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• Background and Aims Although several studies have confirmed the beneficial roles of exogenous melatonin in 
lateral root (LR) formation, the molecular mechanism is still elusive. Here, the role of hydrogen peroxide (H2O2) 
in the induction of LR formation triggered by melatonin was investigated.
• Methods Alfalfa (Medicago sativa ‘Biaogan’) and transgenic Arabidopsis seedlings were treated with or 
without melatonin, diphenyleneiodonium (DPI, NADPH oxidase inhibitor), N,N′-dimethylthiourea (DMTU, 
H2O2 scavenger), alone or combined. Then, H2O2 content was determined with 2′,7′-dichlorofluorescein diacetate 
(H2DCFDA)-dependent fluorescence and spectrophotography. Transcript levels of cell cycle regulatory genes 
were analysed by real-time reverse transcription–PCR.
• Key Results Application of exogenous melatonin not only increased endogenous H2O2 content but also induced 
LR formation in alfalfa seedlings. Consistently, melatonin-induced LR primordia exhibited an accelerated response. 
These inducible responses were significantly blocked when DPI or DMTU was applied. Compared with the wild-type, 
transgenic Arabidopsis plants overexpressing alfalfa MsSNAT (a melatonin synthesis gene) increased H2O2 accumulation 
and thereafter LR formation, both of which were blocked by DPI or DMTU. Similarly, melatonin-modulated expression 
of marker genes responsible for LR formation, including MsCDKB1;1, MsCDKB2;1, AtCDKB1;1 and AtCDKB2;1, 
was obviously impaired by the removal of H2O2 in both alfalfa and transgenic Arabidopsis plants.
• Conclusions Pharmacological and genetic evidence revealed that endogenous melatonin-triggered LR 
formation was H2O2-dependent.
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INTRODUCTION

Since the first discovery of melatonin (N-acetyl-5-
methoxytryptamine) in the bovine pineal gland in 1958, its vari-
ous physiological functions have been investigated in animals 
(Lerner et al., 1958; Stehle et al., 2011; Rosales-Corral et al., 
2012). In higher plants, melatonin was identified in 1995 (Hattori 
et al., 1995), and it is synthesized from tryptophan via a four-
step pathway. Four enzymes – tryptophan decarboxylase (TDC), 
tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase 
(SNAT) and N-acetylserotonin methyltransferase (ASMT) – 
were characterized in this biosynthetic pathway (Byeon and 
Back, 2014; Arnao and Hernandez-Ruiz, 2015; Lee et  al., 
2016). Further studies demonstrated that melatonin functions in 
plant responses against various biotic and abiotic stresses, such 
as pathogen attacks (Shi et al., 2015), salt (Chen et al., 2017), 
drought (Zuo et  al., 2014), cold (Han et  al., 2017) and heavy 
metal exposure (Hasan et al., 2015; M. Q. Li, 2016; Gu et al., 
2017). The promotion of root organogenesis, including lateral 
root and adventitious root development, by exogenous melatonin 
was also found in Lupinus albus (Arnao and Hernández-Ruiz, 

2007), rice (Liang et al., 2017), cucumber (Zhang et al., 2013, 
2014) and Arabidopsis (Pelagio-Flores et  al., 2012; Koyama 
et al., 2013).

Lateral root formation is regarded as a critical avoidance strat-
egy in response to unfavourable conditions and is tightly regu-
lated by intrinsic developmental processes, environmental inputs 
and hormone signalling in plants (Malamy and Ryan, 2001; 
Casimiro et al., 2003; Aloni et al., 2006). Among these, auxin 
positively regulates lateral root development via activating asym-
metrical cell division in xylem pole pericycle cells (Ivanchenko 
et al., 2010). Previous work suggested that melatonin-promoted 
Arabidopsis lateral root formation might be independent of auxin 
signalling (Pelagio-Flores et al., 2012). However, genome-wide 
expression profiling analysis in rice demonstrated that lateral 
root development controlled by melatonin was promoted by the 
modulation of auxin signalling (Liang et al., 2017). Further stud-
ies found that cyclin-dependent protein kinases (CDKs), cyclins 
and CDK-inhibitory proteins play key roles in the above devel-
opment process (Stals and Inzé, 2001; Casimiro et  al., 2003; 
Verkest et  al., 2005). It was observed that Kip-related protein 
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(KRP1, the cyclin-dependent kinase inhibitor) interacted with 
the CDKA;1/CYCD2;1 complex to regulate the G1-to-S phase 
transition (Verkest et al., 2005). Previous results further showed 
that gaseous signalling molecules, including nitric oxide (NO) 
(Correa-Aragunde et  al., 2006, 2015), carbon monoxide (CO) 
(Cao et al., 2007; Guo et al., 2008) and hydrogen sulphide (H2S) 
(Fang et al., 2014), induced lateral root formation via the modu-
lation of cell cycle regulatory genes (CYCD3;1, KRP2 and auxin-
dependent cell cycle gene).

Ample evidence showed that reactive oxygen species (ROS) 
act as key signalling molecules in regulating stomatal move-
ments and biotic and abiotic stress responses, as well as many 
aspects of plant development, including lateral root formation 
(Torres et al., 2002; Foreman et al., 2003; Kwak et al., 2003; 
Miller et  al., 2010; Mittler et  al., 2011; Jiang et  al., 2013; 
Ishibashi et  al., 2013; Orman-Ligeza et  al., 2016). For ex-
ample, lateral root outgrowth in Arabidopsis was facilitated by 
RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH)-
mediated ROS production by promoting cell wall remodel-
ling of overlying parental tissues (Orman-Ligeza et al., 2016). 
Similarly, it was found that ROS promoted cell division through 
accelerating auxin-mediated cell cycle entry (G0-to-G1) in al-
falfa (Feher et  al., 2008). In guard cells, hydrogen peroxide 
(H2O2) signalling mediated by AtrbohF was identified as a key 
mediator of stomatal responses to ethylene (Jiang et al., 2013). 
Previous results showed that exogenous melatonin enhanced 
plant tolerance of photo-oxidative stress in an H2O2-dependent 
manner in cucumber (H. Li, 2016). Recent studies also indi-
cated that NADPH oxidase-dependent regulation of ROS sig-
nalling was required for melatonin-induced salinity tolerance 
(Chen et al., 2017; Gong et al., 2017). Consistently, the pro-
duction of ROS triggered by melatonin was previously found 
in animals (Radogna et al., 2009). To date, although exogenous 
melatonin has been implicated as an inducer responsible for 
lateral root development, it is not clear whether and how en-
dogenous melatonin could govern lateral root formation.

In this report, pharmacological and molecular evidence 
reveals that H2O2 was involved in exogenous melatonin-induced 
lateral root formation in alfalfa seedlings. By using transgenic 
Arabidopsis overexpressing MsSNAT, a causal link between 
endogenous melatonin and H2O2 in lateral root formation was 
further established. Furthermore, a molecular mechanism was 
preliminarily illustrated. This work may increase our under-
standing of the mechanisms underlying endogenous melatonin-
mediated root organogenesis.

MATERIALS AND METHODS

Plant materials and growth conditions

Commercially available alfalfa (Medicago sativa ‘Biaogan’) 
seeds were surface-sterilized with 5 % NaClO for 5 min and 
rinsed comprehensively in distilled water. After soaking over-
night in darkness, uniform seedlings were cultured with quarter-
strength Hoagland solution in an illuminating incubator with a 
14/10-h (25 ± 1/23 ± 1 °C) day/night regime with 200 μmol m−2 
s−1 irradiation (Gu et al., 2017).

The SNAT gene of Medicago sativa (MsSNAT), encoding ser-
otonin N-acetyltransferase, is homologous to the Arabidopsis 
SNAT gene, AtSNAT. Visualized fluorescence indicated that 

the MsSNAT-GFP signal is localized in the chloroplast. The 
binary vector pCAMBIA 1302 (AF234298) was used for 
alfalfa MsSNAT overexpression. Homogenous MsSNAT over-
expression Arabidopsis lines driven by the cauliflower mosaic 
virus were then generated and used, and showed higher levels 
of endogenous melatonin (Gu et al., 2017). Wild-type (Col-0) 
and MsSNAT-transgenic lines (MsSNAT-1 and MsSNAT-2) were 
surface-sterilized and rinsed three times with sterile water, then 
plated on solid half-strength Murashige–Skoog (MS) medium 
containing 1 % sucrose and 1 % agar (pH 5.8). Plates were kept 
at 4 °C for 2 d and then transferred into a growth chamber with 
a 16/8 h (23/21 °C) day/night regime with 120 μmol m−2 s−1 
irradiation (Chen et al., 2017; Gu et al., 2017).

Chemicals and treatments

All chemicals were purchased from Sigma-Aldrich (St 
Louis, MO, USA) unless stated otherwise. In the experi-
mental conditions, 3-d-old alfalfa seedlings were treated with 
0, 1.0, 10, 50, 100 or 200 μm melatonin (Mel), or treated with 
or without 1  μm diphenyleneiodonium (DPI) and/or 0.5 mm 
N,N′-dimethylthiourea (DMTU). The treatment time-points 
are illustrated in the corresponding figure legends. Control 
seedlings were grown in quarter-strength Hoagland solution 
alone. Uniform 4-d-old WT and MsSNAT transgenic seedlings 
(MsSNAT-1, MsSNAT-2) were chosen, and transferred to 0.1 μm 
DPI or 0.1 mm DMTU as described in the corresponding figure 
legends. Control seedlings were grown in half-strength MS 
medium alone.

After various treatments, photographs were taken and the 
number of emerged lateral roots (>1  mm) per seedling was 
recorded. Lateral root length, emerged lateral root density 
(number of lateral roots per centimetre of primary root) and 
primary root length were measured using Image J (supplied by 
NCBI and available at http://rsb.info.nih.gov/ij). Lateral root 
primordia were also observed in root squash preparations and 
the number per seedling was quantified with an optical micro-
scope (Stemi 2000-C; Carl Zeiss, Germany). For the subsequent 
biochemical and molecular analyses, only lateral root-inducible 
segments (in the regions of root mature zone) were used. The 
shoots of seedlings were removed by cutting below the root–
shoot junction, and the root apical meristems were cut off.

ROS detection

Reactive oxygen species in the maturation zone were 
detected using a laser scanning confocal microscope (LSCM; 
Leica Lasertechnik, Heidelberg, Germany; excitation at 
488 nm, emission at 500–530 nm). After treatments, seedlings 
were incubated with 20 μm 2′,7′-dichlorofluorescein diacetate 
(H2DCFDA; Bright et al., 2006; Chen et al., 2017) in 20 mm 
HEPES/NaOH buffer (pH 7.5) in darkness (25 °C), followed 
by washing three times for 15 min each. Six individual samples 
were randomly selected and measured per treatment. Bright-
field (BF) images corresponding to the fluorescent images are 
shown at the bottom right or left corners of Figs 2, 3 and 5. 
Fluorescence of ROS accumulation in roots (an area of ~250 
000 μm2 in alfalfa and 50 000 μm2 in Arabidopsis) was quanti-
fied based on 20 overlapping confocal planes using the Leica 

http://rsb.info.nih.gov/ij


Chen et al. — Melatonin-induced lateral root formation via H2O2 1129

software package. Fluorescence was expressed as relative fluo-
rescence units (Xie et al., 2011).

Quantitative analysis of H2O2 was performed according to a 
previous method (Ma et al., 2014). Regions of root mature zone 
(0.2 g) were ground with a mortar and pestle and extracted into 
2 mL of 0.2 m HClO4 on ice. The combined extracts were then 
centrifuged (about 10 000 rpm, 4  °C) for 15  min. Briefly, an 
aliquot of supernatant (500 μL) was added to 500 μL of assay 
reagent (0.5 mm ammonium ferrous sulphate, 50 mm H2SO4, 
0.2 mm xylenol orange and 200 mm sorbitol). The absorbance 
at 560 nm was determined after 1 h of incubation in darkness 
(25  °C). Standard curves were obtained by adding different 
amounts of H2O2.

Gene expression analysis

Total RNA was extracted from the maturation zone of roots 
using a TransZol Up Kit (TransGen Biotech, Beijing, China) 
according to the manufacturer’s instructions. RNA concentra-
tion and quality were checked using a NanoDrop 2000 (Thermo 
Fisher Scientific, Wilmington, DE, USA). cDNAs were syn-
thesized from 1  μg of total RNA using an EasyScript One-
Step gDNA Removal and cDNA Synthesis SuperMix System 
(TransGen Biotech, Beijing, China).

By using the gene-specific primers (Supplementary Data 
Table S1), real-time quantitative reverse transcription (RT) PCR 
was conducted using a Mastercycler® ep realplex real-time PCR 
system (Eppendorf, Hamburg, Germany) with TransStart® Green 
qPCR SuperMix (TransGen Biotech, Beijing, China) according 
to the manufacturer’s instructions. The expression levels of cor-
responding genes were normalized against an internal control 
gene in alfalfa and Arabidopsis seedlings (MSC27 and Atactin7, 
respectively). The data were based on three independent biologi-
cal replicates, and each sample was prepared in triplicate.

Statistical analysis

Statistical analysis was performed using SPSS 18.0 software. 
Means and standard errors were calculated from at least three 
independent experiments with at least three biological repli-
cates for each. For statistical analysis, data were analysed by 
one-way analysis of variance (ANOVA) followed by Tukey’s 
multiple range test, and P values <0.05 or <0.01 were consid-
ered statistically significant.

RESULTS

Exogenous melatonin-induced lateral root formation in alfalfa 
seedlings

To assess the role of exogenous melatonin in the regulation 
of lateral root formation in alfalfa seedlings, a dose–response 
study of melatonin in vitro was performed. As expected, the 
results shown in Fig. 1A–C indicate that the addition of exog-
enous melatonin (1.0, 10, and 50 μm) could bring about sig-
nificant increases in lateral root number and length  (Fig. 1B) 
and lateral root density (Fig. 1C), while the changes in primary 
root length were not so obvious. Responses to 10 and 50 μm 

melatonin were maximal. A  similar accelerated response in 
lateral root primordia was also observed (Fig.  1D, E). High 
concentrations (100 and 200 μm) of melatonin failed to induce 
lateral root formation. Considering the above results and the 
cost of chemicals, 10 μm melatonin was used in the following 
experiments.

H2O2 accumulation in response to melatonin

To unravel the molecular mechanism underlying melatonin-
mediated lateral root formation, the levels of endogenous H2O2, 
a well-known signalling molecule responsible for lateral root 
development, were tested. Seedlings were loaded with the ROS-
specific fluorescent dye H2DCFDA, and an LSCM was used to 
investigate changes in ROS-related fluorescence. Time-course 
analysis revealed that the accumulation of ROS in the matura-
tion zone was induced in melatonin-treated roots, with a strong 
and substantial peak at 36  h over a 48-h period (Fig.  2A, B). 
Further analysis using spectrophotography indicated that 
 exogenous melatonin elicited an increase in H2O2 content as 
well (Fig. 2C). These results suggest that the melatonin-induced 
 dichlorofluorescein-dependent fluorescence was, at least par-
tially, caused by endogenous H2O2.

Melatonin-induced lateral root formation is impaired by removal 
of endogenous H2O2

Subsequent work investigated the causal link between mela-
tonin and H2O2 in lateral root development, using the NADPH 
oxidase inhibitor DPI and the H2O2 scavenger DMTU. In the 
experimental conditions, both 1 μm DPI and 0.5 mm DMTU 
dramatically blocked the induction of endogenous H2O2 content 
triggered by melatonin, determined by fluorescence analysis 
and spectrophotography (Fig.  3). For example, the presence 
of DPI or DMTU caused significant decreases in H2O2 accu-
mulation by ~59.5 % and ~60.5 % (determined by LSCM) in 
melatonin-treated seedlings, compared with melatonin alone 
(Fig. 3A, B). H2O2 content, checked by using spectrophotogra-
phy, showed a similar tendency (Fig. 3C).

Consistently, exogenous melatonin-triggered lateral root forma-
tion was apparently impaired by the presence of DPI or DMTU in 
alfalfa seedlings (Fig. 4A–C). Microscopic analysis showed that 
the inducing effects of melatonin on lateral root primordia could 
be prevented by DMTU or DPI (Fig. 4D, E). Combined with en-
dogenous H2O2 accumulation (Fig.  3), these pharmacological 
tests indicated that H2O2 might be required for melatonin-induced 
lateral root formation in alfalfa seedlings. It was noticed that DPI 
or DMTU alone not only decreased the corresponding fluores-
cence (Fig. 3), but also inhibited lateral root formation (Fig. 4).

Genetic evidence confirmed that endogenous melatonin-induced 
lateral root formation was H2O2-dependent

To further explore the function of endogenous melatonin in 
plants, MsSNAT was overexpressed in transgenic Arabidopsis 
under the control of a CaMV 35S promoter (Gu et al., 2017). 
Two transgenic lines (MsSNAT-1 and MsSNAT-2) were used to 
investigate the effect of MsSNAT on lateral root formation. The 
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dichlorofluorescein-dependent fluorescence analysis revealed 
the accumulation of ROS in MsSNAT-1 and MsSNAT-2 plants, 
compared with the wild-type (Fig. 5A, B). Pharmacological 
tests further showed that the ROS level was less impaired in 
two transgenic lines compared with wild-type when DPI or 
DMTU was added. These results further confirmed that the 
fluorescence was mainly caused by endogenous H2O2. Further 
results revealed that transgenic lines had more lateral roots 
than the wild-type seedlings, indicating that endogenous mela-
tonin stimulated lateral root formation (Fig. 5C–E). By con-
trast, lateral root number and density were seriously inhibited 
when transgenic lines were exposed to DPI or DMTU. These 
results clearly suggest that endogenous melatonin-induced 
lateral root formation was, at least partially, H2O2-dependent.

Expression of cell cycle regulatory genes

To further investigate the corresponding molecular mech-
anism, the transcript levels of two cell cycle regulatory 
genes related to lateral root formation, namely CDKB1;1 and 
CDKB2;1, were examined in alfalfa and Arabidopsis seed-
lings. Results shown in Fig.  6A, B reveal that expression of 
MsCDKB1;1 and MsCDKB2;1 was induced significantly in 
alfalfa seedlings treated with exogenous melatonin, and that 
both effects were obviously reversed when DPI or DMTU 
was applied. DPI and DMTU alone differentially inhibited 
MsCDKB1;1 and MsCDKB2;1 expression.

Further genetic evidence showed that AtCDKB1;1 and 
AtCDKB2;1 were upregulated in the transgenic lines compared 
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with wild-type (Fig. 6C, D). We also noticed that the expression 
of these two genes decreased to a greater degree when DPI or 
DMTU was added, in both the transgenic lines and in the wild-
type. Combined with the changes in ROS levels (Figs 3 and 5) 

and corresponding phenotypes (Figs 4 and 5), it can be deduced 
that H2O2 might be the downstream messenger of melatonin 
signalling responsible for lateral root formation by modulating 
the expression of cell cycle regulatory genes.
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DISCUSSION

It is well established that melatonin fulfils many important 
roles in plants, and it is proposed to be an important regu-
lator in controlling root development, including the induc-
tion of lateral root formation in Lupinus albus (Arnao and 
Hernández-Ruiz, 2007), rice (Liang et al., 2017), cucumber 
(Zhang et al., 2013, 2014) and Arabidopsis (Pelagio-Flores 
et  al., 2012). In this study, by using pharmacological, 
genetic and molecular approaches we extended the pre-
vious results and further discovered that (1) endogenous 
melatonin might modulate lateral root formation, and (2) 
H2O2 might be involved in melatonin-induced lateral root 
formation via modulating the expression of cell cycle 
regulatory genes.

Lateral root formation might be induced by endogenous melatonin

This report provides evidence that the application of exog-
enous melatonin was able to induce alfalfa lateral root forma-
tion, confirmed by changes in lateral root number, lateral root 
length and lateral root density (Fig.  1). Importantly, 10 and 
50  μm melatonin exhibited maximal responses. Microscopic 
analyses of lateral root primordia shown in Fig.  1D, E sup-
ported the above results. This finding was consistent with 
previous findings in cucumber, rice and Arabidopsis (Pelagio-
Flores et  al., 2012; Zhang et  al., 2013, 2014; Liang et  al., 
2017). Comparatively, the most effective concentration(s) of 
melatonin in plants were different, which might be explained 
by different plant species or treatment time-points. In addi-
tion, although melatonin can act as a potential modulator of 
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photographs of LR primordia formation were taken and the number of LR primordia was recorded. The sample without added chemicals was the control (Con). 
Means and standard errors were calculated from at least three independent experiments with at least three replicates for each. Within each set of experiments (B, 

C, E), bars with different letters denote significant differences (one-way ANOVA followed by Tukey’s multiple range test, P < 0 .05).
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plant growth and development, high concentrations of mela-
tonin (100 and 200  μm) had no obvious effect (Fig.  1) and 
even suppressed cell proliferation and endoreduplication in 
Arabidopsis (Wang et  al., 2017). These results suggest that 
the beneficial role of exogenous melatonin in plants might act 
within a narrow dose range.

Since the application of exogenous melatonin may not 
completely mimic the function of endogenous melatonin, 
two transgenic Arabidopsis lines, MsSNAT-1 and MsSNAT-2, 
showing high levels of melatonin (Gu et  al., 2017), were 
used. Consistently, MsSNAT-1 and MsSNAT-2 transgenic 
lines had more lateral roots than wild-type (Fig. 5C–E). The 
above pharmacological and genetic evidence indicates that 
lateral root formation might be regulated by endogenous 
melatonin.

Involvement of H2O2 in melatonin-induced lateral root formation

Previous results showed that ROS signalling was specifically 
required during lateral root emergence in Arabidopsis, tomato 
and rice (Chen et al., 2013; Cao et al., 2014; Ma et al., 2014; 
Manzano et al., 2014). It is well established that melatonin and 
H2O2 have similar physiological roles in root organogenesis. 
Therefore, it is most likely that there is interaction in the pro-
cess of lateral root formation.

In this subsequent study, time-course analyses by using 
LSCM and spectrophotography revealed that exogenous mela-
tonin could simultaneously induce H2O2 generation in alfalfa 
seedlings (Fig. 2; reaching a maximum at 36 h of treatment). 
Additionally, MsSNAT-1 and MsSNAT-2 transgenic lines had 
higher endogenous H2O2 contents compared with the wild-type 
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(Fig.  5A, B). Combined with the corresponding phenotypes 
shown in Figs 1 and 5C–E, we speculate that there is a potential 
interrelationship between melatonin and H2O2 during lateral 
root formation.

Further pharmacological and microscopical evidence 
revealed the requirement for endogenous H2O2 in the induc-
tion of lateral root formation triggered by melatonin. This 
conclusion is based on several pieces of evidence. (1) 
Exogenously applied DPI (NADPH oxidase inhibitor) or 
DMTU (H2O2 scavenger) inhibited exogenous melatonin-
induced ROS accumulation determined by fluorescence 
analysis and spectrophotography (Fig.  3). (2) Melatonin-
triggered lateral root formation was obviously impaired by 
DPI or DMTU in alfalfa (Fig.  4). (3) Similar to the ben-
eficial responses to exogenous melatonin, the removal of 
endogenous ROS by using DPI or DMTU obviously blocked 
melatonin-triggered lateral root formation in wild-type and, 
in particular, transgenic plants (Fig. 5), confirming the possi-
ble role of H2O2 in root organogenesis elicited by melatonin. 
This deduction was consistent with the recent discovery that 
lateral root emergence was modulated by ROS accumula-
tion in Arabidopsis (Orman-Ligeza et  al., 2016). Related 
signalling receptor molecules should be elucidated in  
future work.

Cell cycle reactivation might be mediated by H2O2 through 
regulation of the expression of multiple cell cycle genes in 
early lateral root initiation (Himanen et  al., 2004). Alfalfa 
MsCDKB1;1 and MsCDKB2;1 belong to the plant-specific CDK 
class, and MsCDKB2;1 was also activated as a consequence 
of wounding and treatment with ethephon in a non-cell cycle-
dependent fashion (Zhiponova et  al., 2006). The subsequent 
experiment found that the expression of above two cell cycle 
genes was upregulated by exogenous melatonin (Fig. 6A, B).  
These inducing effects were impaired by treatment with DPI, 
or DMTU, which was consistent with the reduced H2O2 levels 
(Fig.  3) and subsequently decreased lateral root formation in 
alfalfa seedlings (Fig. 4). Genetic evidence further revealed that, 
compared with the wild-type, the expression of AtCDKB1;1 
and AtCDKB2;1 transcripts was upregulated in transgenic 
seedlings (Fig. 6C, D), while these increased transcript levels 
were significantly reversed by DPI or DMTU treatment. These 
results are consistent with the changes in lateral root formation 
(Fig. 5C–E). Therefore, this study clearly demonstrates that cell 
cycle regulatory genes might be the target genes of the action 
of H2O2 triggered by melatonin, thus leading to lateral root 
development. In agreement with the above results, an RNA-
seq approach revealed that root development was modulated by 
melatonin via the ROS system in cucumber (Zhang et al., 2014). 
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A recent study has indicated that Arabidopsis root development 
processes elicited by melatonin are likely independent of auxin 
responses (Pelagio-Flores et al., 2012). By contrast, Liang et al 
(2017) suggested that melatonin shaped root architecture by 
activating the auxin signalling pathway in rice. Previous find-
ings also showed a close interaction between HY1 and H2O2 in 
auxin-induced lateral root formation in Arabidopsis (Ma et al., 
2014). Thus, whether the auxin signalling is involved in the 
above process should be elucidated in the future.

In summary, the ability of endogenous melatonin to induce 
lateral root formation is a new finding. Further pharmacological 
and genetic evidence demonstrated that H2O2 signalling might 
be required for melatonin-induced lateral root development, 
and that the regulation of cell cycle regulatory gene expression 
might be an indispensable and crucial strategy in this process 
(Fig. 7). Thus, the above results will open a new window to the 
understanding of molecular mechanisms related to lateral root 
formation induced by melatonin.
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