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Abstract
The combination of electronic health records (EHRs) with genetic data has ushered in the next wave of complex disease
genetics. Population-based biobanks and other large cohorts provide sufficient sample sizes to identify novel genetic associa-
tions across the hundreds to thousands of phenotypes gleaned from EHRs. In this review, we summarize the current state of
these EHR-linked biobanks, explore ongoing methods development in the field and highlight recent discoveries of genetic as-
sociations. We enumerate the many existing biobanks with EHRs linked to genetic data, many of which are available to re-
searchers via application and contain sample sizes >50 000. We also discuss the computational and statistical considerations
for analysis of such large datasets including mixed models, phenotype curation and cloud computing. Finally, we demon-
strate how genome-wide association studies and phenome-wide association studies have identified novel genetic findings
for complex diseases, specifically cardiometabolic traits. As more researchers employ innovative hypotheses and analysis
approaches to study EHR-linked biobanks, we anticipate a richer understanding of the genetic etiology of complex diseases.

Introduction

The increased adoption of electronic health records (EHRs) in
clinical settings has created a rich resource for the genetics re-
search community (1). Variation in the human phenome, the
set of physical characteristics and diseases (phenotypes) ex-
pressed in humans, is measurable using billing codes, narrative
notes, death certificates and laboratory values from EHRs. As
the cost of high throughput genotyping and sequencing con-
tinues to fall, EHRs coupled with genetic data from biobank
samples are now available for hundreds of thousands of people.

Historically, large cohorts of cases and controls were
amassed to study only one specific phenotype of interest, or a
few closely related phenotypes [e.g. coronary artery disease
(CAD) and blood lipid levels] in a genome-wide association
study (GWAS; few phenotypes analyzed at many variants).
Variants significantly associated with one phenotype were then

tested for association with additional phenotypes in a phe-
nome-wide association study (PheWAS) to more fully under-
stand cross-phenotype associations. The first PheWAS (2),
analysis of many phenotypes for a few variants, was published
in 2010 and researchers are continuing to increase the number
of phenotypes examined. Today, EHR-linked DNA biobanks
with large sample sizes enable GWAS on millions of variants to
be performed for thousands of phenotypes resulting in a phe-
nome-wide GWAS which we refer to as PheGWAS (many phe-
notypes analyzed at many variants). An example PheGWAS is
available at University of Michigan’s PheWeb which hosts ge-
netic association results for 28 million variants across 1403 ICD-
based traits (http://pheweb.sph.umich.edu:5003) identified in
400 000 individuals (3) (Fig. 1).

In this review, we focus primarily on recent research involv-
ing GWAS, PheWAS and PheGWAS in cohorts combining EHRs
and genetic data. Many types of additional omics data may exist
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in cohorts employing EHRs (e.g. transcriptomics, metabolomics,
epigenomics) although the results from such studies are outside
the scope of this review. Here, we summarize the current state
of EHR-linked biobanks, explore ongoing methods development
and considerations in the field and highlight recent discoveries
of genetic associations in EHR-linked biobanks.

Established EHR-Linked Biobanks
The earliest population-wide biobank is Iceland’s deCODE genetics
which started in 1996 as a private company with government sup-
port (4) and is currently owned by Amgen. One of the first
institution-wide biobanks is Vanderbilt University’s bioVU which
utilized de-identified leftover blood samples from clinical blood
draws (5). Biobanks typically feature opt-in consent and protec-
tions for personal health information (PHI) allowing prospective
phenotype updates. Since 2007 the National Institutes of Health
(NIH) has funded the Electronic Medical Records and Genomics
(eMERGE) Network which links biobanks to EHRs at multiple sites
to perform genomic research and establish best practices (6).
Additional academic centers host large studies combining EHR-
linked biobanks such the University of Michigan’s Michigan
Genomics Initiative, the Mount Sinai BioMe biobank, and the
Estonian Genome Center at the University of Tartu’s biobank,
among others. In recent years, private companies in the United
States’ health care and insurance industries [e.g. Kaiser
Permanente (7)] have begun their own studies building on EHRs of
customers that consent to research. Because drug mechanisms
with genetic evidence in humans are twice as likely to successfully
move from phase 1 trials to approval (8), the pharmaceutical in-
dustry is also increasingly investing in EHR-linked biobanks. This
is evidenced by the DiscovEHR cohort, a collaboration between
Regeneron Genetics Center and Geisinger Health System and the
largest existing collection of EHRs linked to sequencing data. In
November 2017, Geisinger announced its National Precision Health
Initiative which is an expansion of the MyCode Community Health
Initiative which has consented the 50 726 patients in DiscovEHR. In

the summer of 2017, the United Kingdom Biobank (UKBB) released
genotype and phenotype data for 488 377 individuals which is an
unprecedented amount of genetic data freely available to re-
searchers via an application process (9). In January 2018, it was an-
nounced that exome sequencing for all UKBB participants will be
completed by 2019 funded by Regeneron Pharmaceuticals and sev-
eral life science companies (10).

FinnGen was announced in December 2017 with the goal of
linking GWAS data to clinical data for 500 000 participants con-
sented for recall appointments to perform more detailed clinical
examination of individuals with genetic variants of uncertain sig-
nificance (11). Notably, countries like Finland with nationalized
health systems are uniquely poised to study genetics at a popula-
tion scale using nationally connected EHRs linked to biobanks.
These studies are additionally benefitted by nationalized phar-
maceutical and cause of death registries that provide useful in-
formation for phenotype curation. Moving toward ever larger
sample sizes, the Million Veteran Program (MVP) aims to partner
with one million U.S. armed services veterans receiving care
through the Veterans Affairs Healthcare system (12,13), and
NIH’s All of Us cohort (part of the Precision Medicine Initiative)
will open to nationwide enrollment of one million participants in
early 2018. The large sample sizes (Table 1) that are available in
these studies aid in the discovery of genetic associations for both
rare mutations causing Mendelian disease and common complex
diseases with causal variants of smaller effect.

Methods Developments
Avoiding data-driven bias

Large, longitudinal, population-based studies with EHR-linked
biobanks present many challenges in areas of data curation and
analysis, most of which are areas of current methods develop-
ment. In longitudinal studies, epidemiological survey question-
naires are often revised and updated between biobank
enrollments which introduces missing data and highlights the
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Figure 1. Locus zoom plot of the lead variant (rs116843064) in ANGPTL4 from the PheGWAS available at University of Michigan’s PheWeb. The variant is associated with

coronary atherosclerosis (P-value <1.6e�7) in 20 023 cases and 377 103 controls in UKBB. The variant is also associated with other phenotypes at phenome-wide signifi-

cance (P-value<5e�5) including hypercholesterolemia and ischemic heart disease as expected. Notably, this variant is also associated with ankylosing spondylitis—a

form of arthritis affecting the spine and large joints. While ankylosing spondylitis is seemingly pathologically different than CAD, a link between the two has been re-

ported previously (51). The constellation of associations across circulatory, metabolic and musculoskeletal systems provides evidence for pleiotropy or shared path-

ways for disease pathogenesis.
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importance of thoughtful and consistent study design when
possible. Because of differing enrollment strategies some bio-
banks contain more complete EHRs than others. For example,
Geisinger Health System provides comprehensive care in a rural
area resulting in ‘cradle to grave’ records while academic bio-
banks may see patients only for specialized care resulting in
fragmented EHRs but higher rates of more serious cases.
Longitudinal studies with multiple enrollment periods can be
prone to batch effects as technology or protocol changes intro-
duce confounders. Ascertainment bias remains a concern even
in population-based cohorts, with studies like UKBB being, on

average, younger and healthier and with more female partici-
pants than the British population at large. These possible con-
founding factors should be accounted for in analyses, for
example with birth year and sex as covariates in a linear regres-
sion model.

As study sample sizes continue to increase so does the num-
ber of family members contained in a given population-based
cohort, and this phenomenon has inspired current method de-
velopment efforts. One approach is to analyze only an unrelated
subset of samples from a population-based cohort (14).
However, removing related individuals from the analysis may

Table 1. Selected biobanks with linked EHRs and genetic data in �50 000 participants listed in descending order of sample size with available
genetic data

Cohort Country Institution or companya Cohort sizeb,c Samples with matched
EHR and genetic data
availableb,d

Access References

UK BioBank (UKBB)
http://www.ukbiobank.
ac.uk

United
Kingdom

UK Biobank charity 500 000 488 377 genotyped Application for bona
fide researcher

(9,52)

DeCODE Genetics
https://www.decode.com

Iceland Amgen >350 000 >350 000 Contact to
collaborate

(4,53,54)

Million Veteran Program
(MVP)
https://www.research.va.
gov/mvp/

USA Department of Veterans
Affairs

>500 000 >350 000 Contact to
collaborate

(12,13)

BioBank Japan Project
http://www.pgrn.org/bio
bank-japan.html

Japan Pharmacogenomics
Research Network

200 000 162 255 genotyped Contact to
collaborate

(34,55)

China Kadoorie Biobank
http://www.ckbiobank.
org/site/

China University of Oxford,
Chinese Academy of
Medical Sciences

510 000 >130 000 Application for bona
fide researcher

(56,57)

Kaiser Permanente
Research Bank
https://researchbank.kai
serpermanente.org/
our-research/for-
researchers/

USA Kaiser Permanente 270 570 102 998 genotyped Application for bona
fide researcher

(7,58)

eMerge Network
https://emerge.mc.van
derbilt.edu

USA NHGRI 105 325 83 717 Application for
eMERGE affiliate
membership

(6,18)

Danish Biobank Register
http://www.biobankden
mark.dk

Denmark Danish National
Biobank

5.7 million >70 000 Application for bona
fide researcher

(59)

Nord Trondelag Health
Study (HUNT)
https://www.ntnu.edu/
hunt

Norway Norwegian University of
Science and
Technology

120 000 69 037 genotyped Application and col-
laboration with PI
affiliated with a
Norwegian re-
search institute

(15,60)

DiscovEHR
http://www.discovehr
share.com

USA Geisenger Health
System, Regeneron
Genetics Center

50 000 >50 000 exome
sequences

Contact to
collaborate

(43,61)

aMain institution responsible for the resource, many other institutions may provide funding or support.
bSample size as of January 2018. In situations where up to date sample sizes were difficult to find, sample sizes from recent publications were used.
cUnique number of participants with some type of data available (52–61).
dActual samples available for analysis may be less due to quality control. Number includes both sequencing and genotyping with the type of data described when

possible.
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decrease sample size, and therefore statistical power, particu-
larly in highly related populations such as the Nord Trøndelag
Health Study (HUNT) (15) in which 81% of the cohort has at least
a third degree relative that is also in the study. Even in the met-
ropolitan UKBB, 81 000 samples are removed when analyzing
the unrelated subset (9). Both relatedness and population sub-
structure may be addressed using single variant association
testing with linear mixed models (16). While it is important to
perform GWAS in populations of diverse ancestries, population-
based biobanks with a mix of ancestries are vulnerable to false
positive findings from population stratification between cases
and controls. Currently, most GWAS of binary traits in UKBB are
performed using only the subset of samples with self-reported
and principal component confirmed white British ancestry.

When very few cases for a given phenotype exist in a cohort,
an unbalanced case–control ratio may inflate type I error in
GWAS results (17). A novel method, SAIGE (3), allows for analy-
sis of binary traits with unbalanced case–control ratio in large
sample sizes while accounting for sample relatedness. It is im-
portant to note that removing related individuals from a cohort
while preferentially retaining cases may ameliorate extreme
case–control imbalance for some phenotypes.

Phenotype curation

Phenotype curation from EHRs is an ongoing area of research
with the eMERGE Network largely spearheading the effort (18).
International Classification of Diseases (ICD) codes are a main
feature of EHRs and are typically used in national hospital regis-
tries and as health insurance billing codes in medical practice.
ICD codes may not always indicate a true diagnosis of a disease
(e.g. an ICD code may be listed as a hypothetical reason for a
laboratory test) (2). Broad or ambiguous ICD codes may lead to a
heterogeneous definition of cases. Therefore, false positives or
false negatives may arise when only ICD codes are used in phe-
notype definitions. Recent work compared groupings of EHR
ICD-based billing codes to demonstrate the superiority of manu-
ally curated phecodes (19,20) for defining phenotypes from
EHRs. Researchers should also consider which subset of a co-
hort to use as healthy controls. For example, patients with Type
1 diabetes would be inappropriate controls for a study of Type 2
diabetes. The phenotype definitions of cases and healthy con-
trols are critical for accurate genetic studies, and the optimal
approach may depend on the specific cohort and data at hand.

Challenges with big data

The sample size of many cohorts poses computational chal-
lenges including (i) data transfer, (ii) time and memory re-
sources required for analysis and (iii) storage space necessary
for the terabytes of raw phenotype and genotype data and the
resulting association results. Therefore, many of the large bio-
banks and groups analyzing biobank-based data have started to
use remote or cloud environments for data storage and analysis
(21). NHLBI’s Trans-Omics for Precision medicine (TOPMed)
hosts a TOPMed Cloud Analysis Pilot called Encore (https://en
core.sph.umich.edu) which provides a simple web-based inter-
face to allow investigators to run large-scale association analy-
sis without requiring specific technical computing skills. Encore
handles splitting up jobs and distributing requests to available
computing resources, and provides interactive plots and sum-
maries for exploration of association results.

Another challenge regarding the analysis of large number of
samples from a biobank is the sample relatedness which can in-
crease type I error of the analysis. As described above, this can
be overcome using linear mixed models, which are usually com-
putationally intensive. Even when using a cloud environment
for the computation, BOLT-LMM (16) and SAIGE (3) are the only
existing mixed model association methods computationally
feasible for analysis of large sample sizes (N> 20 000).

As most of the currently available biobank data is genotyped
using existing genotyping chips or custom chips to capture
whole genome variation, imputation of the genotype data is
suggested to increase the number of markers available for asso-
ciation testing. Not only is imputation one of the most compu-
tationally intensive components of a GWAS analysis pipeline,
but the choice of imputation panel greatly affects the quality
and the number of variants that are well-imputed (22–24). In the
usual case where there is no population-specific imputation
panel available for the dataset, imputation of variants available
from emerging resources such as TOPMed (25) or the Haplotype
Reference Consortium (26) may be worthwhile. The Michigan
Imputation Server (27) (https://imputationserver.sph.umich.
edu) and Sanger Imputation Service (26) (https://imputation.
sanger.ac.uk) provide remote computational resources for free
genotype imputation with up to date reference panels.

Historically GWAS studies have considered a P-value of 5e�8
as the genome-wide significance threshold for European-
descent GWAS which adjusts for 1–2 million independent tests
(28–30). As the number of variants assayed increases due to im-
putation with larger reference panels, it is an active area of dis-
cussion whether a more stringent threshold should now be
considered. Recent work in UKBB a data demonstrated the va-
lidity of CAD GWAS signals meeting a less stringent threshold
for genome-wide significance at a false discovery rate of 5% (31).
As datasets continue to increase in size, more research is
needed to establish best practices of cloud-based computing
and appropriate statistical rigor in analyses.

Novel approaches for data analysis

Population-based EHR-linked biobanks usually allow for defini-
tion of hundreds to thousands of different phenotypes and out-
comes which facilitates the usage of new analysis methods,
such as large-scale heritability analyses (32). Another type of
analysis that is highly efficient in datasets with EHRs is the
analysis of genetic correlations (33) which can be used to find
variants with possible pleiotropic effects. Recent work in the
Biobank Japan Project identified 313 pleiotropic loci across 53
quantitative traits (34). Both of these methods can be used to
prioritize phenotypes for more concentrated genetic studies.

EHR-linked biobanks can also be used to identify and priori-
tize possible drug targets. Because of the large number of sam-
ples in population-based datasets, the chance to find
individuals with homozygous loss-of-function (LOF) mutations
for specific genes is much higher which makes the search for
human knock-outs feasible. This, combined with the availabil-
ity of wide variety of phenotypes, allows for studies of possible
side-effects of gene inhibition. As an example, homozygous car-
riers of PCSK9 LOF mutations were analyzed against a wide vari-
ety of outcomes to find possible negative lifetime effects of low
PCKS9 levels, similar to that of PCKS9 gene inhibition effect. The
study showed that homozygous carriers of PCSK9 LOF muta-
tions had lower levels of low-density lipoprotein cholesterol lev-
els and increased risk for Type 2 diabetes (35), spina bifida,
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osteoporosis and fractures, suggesting that the long term usage
of PCSK9 inhibitors may have negative implications (36).

EHRs in combination with other registry-based data (e.g. phar-
maceutical, death registry or cancer registry data) and epidemio-
logical surveys allow for creation of novel phenotypes that can be
used in GWAS and PheWAS. Finnish researchers demonstrated a
YODA Score, representing Years of Drugs Applied, can be calcu-
lated from national registries of prescription drug purchase his-
tory. The presented YODA score combines purchase information
for selected drugs studied in FINRISK and was found to associate
with polygenic risk score for CAD (37). The association is mainly
driven by the CAD related drugs and demonstrates proof of con-
cept. Both YODA and another registry-based measure, cumula-
tive months of hospitalization periods, could potentially be used
to predict mortality.

For certain traits of interest which are rare or late-onset
there may be few cases available for study even in large cohorts.
To analyze these traits, epidemiological survey data can be uti-
lized to identify unaffected first degree relatives of affected indi-
viduals (e.g. proxy-cases) to perform genome-wide association
by proxy (38,39). A GWAS on family history of Alzheimer’s dis-
ease (AD) in 300 000 individuals from the UKBB allowed the
study of 32 222 cases of maternal AD and 16 613 cases of pater-
nal AD that when meta-analyzed with an existing cohort identi-
fied 6 novel loci (40). EHRs also provide information such as age
of onset which allows for a more granular study of cases. For ex-
ample, a recent GWAS stratified by age of onset showed genetic
susceptibility to major depressive disorder (MDD) is different
between early and adult onset MDD (41). In summary, data-
mining of EHR-linked biobanks provides the opportunity for
novel analysis approaches that build upon discoveries from
GWAS and PheWAS analyses.

Selected Findings
GWAS and PheWAS in large biobanks have yielded novel ge-
netic findings for a wide variety of cardio-metabolic traits and
increased our understanding of the clinical and translational
value of these genetic discoveries. Recently, about 50 000 indi-
viduals with whole exome sequence data available from
DiscovEHR cohort were screened for variants that cause familial
hypercholesterolemia (FH). The study group found that 1 in 256
people carry an FH variant and only 24% of the carriers had an
FH diagnosis and 42% of carriers were not currently on statins
(42). This study demonstrated by large-scale sequencing that
many FH individuals are not identified through standard clinical
practice, and a large number of individuals would benefit from
additional screening and treatment with statins to reduce the
risk of heart disease. The same exome sequence dataset from
DiscovEHR, together with other cohorts, has also been used for
study of ANGPTL4 (43) (Fig. 1) and LPL (44) inactivating and pro-
tein altering mutations and their connection to lipid metabo-
lisms and risk of CAD. In these studies, an association between
ANGPTL4 inactivating mutations and decreased risk of CAD was
observed, whereas the association of LPL disruptive mutations
with CAD was in the opposite direction. These results highlight
ANGPTL4, which also blocks the inhibition of LPL, as a possible
drug target for future clinical trials.

The recent release of publicly available UKBB data led to a
wave of genetic association studies, and two such studies for
cardiometabolic traits have already been performed. The first is
an association study of CAD (45) that identified 64 new CAD as-
sociated loci by combining the new UKBB dataset with an exist-
ing public dataset from CARDIoGRAMplusC4D Consortium.

Another example is a recent study of atrial fibrillation (AF) (46),
where data from the UKBB was combined with other EHR and
GWAS datasets in a meta-analysis that comprised more than
one million samples including 60 000 cases. Using this enor-
mous dataset, the authors were able to identify a total of 111
loci associated with AF. With time, some of the AF-associated
genes may become new drug targets for arrhythmia disorders.

While analysis of the large biobanks is more concentrated on
disease endpoints, quantitative traits are still mainly studied in
worldwide consortia combining data from smaller datasets with a
meta-analysis approach. In the field of cardiometabolic genetics
there are multiple consortia each with a focus on different trait(s).
Examples of such are the Genetic Investigation of ANthropometric
Traits (GIANT), Global Lipids Genetics Consortium (GLGC),
Consortia for echocardiographic trait genetics (EchoGen) and
International Consortium for Blood Pressure (ICBP). The latest
publication from the ICBP (47) was a meta-analysis combining
data from a total of 380 000 samples which found 6 novel loci as-
sociated with blood pressure traits. From EchoGen, the latest
meta-analysis (48) combined echocardiographic data from up to
30 000 individuals and found 10 new loci associated to left ventric-
ular structure, and systolic and diastolic function. GLGC and
GIANT consortia are currently concentrating on rare, low-
frequency and coding variation. GIANT identified 14 coding vari-
ants associated with body mass index (BMI) (49) which had on av-
erage 10 times higher effect sizes compared to common variants
associated with BMI, and GLGC identified 75 new loci associated
with blood lipids using an Exome Chip genotyped dataset which
also allowed for fine-mapping of 131 previously known loci (50).

Conclusion
EHRs allow a shift from purpose-built cohorts centered around
a particular phenotype to large cohorts where the entire phe-
nome can be studied through PheGWAS. Methods development
to handle the computational and statistical complexities of
such large datasets is ongoing, but new data handling and
analysis methods including mixed models and robust EHR-
derived phenotype definitions are already being employed. The
next wave of genetic analysis in hundreds or thousands of phe-
notypes, enabled by population-based EHR-linked biobanks, has
only just begun. We have already seen the importance of vast
phenotypic information in large datasets through recent studies
of putative drug targets such as PCSK9 and ANGPTL4. These
studies are, however, just the tip of the iceberg. The high infor-
mation content of EHR datasets allows for innovative new hy-
potheses and analyses which are poised to become the driving
force of complex disease genetics.
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