched the reported (published) values.

This is an important control, as one would expect errors to be infre-

quent relative to correct calculations. Most instances (92.4%) had a

discrepancy of 1% or less. Certain types of errors are also evident in

these plots—seen as lines that run both parallel and perpendicular to

the main line. Recalculated values offset by a factor of 10 (61.0 in

the log scale) parallel to the main diagonal are errors whereby a dec-

imal point was either omitted or misplaced in the ratio. The parallel

lines 60.5 in Figure 2 are most likely attributable to decimal omis-

sion or misplacement in one of the CIs. And the perpendicular line

represents instances whereby the numerator and denominator were

swapped. In at least one identified decimal error (PMID 25034507),

there is what appears to be a note from an author on the manuscript

that apparently made it into the published version by accident

whereby they ask ‘Is 270 correct or should it be 2.70’ (it should have

been 2.70). Figure 3 shows the distribution of discrepancies found in

ratio calculations, illustrating that smaller errors are more likely to

be published than large ones, although a spike in those �100% can

be seen.

We find that discrepancies in items that require more proficiency

to accurately calculate and report (ratio–CI pairs) were more frequent

in the published literature than errors that required minimal profi-

ciency (percent–ratio pairs). Table 1 summarizes the error rates for

each calculation type by magnitude. Large discrepancies were less fre-

quent in all categories than smaller discrepancies. Interestingly,

despite the calculation of 95% CIs for HR, RR and OR entailing

essentially the same procedure, their error rates differed. Abstracts

without discrepancies tended to have significantly more authors and

were published in significantly higher impact journals.

3.1 Reported versus recalculated P-values
A total of 81 937 P-values were extracted along with their ratio–CI

pairs. The reported CIs were used to recalculate P-values using for-

mula (2.1). Figure 4 shows a good general match between our re-

calculated P-values and the reported P-values, focusing on the range

0–1. We found a total of 1, 179 (1.44%) re-calculated P-values

would alter the conclusion of statistical significance at a cutoff of

P � 0.05. The errors were slightly biased towards reported P-values

being significant and the recalculated not significant (55%) as

opposed to those reported not significant and re-calculated signifi-

cant (45%). Interestingly, 34% of items with P-values erroneously

reported as significant had ratio–CI errors versus only 15% of items

with P-values erroneously reported as non-significant, which can be

Table 1. Reported values versus recalculated values across order-

of-magnitude discrepancy ranges for each of the item types

analyzed

Reported versus re-

calculated values

Discrepancy rates for:

pct-ratio HR RR OR

�100% discrepancy 0.3% 0.4% 0.4% 0.8%

�10% discrepancy 1.2% 2.4% 2.9% 3.5%

�1% discrepancy 2.7% 5.6% 6.2% 7.5%

P-value errors — 3.9% 5.8% 6.0%

Ratio outside CI — 0.4% 0.4% 0.6%

‘Significant errors’a 1.2% 4.0% 4.4% 5.0%

Average number of

authors, errors

versus no errorsb

2.6E-13 1.6E-05 6.4E-04 2.1E-09

Average JIF, errors

versus no errorsb

8.6E-08 2.6E-32 7.8E-06 2.1E-38

Analyzable items

found:

241 568 43 467 32 768 168 515

Avg items/abstract: 2.46 2.15 2.31 2.49

Note: ‘Ratio outside CI’ refers to instances in which the reported ratio is

not within the 95% CI boundaries, which should never happen. ‘P-value

errors’ include both those that flip significance at P � 0.05 and those an order

of magnitude off in the wrong direction.

Bolded items are to draw attention to the “bottom line” error rates.
aIncludes items with discrepancies �10%, ratios outside the CIs, and/or

P-value errors.
bt-test P-values for comparing the means of the number of authors and JIFs

between papers with �10% discrepancy versus those with no discrepancy.
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visualized as a difference in the density of red dots, in the 0–0.05

narrow bands adjacent to the axes, in Figure 4. This suggests that

authors may be less likely to question the validity of a result (i.e.

double-check the calculations) when it reaches statistical signifi-

cance than when it does not.

Figure 5 shows the same analysis, but in log10 scale, where cer-

tain features become evident (high-resolution figures are available in

Supplementary Material S3). First, the tendency to round leads to a

clustering of values within certain ranges. Second, the horizontal

line of recalculated P-values that cluster at P ¼ 0.05 are mostly due

to cases in which one CI limit equaled 1, the null reference ratio

(hence the recalculated two-sided testing P-value would implicitly

equal 1–CI). Some of these cases might have been one-sided testing

of reported CIs, whereby using 1 as CI limit implies a lack of interest

in testing significance in that direction. However, if one-sided testing

were frequent, we would expect to see a diagonal line parallel to the

main one, but offset by 0.3, which would show the cases in which

our recalculations (that presume a two-sided test was used) were

exactly twice as high as the reported results. Since no such trend is

evident, this suggests our assumption was valid.

In our analysis, we also characterize reported P-values off by at

least one order of magnitude in the wrong direction (see Section 2).

These are instances whereby the significance of the results may not

change, but it could be argued the level of confidence was misrepre-

sented or miscalculated. Rounding log10 values to the nearest tenth

of a decimal (e.g. 0.95 becomes 1.0), we find 4.6% of reported

P-values are off by at least one order of magnitude, and 1.0% are

off by five or more orders of magnitude in the wrong direction. For

further analysis, we group both significance-flipping errors (at P �
0.05) and order of magnitude errors together into one ‘P-value

error’ category.

3.2 Higher JIF and number of authors per paper

inversely correlate with error rate
We used logistic regression to model the error rate variation in each

item type based on the publishing journal’s impact factor (JIF) and

number of authors respectively. Log odds ratio coefficients and their

P-value for significance, resulting from fitting each of the two fac-

tors impact on error rate, one at a time, are shown in Supplementary

Table S1. We find that papers published in journals with higher JIFs

and with more authors tend to have significantly lower rates of pub-

lished errors. However, JIF and number of authors per paper are not

necessarily independent, so we also modeled joint dependence. We

still see a strong JIF effect when conditioning on number of authors,

but the error-reducing effect of author number only remains signifi-

cant for percent–ratio and P-value calculations when conditioning

on JIF. This suggests the effect of the number of authors on P-value

error rates is largely explained by the tendency for papers with

larger number of authors to be published in higher impact journals.

Curves showing error rate dependence on the two factors from

this model are shown in Supplementary Figures S1A and S2A. When

predicting the rate of reported errors based upon the JIF, we observe

a fairly sharp decrease at lower JIF, which then begins to level off

(Supplementary Fig. S1), suggesting a diminishing return rate on

error reduction as JIF increases. Interestingly, the magnitude of the

effect JIF has on error rates is similar for most error types (except

RR). We find a similar trend for the effect of the number of authors

per paper (Supplementary Fig. S2) that error rate inversely correlates

with the number of authors per paper for all error types.

3.3 Error rates over the years
Error rate dependence on the year of publication per error type,

modeled with logistic regression, is shown in Supplementary Figure

S3. We find percent–ratio errors did not significantly change with

time (P ¼ 0.09), HR-CI errors are on the rise (P ¼ 0.02), while the

other error types are on the decline (RR–CI, P ¼ 6.9E-10; OR–CI,

P ¼ 4.5E-10; and P-value errors, P ¼ 1.3E-06). Similar patterns of

error variation with time are seen after conditioning on number of

authors and JIF (Supplementary Fig. S3B), suggesting the improve-

ment in error filtering is attributed to something other than author

inflation or changes in JIF. HR errors are a notable exception, where

the significance of error rate rise with time falls from very significant

(P ¼ 0.0001) to almost not significant (P ¼ 0.052) after condition-

ing. An explanation for this might be that papers dealing with HR

calculation disproportionately appeared in higher-impact journals

when HRs first started appearing in MEDLINE, and have since dif-

fused into more mainstream journals.

3.4 Abstracts with multiple errors
We focus on calculating error rates on a per-item basis because the

per-abstract and per-paper error rates (E) can easily be estimated by

E ¼ n(1�R) where n is the number of reported items of a certain type

and R is their per-item error rate. However, this assumes errors are

independent of each other, and some errors may be systematic. For

example, if the authors set up a general calculation procedure in a

spreadsheet incorrectly such that the wrong numerator/denominator

was used in all calculations, that would propagate errors to most or

all of the reported results that relied upon it. Calculating P-values

and FDRs for abstracts with multiple reportable items (see Section

2), we estimated what fraction of errors might be systematic.

Table 2 shows the results. Abstracts reporting percent–ratio pairs

had the lowest fraction of systematic errors, which is expected since

the complexity of calculations is low. Interestingly, RR had the high-

est fraction of abstracts with systematic errors (20.2%).

4 Discussion

We find that the probability an error will make it into the published

literature correlates with the complexity of the calculations and is

mitigated by increasing JIF of the publishing journal and the number

of authors per paper. Abstracts tend to report multiple calculations

of the same mathematical/statistical nature, and papers even more,

thus the odds of an error in each paper is proportional to the number

of calculations of each type. It’s not clear whether the inverse corre-

lation we see between JIF and error rates reflects the effect of

increasingly rigorous peer-review, or higher impact journals tend to

receive papers with fewer errors. If the correlation is primarily due

Table 2. Estimation of the fraction of abstracts that contain system-

atic errors

Category %–ratio P-value HR OR RR

�1 item 58 788 21 367 11 645 42 549 8318

�1 errors 2042 2533 601 3507 511

% with �1 errors 3.5% 11.9% 5.2% 8.2% 6.1%

No. of systematic errs 137 310 87 525 103

% systematic errors 6.7% 12.2% 14.5% 15.0% 20.2%

Note: The numbers shown are for the subset of abstracts that contained

more than one of each item type analyzed.

Bolded items are to draw attention to the “bottom line” error rates.
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to increasingly rigorous peer-review, then the error rates associated

with the lowest JIF journals should best approximate the baseline

error rate for each analyzed item type (i.e. error rate prior to peer-

review). One limitation of the study is that 17% of the journal

names did not map to JIFs. We also find that the more authors per

paper, the less likely an error of the types analyzed will be published.

Most studies to date have been concerned about the negative

impacts of ‘author inflation’, but ours suggests that the upside is a

reduced probability of errors.

Initially, we did not expect that error rates would significantly differ

in the 95% CIs for OR, HR and RRs, because they essentially involve

the same procedure and generally appear in similar medical journals

and epidemiological studies. However, we cannot measure author error

rates directly, only errors published after peer-review. And, as we have

seen, each analyzed item type varied in the average number of authors

per paper and average JIF in which it appears, so this may explain the

differences in error rates for similar statistical procedures. Similarly, we

were somewhat surprised to see some error rates changing with time,

but this may be in part explained by increased availability of software

to perform ratio–CI and P-value calculations.

The distribution in the magnitude of errors also shows that big-

ger errors are more likely to be noticed by either authors or

reviewers than smaller errors. It’s not clear at what point one might

question the overall conclusions of a paper based upon a discrep-

ancy, but the larger the discrepancy, the more potentially concerning

it is. And the fact that these discrepancies were found within the

abstract, which usually recapitulates the most relevant findings of

each paper, suggests they are more likely to be potentially problem-

atic than had they been found in the full-text.

At least 1179 (1.44%) of recalculated P-values indicated that the

assessment of statistical significance at P � 0.05 was incorrect, at

least based upon the values reported. The 12.9% error rate in P-val-

ues reported by Nuijten et al. (2015) was based on a per-full-text

basis with an average of 11 P-values found per paper, whereas ours

is on a per-item basis. If we presume our abstract-based per-item

error rate of 1.44% extends to the probability of finding one errone-

ous item in the full paper, and that MEDLINE abstracts reporting at

least one P-value also have an average of 11 per paper; then we

would expect �14.7% of MEDLINE papers containing P-values to

have one such error (0.985611 ¼ 0.853). Thus, our estimates are

quite consistent with their findings, and support the notion that

there is simply a base error rate associated with each task that

humans perform in constructing a reportable item.

The source of the errors is unknown, but in cases where recalcu-

lated values differed by a factor of 10, the obvious conclusion is that a

decimal place was somehow forgotten or misplaced. In a minority of

cases where the abstract is obtained through optical character recogni-

tion (OCR), the numbers may not be correctly recognized. For exam-

ple, in PMID 3625970 (published 1987), it reads ‘896% (25/29

infants)’ in the MEDLINE abstract, but the scanned document online

shows it actually reads ‘86% (25/29 infants)’. The rate of OCR error

is unknown, but we don’t expect this would be a major confounding

factor for this study. Electronic submission became widespread around

1997 and prior to this date, the number of errors �1% was 13.6%

whereas it was 15% overall, suggesting that this period where OCR

was more common does not have an appreciably higher error rate.

We have conducted this study using relatively conservative defi-

nitions of what constitutes a ‘discrepancy’, preferring to give authors

the benefit of the doubt, particularly in cases where knowledgeable

readers would understand that other factors (e.g. rounding, sig figs)

might influence the precision of reported numbers and would be

able to discern that a low-precision estimate on the threshold of

significance is more problematic that one that is highly significant.

However, it does lead to underestimation of the real error rate if

adherence to field standards is the criteria for defining discrepancy.

For example, 285 instances had a lower CI limit of exactly zero,

which we assume is due to significant figure rounding, but it cannot

be exactly zero. As a consequence, discrepancies within these items

are generally higher (12.3 versus 7.0%) due to loss of precision.

By identifying paired values, we were able to reverse-engineer

the calculations to identify potential discrepancies. With the excep-

tion of decimal discrepancies, we cannot say which of the paired val-

ues was incorrect. But having some way to double-check reported

values is important for scientific reproducibility. Along those lines,

this study focused on errors of commission (i.e. incorrect calcula-

tions) and not errors of omission (i.e. leaving out relevant details),

and we did see many instances where ratio reports were missing key

values, such as only reporting one CI, not mentioning the percentile

of the CI, and not reporting the CI at all. And although one CI could

be inferred from the other and 95% could be reasonably assumed as

the default CI, this reduces the rigor and fidelity of attempts to

reproduce the calculations.

4 Conclusion

This study is the first to estimate MEDLINE-wide rates of published

errors within these five item types (HR, OR, RR, percent-division

and P-values) within abstracts. We did not establish full-text error

rates, but expect them to be similar, possibly even slightly higher

because one might presume more attention is paid to the abstract.

Because more items are reported in full-text papers, the per-paper

error rate is expected to be significantly higher than the per-item

rate reported here, presuming the paper contains such items.

The difficulty of a task is not always immediately obvious, but it

correlates strongly with the probability that an error will be made, and

it’s reasonable to expect that this phenomenon likely extends to all

reportable item types that process raw data through procedures and

calculations, not just the ones we analyzed here. It’s true for experi-

mental procedures as well, but positive and negative controls mitigate

the problem there, whereas statistical reporting does not normally

include control calculations. We suggest that most of these errors are

simply probabilistic and—to some degree—inevitable. However, as

we show here, they can be detected algorithmically, which is fast and

cost-effective and could be done prior to publication. Thus, there is an

anticipated benefit to the continued development and refinement of

automated methods of detecting such errors. We find straightforward

regular expressions are quite accurate in detecting statistical ratios

reports within text, which tend to have fairly standardized reporting

structures, but are not as well-suited to identifying percent–ratio

errors, where there is substantially more variation.

Minimizing published errors is a priority, not just to ensure pub-

lic confidence in science and protect the integrity of our own reports,

but because we rely upon published findings to establish facts that

often serve as the foundation for our own hypotheses, experiments

and conclusions. Ultimately, science in general will benefit from a

better understanding of base error rates for common tasks humans

perform when constructing reportable items, as this will help us

understand where to best focus our efforts.
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