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Abstract
Structural neuroimaging measures based on magnetic resonance imaging have been at the forefront of imaging genetics.
Global efforts to ensure homogeneity of measurements across study sites have enabled large-scale imaging genetic projects,
accumulating nearly 50K samples for genome-wide association studies (GWAS). However, not many novel genetic variants
have been identified by these GWAS, despite the high heritability of structural neuroimaging measures. Here, we discuss the
limitations of using heritability as a guidance for assessing statistical power of GWAS, and highlight the importance of discov-
erability—which is the power to detect genetic variants for a given phenotype depending on its unique genomic architecture
and GWAS sample size. Further, we present newly developed methods that boost genetic discovery in imaging genetics. By
redefining imaging measures independent of traditional anatomical conventions, it is possible to improve discoverability, en-
abling identification of more genetic effects. Moreover, by leveraging enrichment priors from genomic annotations and inde-
pendent GWAS of pleiotropic traits, we can better characterize effect size distributions, and identify reliable and replicable
loci associated with structural neuroimaging measures. Statistical tools leveraging novel insights into the genetic discover-
ability of human traits, promises to accelerate the identification of genetic underpinnings underlying brain structural
variation.

Introduction
Identifying the genetic underpinning of structural variation in
the human brain is the first step in elucidating the complex
dynamic processes of both normal and abnormal brain

development. Enabled by a global effort to standardize magnetic
resonance image (MRI) acquisition, automatic image processing
and quantification of MRI measures, the research community
has now amassed sufficient neuroimaging data to search
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genome-wide for the genetic variants associated with neuroim-
aging measures. Large-scale projects, such as PING (1), IMAGEN
(2), ENIGMA (3–5), UK Biobank Imaging Study (6) and the re-
cently launched ABCD (7), have collectively accumulated nearly
50K structural MRI samples, in the hope of finding common ge-
netic loci that account for variation in human brain phenotypes.
The confluence of imaging and genetics is thus poised to pro-
vide important insights into genetic influences on in vivo human
brain variability.

Despite this global effort, however, few genetic loci have
been found to be consistently associated with neuroimaging
measures (3–5). This was unanticipated by the imaging commu-
nity. Genes appear to explain a large proportion of the variabil-
ity in structural neuroimaging measures, i.e. they exhibit high
heritability (8–10), while the number of causal loci is presumably
fewer than complex diagnostic traits, such as schizophrenia
(11). Given that the power of detecting novel loci using genome-
wide association studies (GWAS) is the product of sample size,
effect size distribution and number of causal loci (12), GWAS of
structural neuroimaging measures were expected to identify
more novel genetic loci than studies of complex diagnostic
traits (13). The apparent lack of power for identifying significant
loci in imaging genetics has stimulated debate about whether
neuroimaging measures as phenotypes are closer to the biologi-
cal processes than complex diagnostic traits (3), prompting re-
consideration of the genetic architectures of structural
neuroimaging measures to guide the development of better an-
alytical tools.

It is now well appreciated in quantitative genetics that high
heritability does not guarantee power to detect novel loci in
GWAS, as the effect size distribution of causal loci can vary
greatly across traits with similar heritability (12). To emphasize
the need for a statistical framework to improve discovery of
novel genetic loci in imaging genetics, we used the term discov-
erability, to represent the number of genetic variants that can be
consistently and reproducibly detected with GWAS for a given
phenotype. In this review, we discuss this concept for imaging
genetics and demonstrate methods that have been developed
to improve the discoverability in GWAS of structural imaging
measures.

This review is structured as following. We briefly revisit the
heritability of structural imaging measures and discuss why the
concept of discoverability is important. We then focus our review
on two new approaches. First, we demonstrate that by leverag-
ing enrichment priors from either genic annotations or other
GWAS we can identify single nucleotide polymorphisms (SNPs)
robustly associated with structural imaging measures that were
below the traditional significance threshold in GWAS. Then we
show that by re-defining imaging measures, we can take biolog-
ical processes into account and, thus, improve the discoverabil-
ity of neuroimaging GWAS.

Heritability Does Not Predict Discoverability
From twin/family studies, the variance explained by genetic ef-
fects in structural neuroimaging measures, such as volume of
hippocampus, volume of putamen, area of cortical surface and
thickness of cortical ribbon, is estimated to be from 40 to 80%
(8,9,14–17). The SNP-based heritability of these structural neuro-
imaging measures, estimated based on genotyped genetic rela-
tionships among unrelated individuals, is also significant, up to
54% for subcortical volumes (18) and 45% for cortical surface
area (19). Though heritability estimates from SNP-based meth-
ods are generally less than from the twin/family designs, the

patterns are consistent across these analytic strategies. For ex-
ample, intra-cranial volume has the highest heritability in twin
studies and its SNP-based heritability is also comparable to
some highly heritable complex traits, such as height and
schizophrenia (20,21). The heritability estimates mentioned
above are summarized in Figure 1A.

Mirroring earlier results with large scale GWAS of other hu-
man complex traits (22), high heritability has not consistently
been associated with detection of a large number of novel loci
for imaging phenotypes. In an analysis of 37 000 individuals,
ENIGMA uncovered only one genetic locus contributing to varia-
tion in intracranial volume based on T1 images (15,23). In con-
trast, three to five predictive genetic loci were identified and
replicated (15,24) for neuroimaging measures with compatible
or lower heritability estimates, such as putamen (mean SNP
heritability: 0.36) and hippocampus (mean SNP heritability:
0.27). Figure 1B demonstrates the effect size distributions from
the ENIGMA GWAS, using quantile–quantile plots. A flex up-
ward of the tail distribution of effect sizes indicates that large
effect size SNPs occurred more often than expected by chance,
which is apparent for the hippocampus and putamen GWAS
(Fig. 1B). Although many factors can contribute to variability in
the success of GWAS to detect specific causal loci, such as mea-
surement error, this unexpected pattern across measures high-
lights the need to develop alternatives to heritability estimates
for assessing the power to detect novel genetic loci. This is par-
ticularly important for imaging genetics, as the inherent high
dimensionality of neuroimaging measures imposes a large toll
on power associated with multiple comparisons. Blindly search-
ing for causal loci for all possible neuroimaging measures with-
out proper selection criteria could reduce the chance of
identifying novel loci contributing to brain variation and in-
crease false positive rates. Thus we have emphasized the ad-
vantage of assessing the power to detect novel loci, or
discoverability of genetic factors, over heritability per se, for se-
lecting imaging phenotypes.

Boosting SNP Discovery in Imaging Genetics
When sample size is fixed, the power to detect novel loci using
GWAS is determined by the effect size distribution of true
causal loci (12). The larger the effect size per true causal locus,
the more discoverable the locus is. Given similar heritability,
when there are more true causal loci (i.e. higher polygenicity)
more signals diffuse into the background, making SNP effects
harder to detect (25). Furthermore, the correlation among SNPs,
i.e. linkage-disequilibrium (LD), mingles the diffused back-
ground with true signals from causal SNPs, making the signals
even harder to differentiate (25). To empirically characterize
this phenomenon, we used a mixture of normal models to esti-
mate the effect size distribution from GWAS of neuroimaging
measures (26). By modeling mixture between null/non-null SNP
effects due to LD (26), the mixture model approximates well the
true effect size distribution from GWAS (Fig. 1B) and therefore
the power to detect novel loci can be better characterized for
each trait. Importantly, the discoverability framework reveals
which neuroimaging measures are more likely to yield novel ge-
netic loci with a given GWAS sample size, guiding future study
design of the imaging genetics.

The flexibility of mixture modeling provides opportunities to
increase SNP discovery in imaging genetics. Because effect sizes
from GWAS are approximated by mixtures of distributions, en-
richment priors can be incorporated into the mixture compo-
nents to improve the accuracy of effect size estimation (27). By
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better estimating the true effect size of each SNP, we can im-
prove discoverability without relying on significance thresholds
defined by assuming all SNPs are equal (28–30). Enrichment
methodologies have been extensively explored in the quantita-
tive genetics field and a full discussion of these approaches is
beyond the scope of this review. Interested readers are referred
to our previous review focusing on polygenic enrichment meth-
odologies for complex diseases (31). Here, we summarize the
enrichment methods in Table 1 and focus on recent innovations
and their application to imaging genetics.

One of the key insights motivating the use of enrichment
methods is that genetic variants have attributes that predict
their effect sizes across many complex traits (29,32,33). To name
a few, GWAS associations are systematically overrepresented in
coding and regulatory regions and depleted in intergenic re-
gions (21,32,34–36). SNPs with a higher level of LD with nearby

regions tend to have larger effect sizes in GWAS, regardless of
the phenotype of interest (32,37). Further, SNPs found to be as-
sociated with one phenotype tend to have larger effect sizes in
another GWAS of a closely related phenotype (32,38).
Leveraging those attributes, and borrowing strength from other
sources of prior information, has lead to better estimation of ef-
fect sizes for GWAS, resulting in increased probability to detect
and replicate causal loci (29,30,39–41). However, until recently, it
was unclear if imaging genetics could benefit from these enrich-
ment approaches.

It turns out that enrichment patterns observed for many
complex human phenotypes hold for structural neuroimaging
measures. Figure 1C and D demonstrates the stratified effect
size distribution for ENIGMA putamen GWAS. SNPs with higher
LD have increased effect sizes compared to those with lower LD
(Fig. 1C). SNPs located in regulatory regions have increased

Figure 1. Heritability and effect size distribution of structural neuroimaging measures. (A) Heritability estimates based on family (9,14,16) or SNP data (18,51,52). For ref-

erence purpose, the heritability of two complex traits, height and schizophrenia, were also provided here. (B) Quantile–quantile plot of effect size distribution in imag-

ing GWAS, including intracranial volumes (ICV), volumes of putamen, and volumes of hippocampus. Flex upward in the tail region represent higher than expected

effect sizes in the GWAS findings. (C). Stratified quantile–quantile plot of GWAS for putamen. The effect sizes of putamen GWAS are further stratified according to how

well the SNP were tagged, i.e. LD. (D) Stratified quantile–quantile plot of GWAS for putamen, given genic annotation. The effect sizes of putamen GWAS are stratified

according to the regulatory regions where SNP located.
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effect sizes compared to those located in intergenic regions
(Fig. 1D). Exploiting these properties, we can model the effect
size distribution given SNP attributes, and characterize the mix-
ture of null/non-null SNPs according to their expected effect
size distribution. With this framework, a recent study found six
more novel loci from the ENIGMA GWAS associated with vol-
umes of putamen (42).

Leveraging the genetic overlap between similar traits also
improves discoverability in imaging genetics. Using SNP effect
sizes obtained from large-scale GWAS of schizophrenia as an
SNP attribute (43), a recent analysis discovered more genetic
variants consistently associated with volumes of hippocampus,
putamen and intra-cranial volumes (44). The analysis yielded
six additional loci jointly associated with schizophrenia and
structural neuroimaging measures that were below the signifi-
cance threshold in the original GWAS of the imaging measures.
Several of those identified loci reached genome-wide signifi-
cance in subsequent larger GWASs of these neuroimaging mea-
sures, demonstrating the increased power and validity of this
mixture with conditional priors approach (23,24).

Defining Complex Imaging Phenotypes Based
on Genetics
In addition to better characterizing effect sizes using SNP attrib-
utes, another way to boost discoverability is by redefining neuro-
imaging measures. The anatomical delineations of structural
neuroimaging measures used in large-scale GWAS are, to a cer-
tain degree, arbitrary, based on traditional anatomical conven-
tions rather than genomic evidence. Anatomically based
segmentation involves expert-defined regions of interest, such as
hippocampus, that contain many subfields and subpopulations
of neuronal and non-neuronal cells. Thus, the summed tissue
volume across that region may well be as heterogeneous and
polygenic as other complex traits, such as human height (20,42).
Analyses of thousands of conventional neuroimaging measures
that may produce noisy and highly correlated distributions of ge-
netic effects might not be optimal for discovery, as the multiple
comparisons further restrict the power for detecting novel loci.

The curse of dimensionality and the need to define better
measures have actually plagued the imaging research commu-
nity for a long time. This challenge has prompted the commu-
nity to improve methods for meaningful dimension reduction.
Imaging researchers have embraced statistical learning
approaches, such as independent component analysis or learn-
ing sparseness (45), to define quantitative measures beyond
expert-defined anatomical criteria. With the increasing avail-
ability of neuroimaging genetic data, some researchers have be-
gun to explore the joint space between genes and images, trying
to find a better way to quantify relevant brain variability (46–48).

One strategy is to scan through fine-resolution imaging mea-
sures and group these based on estimated genetic effects.
Genetic correlations estimated from twin studies have been
used to cluster T1 imaging measures (49) and show that the
clustering patterns are highly consistent with gene expression
and SNP correlations (19,50). Figure 2 demonstrates an exten-
sion of this approach, using summary statistics of cortical sur-
face GWAS to identify clusters that shared consistent GWAS
signals.

Methods that form clusters based on heritability estimates
from genotyping data have also been explored. For example, us-
ing a kernel estimator to quickly scan through T1 thickness
measures across the cortical surface, brain regions with high
levels of heritability were identified that did not reflect conven-
tional anatomical landmarks (48). However, as high heritability
is not equated to discoverability, it would be interesting to see if
similar framework can be applied to the estimation on
discoverability.

Another approach is to learn a lower dimensional represen-
tation from heritable disorders themselves. Given a disorder
with a strong genetic component, especially when associated
with a relatively homogeneous pathological process, learning a
disease specific representation may be closer to the biological
function than an expert-defined region of interest. Using this
approach, sparse canonical correlation was used to learn a
lower dimensional representation of imaging phenotypes based
on an Alzheimer’s disease cohort (46). Meanwhile, we recently
used penalized regressions to extract Williams Syndrome
specific anatomical scores, finding that lower dimensional

Table 1. Summary of different enrichment methods for improving loci discovery

Method Year Citation Applied to structural
neuroimaging measures

Conditional FDR 2013 (53) Yes
Conjunction FDR 2013 (53) Yes
Association Summary Bayes Factor 2014 (54) No
Bayesian colocalization (coloc) 2014 (39) No
Covariate Modulated local FDR (cmlocFDR) 2014 (30) No
fGWAS 2014 (41) No
Genetic analysis incorporating Pleiotropy and Annotation (GPA) 2014 (55) No
SNP Effect Concordance Analysis (SECA) 2014 (56) Yes
Bayesian Conditional FDR 2015 (57) No
informed GWAS (iGWAS) 2015 (58) No
Covariate-Modulated Mixture Modeling (CM3) 2016 (29) No
Genome Wide Association Prioritizer (GenoWAP) 2016 (59) No
Pairwise analysis of GWAS (GWAS-PW) 2016 (60) No
Weighted Bonferroni Correction 2016 (61) No
Genetic analysis incorporating Pleiotropy and Annotation with

graphical models (graph-GPA)
2017 (62) No

Scalable Functional Bayesian Association (SFBA) 2017 (63) No
Multi-trait analysis of GWAS summary statistics (MTAG) 2018 (64) No
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representation of imaging measures can boost the statistical
power for both phenotypic and genetic associations (47).

Redefining the imaging phenotypes through various dimen-
sion reduction approaches is not without limitations. First, the
solutions can be highly unstable given that the sample sizes can
be considerably smaller than the number of imaging measures
included. Even with carefully crafted penalty functions to prevent
over-fitting, small genetic effect sizes and limited MRI samples
can reduce the utility of this approach. Second, the computa-
tional cost for deriving lower dimensional representations
grows exponentially with the number of measures included.
Nevertheless, improving discoverability in large-scale imaging
genetics by redefining the imaging phenotypes is still an active
research field with great opportunities for innovations.

Conclusion
The goal of imaging genetics, after all, is to gain insight into ge-
netic regulation of the human brain. Although heritability is a
useful metric for the aggregate of genetic signals, it does not re-
flect the power to detect novel genetic loci contributing to the
phenotype. With the dawn of large-scale imaging genetic stud-
ies, we are now positioned for breakthrough discoveries of
specific gene effects on the human brain. Estimates of discover-
ability can provide good guidance for designing analyses, accel-
erating the pace of these discoveries.
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