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Abstract

Motivation: Structural variation (SV) detection from short-read whole genome sequencing is error

prone, presenting significant challenges for population or family-based studies of disease.

Results: Here, we describe SV2, a machine-learning algorithm for genotyping deletions and dupli-

cations from paired-end sequencing data. SV2 can rapidly integrate variant calls from multiple

structural variant discovery algorithms into a unified call set with high genotyping accuracy and

capability to detect de novo mutations.

Availability and implementation: SV2 is freely available on GitHub (https://github.com/dantaki/

SV2).

Contact: jsebat@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structural variation (SV) is defined as a change of the structure of a

chromosome larger than 50 bp. SV is a major contributor to human

genetic variation and is implicated in a variety of human diseases

(Conrad et al., 2010; Sudmant et al., 2015). In particular, de novo

structural mutations (those in offspring and not in parents) contrib-

ute significant risk for idiopathic autism and intellectual disability

(Brandler et al., 2016). Accurate detection of de novo SVs is chal-

lenging due to genotyping errors, such as false-positives in offspring

and false-negatives in parents. Additionally, genotyping errors bias

the transmission of variants from parent to offspring, confounding

analysis of pedigrees.

Characterizing SV from next generation sequencing is a difficult

task due to the broad range of SV sizes (50 bp–50 Mb) and types.

Hence, to fully capture the diversity of SVs a multitude of tools is

required, each designed as a standalone solution (Francioli et al.,

2014; Sudmant et al., 2015). Methods for harmonizing variant calls

and confidence scores from multiple SV calling methods into a uni-

fied set of SV genotypes are lacking.

2 Input and methods

SV2 (support-vector structural-variant genotyper) is an open source

application written in Python that requires a BAM file, a single

nucleotide variant (SNV) VCF file, and either a BED or VCF file of de-

letions and duplications as input. SV2 operates in three stages: prepro-

cessing, feature extraction, followed by genotyping (Fig. 1).

Genotyping utilizes four informative features: depth of coverage, dis-

cordant paired-ends, split-reads and heterozygous allele ratio (HAR).

Genotyping is performed with supervised support vector machine

classifiers trained on whole genome sequences (WGS) from the 1000

Genomes Project (1KGP). The resulting VCF file of genotypes con-

tains annotations for genes, repeat elements and variant identifiers of

common SVs recorded by the 1KGP (Sudmant et al., 2015).

3 Genotyping classifiers

Our training set included high coverage (48�, N¼27) and low

coverage (7�, N¼2, 494) WGS from the 1KGP. Training features

were collected from a gold-standard SV call set on the above
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individuals with an estimated false discovery rate (FDR) of 1–4%

(Sudmant et al., 2015), totaling 297 131 genotypes from 11 747

unique loci (Supplementary Table S1).

An ensemble of SV detection methods is required to capture a

wide diversity of SVs, resulting in a set of SVs with variable charac-

teristics. Deletions have a very broad size range (50 bp–>10 Mb),

and as deletions become very small, the signal from discordant

paired-ends diminishes and signal from split-reads increases.

Duplication calls, in contrast, tend to be larger (>3 kb Sudmant

et al., 2015) with less precise breakpoints. In addition, genotyping

methods must account for the ploidy of sex chromosomes in males

and females. Consequently, a one-size-fits-all genotyping method

performs poorly on the combined calls.

With our goal of combining SV calls from multiple methods and

generating a uniform set of genotypes, we developed a genotyper

consisting of multiple classifiers, each designed to genotype a differ-

ent category of SV. To contend with the variable characteristics

described earlier, deletions were stratified by size and duplications

by the availability of breakpoint features (discordant paired-ends or

split-reads). Deletions were trained in three classifiers: (i) deletions

greater than 1 kb, (ii) deletions less than or equal to 1 kb and (iii) de-

letions on male sex chromosomes. All three deletion classifiers im-

plemented coverage, discordant paired-end and split-read features

extracted from high coverage WGS. Duplications were trained in

three additional classifiers: (iv) duplications with breakpoint fea-

tures, (v) duplications without breakpoint features and (vi) duplica-

tions on male sex chromosomes. Classifier v was unique in that it

included heterozygous SNV allele ratios as a feature (‘HAR’ Fig. 1).

The deletion male sex chromosomes classifier was not split by size

due to the sparse number of training examples (N¼191,

Supplementary Table S1).

4 Performance results

For this study, we implemented three independent WGS datasets for

training, evaluation and validation (Supplementary Table S2).

Parameter selection for classifiers was based on a 7-fold cross-

validation of the training set (Supplementary Fig. S1) and further

based on classifier performance in an independent dataset consisting

of 42� WGS of 57 subjects (Supplementary Table S3), a subset of

samples from our previous study of autism (‘evaluation dataset’,

Brandler et al., 2017). Genotyping accuracy was evaluated further

based on rates of SV transmission in families from an additional

1827 genomes from Brandler et al. Finally, classifier performance

was independently evaluated in a third dataset consisting of 72�
Illumina WGS of nine subjects from the 1KGP (‘validation dataset’).

We confirmed SV2 genotypes in the evaluation and validation data-

sets using two orthogonal platforms: Illumina 2.5 M microarrays

and Pacific Biosciences (PacBio) single molecule sequencing,

respectively.

Performance was evaluated at two levels of SV filtering strin-

gency: a ‘standard’ level and a stricter level for calling de novo muta-

tions, which are enriched for false-positive calls. Our formulation of

filters applied the evaluation set of 57 subjects with SV2 genotypes

from SV calls from ForestSV (v0.3.3; Michaelson and Sebat 2012),

LUMPY (v0.2.13; Layer et al., 2014) and Manta (v1.1.1; Chen

et al., 2015). We implemented Illumina 2.5 M arrays to calculate the

FDR using SVToolkit (v2.0 sourceforge.net/projects/svtoolkit),

which performs an in silico validation by ranking microarray probes

intensities, defining the FDR as two times the fraction of variants

with P-value>0.5 (Sudmant et al., 2015). The final thresholds for

filters for each stringency level considered variant length, feature

availability and FDR (Supplementary Table S4).

Evaluation: Using the aforementioned evaluation set, we found a

FDR of 40% for both unfiltered deletions (N¼5344) and duplica-

tions (N¼776) (Fig. 2A). Filtering at the standard level of strin-

gency reduced the FDR to 1.24% for deletions and 4.41% for

duplications (Supplementary Fig. S2). We then ascertained the FDR

of unfiltered de novo variants to be 60% for deletions and 86% for

duplications. Applying the de novo filters reduced the FDR to

0.54% for deletions and 0% for duplications (Supplementary Fig.

S2). We extended our evaluation of SV2 genotyping with an add-

itional 1827 individuals to the previous evaluation set of 57 subjects,

totaling 619 families (N¼1884). Validation of SV2 genotypes im-

plemented the group-wise transmission disequilibrium test (Chen

et al., 2015), which tests for deviations from the expected variant

transmission rate (50%). An under-transmission of variants indi-

cates either an enrichment of either false positives in parents or false

negatives in the offspring. As expected, unfiltered SV calls exhibited

a significant under-transmission bias: transmission rates of 39.8%

for deletions and 35.08% for duplications (deletions: P¼9.61 �
10–51, N¼105 023; duplications P¼7.8 � 10–18, N¼346 173)

(Fig. 2B). Applying standard genotype likelihood filters reduced the

transmission bias to 48.2% (P¼1.32 � 10-2, N¼40 587) for dele-

tions and 47.3% (P¼3.39 � 10-3, N¼3863) for duplications.

Fig.1. SV2 workflow. SV2 requires a VCF file of SNVs, a BAM file, and a set of

SVs to genotype as input. Before genotyping, preprocessing is performed

where the median coverage, insert size, and read length is recorded for fea-

ture normalization. Features for genotyping, which include depth of coverage,

discordant paired-ends, split-reads, and HAR, are measured for each SV. SVs

are then genotyped with an ensemble of support vector machine classifiers.

SV2 produces two output files, a BED file and a VCF, containing annotations

for RefSeq genic elements, RepeatMasker repeats, segmental duplications,

short tandem repeats, and common SVs from the 1000 Genomes phase 3

call set
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Applying more stringent de novo filters further reduced under-

transmission bias to 49.1% (P¼1.32 � 10-2, N¼21 772) for

deletions and 49.3% (P¼1.0, N¼2847) for duplications

(Supplementary Fig. S3).

Performance of SV2 was then compared to that of two widely

used SV genotyping software SVTyper (v0.0.4; Chiang et al., 2015)

and Manta. For this comparison, SVTyper genotyped SV predictions

using the companion tool LUMPY, Manta produced genotypes for

its predictions, and SV2 genotyped the union of LUMPY and Manta

calls for the previous evaluation set of 57 subjects with Illumina

2.5 M arrays. Receiver operating characteristic (ROC) curves for

each genotyping method were generated, specifying true and false

positives with SVToolkit. SV2 achieved the best genotyping accuracy

with an AUC of 0.92 for deletions and 0.8 for duplications, in con-

trast to Manta (deletion AUC¼0.84, duplication AUC¼0.69) and

SVTyper (deletion AUC¼0.9, duplications AUC¼0.78) (Fig. 2C).

Validation: Further assessment of SV2’s genotype likelihood fil-

ters leveraged PacBio long-read WGS (26�) on 9 subjects from the

1KGP. This validation set is independent from the training set since

SV2 genotypes were generated using a separate deep (72�) Illumina

WGS library with SV predictions from LUMPY and Manta, both of

which were not implemented in the training call set (Sudmant et al.,

2015). To comply with the data release requirements for these data,

only variants on chromosome 1 were analyzed. As a precaution for

overfitting, we excluded SVs that overlapped with >¼80% recipro-

cal overlap to SVs in our training set. Additionally, we omitted vari-

ants with less than three PacBio reads within 1 kbp flanking regions.

Valid WGS genotypes required at least one supporting breakpoint

with 50% reciprocal overlap to a PacBio split-read or CIGAR string.

The FDR was 6.53% (N¼3121) and 17.72% (N¼413) for unfil-

tered deletions and duplications respectively (Fig. 2A). SV2 standard

filters, lowered the FDR for deletions to 0.85% (de novo filters:

0.62%) and for duplications to 0% (de novo filters: 0%). With these

data, we then compared SV2 genotyping performance to the afore-

mentioned genotyping methods. Likewise, we found that SV2 pro-

duced the optimal performance with AUCs of 0.98 for deletions and

duplications. Conversely, Manta performance resulted in an AUC of

0.9 for deletions and 0.81 for duplications, and SVTyper producing

AUCs of 0.97 for deletions and 0.91 for duplications (Fig. 2D).

5 Conclusions

SV2 is unique from other genotyping methods in its use of machine

learning, specifically a radial basis function kernel which is able to dis-

tinguish classes among nonlinear distributions (Supplementary Fig.

S4). SV2 can rapidly genotype a wide variety of deletions and duplica-

tions (Supplementary Fig. S5). Exceptions include variants that com-

pletely overlap segmental duplications, short tandem repeats,

centromeres, telomeres or other unsequenceable regions due to com-

plications with unique-mappability from short-read technology. SV2 is

designed for genotyping SVs in population genetic studies, including

studies of complex traits or disease in pedigrees or case-control sam-

ples. SV2 could be further applied to any comparison of SVs across

samples, e.g. in identifying somatic variants from multiple genomes

derived from individual cells or clones of one individual (Abyzov

et al., 2012). SV2 aids in variant post-processing by recording overlap

to common filtering criteria and gene elements, and provides the op-

tion to merge divergent breakpoints according to the optimal genotype

likelihood. Ultimately, SV2’s strength is its ability to harmonize SV

predictions from multiple callers, simplifying genotyping, likelihood

estimation, analysis of SV association, and providing a much-needed

tool for accurately detecting de novo mutations.

Fig. 2. SV2 genotyping performance. (A) False discovery rate across SV2 genotype likelihoods estimated from Illumina 2.5 M arrays (N¼57) and PacBio long reads

(N¼9). Black dotted line indicates 5% FDR. (B) Group-wise transmission disequilibrium tests across SV2 genotype likelihoods in 630 offspring with shaded re-

gions representing one standard deviation. (C) ROC curves of WGS genotyping calculated from Illumina 2.5 M arrays for SV2, SVTyper, and Manta in 57 individ-

uals. (D) ROC curves of WGS genotyping calculated from supporting PacBio long-reads for SV2, SVTyper and Manta for SVs in nine individuals
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