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Abstract

Motivation: As protein structure is more conserved than sequence during evolution, multiple struc-

ture alignment can be more informative than multiple sequence alignment, especially for distantly

related proteins. With the rapid increase of the number of protein structures in the Protein Data

Bank, it becomes urgent to develop efficient algorithms for multiple structure alignment.

Results: A new multiple structure alignment algorithm (mTM-align) was proposed, which is an

extension of the highly efficient pairwise structure alignment program TM-align. The algorithm

was benchmarked on four widely used datasets, HOMSTRAD, SABmark_sup, SABmark_twi and

SISY-multiple, showing that mTM-align consistently outperforms other algorithms. In addition, the

comparison with the manually curated alignments in the HOMSTRAD database shows that the

automated alignments built by mTM-align are in general more accurate. Therefore, mTM-align

may be used as a reliable complement to construct multiple structure alignments for real-world

applications.

Availability and implementation: http://yanglab.nankai.edu.cn/mTM-align

Contact: zhng@umich.edu or yangjy@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As protein structure is more conserved than sequence during evolu-

tion, multiple structure alignment (MSTA) can be more informative

than multiple sequence alignment (MSA), especially for distantly

related proteins. Currently, there are >130 thousand structures in

the Protein Data Bank (PDB), with weekly increase of about 200

new structures (Rose et al., 2017). These data make it urgent to

develop efficient algorithms for MSTA.

A few algorithms have been developed for MSTA in the past years.

They can be broadly divided into two categories. The first one is based

on progressive merging of pairwise structure alignments (PSAs), such

as STAMP (Russell and Barton, 1992), SSAP (Orengo and Taylor,

1996), CE-MC (Guda et al., 2004), POSA (Ye and Godzik, 2005),

MAMMOTH-mult (Lupyan et al., 2005), MUSTANG (Konagurthu

et al., 2006), CBA (Ebert and Brutlag, 2006), SALIGN (Madhusudhan

et al., 2009), MISTRAL (Micheletti and Orland, 2009), MAPSCI

(Ilinkin et al., 2010), msTALI (Shealy and Valafar, 2012) and mulPBA

(Leonard et al., 2014). The second is based on iterative fragment align-

ment and assembly, such as MultiProt (Shatsky et al., 2004), Matt

(Menke et al., 2008), Smolign (Sun et al., 2012) and 3DCOMB (Wang

et al., 2011). The former relies on PSAs and inaccurate PSAs may

degrade the quality of the MSTA. The latter is computationally expen-

sive, when making all-against-all comparisons of fragments. Note that

some MSTA algorithms take the flexibility of protein structures into

consideration, such as POSA (Ye and Godzik, 2005), Matt (Menke

et al., 2008) and Smolign (Sun et al., 2012).

In this study, we developed a new MSTA algorithm (mTM-

align), which builds a MSTA progressively based on the PSAs gener-

ated by the highly efficient program TM-align (Zhang and Skolnick,

2005). The flexibility of protein structure is not considered here and
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shall be included in future work. The algorithm was benchmarked

on four widely used datasets, HOMSTRAD, SABmark_sup,

SABmark_twi and SISY-multiple, demonstrating significant advant-

age over other MSTA algorithms.

2 Materials and methods

2.1 Benchmark datasets
Four datasets were collected to benchmark the proposed method.

The first one is from HOMSTRAD (Stebbings and Mizuguchi,

2004), which is a manually curated resource of structure-based

alignments for homologous protein families (version of Nov 2015).

There are 1031 families in the original database. After filtering out

the families with<3 structures, we obtained 398 families, each con-

taining 3–27 structures. The next two datasets are from SABmark

(version 1.65) (Van Walle et al., 2005), a resource for alignments of

sequences with very low to medium sequence similarity. There are

two subsets in SABmark: superfamily and twilight zone. The super-

family subset (denoted by SABmark_sup) contains 425 groups of

structures with pairwise sequence identity<50%. The twilight zone

subset (denoted by SABmark_twi) contains 209 groups of structures

with pairwise sequence identity<25%. Each group in these two

datasets contains at most 25 structures. The last one is SISY-

multiple (Berbalk et al., 2009), which originally consists of 106

groups. The number of structures in each group is between 3 and

119. Because some of the compared methods failed to generate

MSTA for 20 groups (e.g. MAMMOTH-mult only works for groups

with<30 structures), only the remaining 86 groups were kept. Note

that mTM-align works for all groups and the results are provided

for download for future studies. All the benchmark datasets and the

mTM-align results are available at http://yanglab.nankai.edu.cn/

mTM-align/benchmark.

2.2 Algorithm for pairwise structure alignment
The alignment of two protein structures is done by TM-align

(Zhang and Skolnick, 2005), a highly efficient program for pairwise

structure alignment. It is introduced briefly here for the sake of con-

venience. TM-align aims to find a PSA that maximizes TM-score, a

length-independent scoring function for measuring the similarity of

two structures (Zhang and Skolnick, 2004):

TM-score ¼ max
1

L

XNali

i¼1

1

1þ di=d0ð Þ2
: (1)

where di is the distance between the i-th pair of Ca atoms of the two

structures; L is the length of the target protein (one of the input

structures); Nali is the number of aligned residue pairs; and d0 is a

scale factor defined by:

d0 ¼
(

1:24�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 153
p

�1:8; if L > 21

0:5; otherwise
(2)

TM-score is in the range of 0 to 1 and a higher value of TM-score

indicates more similar structures.

A heuristic algorithm is used to generate a PSA efficiently in TM-

align. Five different initial alignments are quickly identified based

on: gapless threading (IA1), secondary structure (IA2), IA1 refined

by secondary structure (IA3), local structure superposition (IA4) and

fragment-based gapless threading (IA5). Each initial alignment is

refined iteratively by a heuristic algorithm, which works as follows.

First, the two structures are superimposed by the TM-score rotation

matrix based on their initial alignment. Second, the similarity score

for each pair of residues in the two structures is calculated based on

their pairwise distance of the Ca atoms. Third, the similarity scores

are used to generate a new alignment by the Needleman-Wunsch

dynamic programming (NWDP) (Needleman and Wunsch, 1970).

This procedure is repeated until the TM-score of the alignment does

not increase. Finally, the alignment with the highest TM-score is

returned.

2.3 Algorithm for multiple structure alignment
The MSTA algorithm is based on TM-align, thus we name it as

mTM-align. The idea of mTM-align is borrowed from the MSA

algorithm CLUSTALW (Thompson et al., 1994). Figure 1 shows

the overall architecture of mTM-align, using the HOMSTRAD

family ‘Bacterial regulatory helix-turn-helix proteins, araC family,

single structural repeat’. Given a set of protein structures, their

MSTA is built with three steps, which are introduced below in

details.

2.3.1 Step 1. Generate the PSAs

Our algorithm starts by generating all the PSAs for the input

structures with TM-align. Supposing the total number of the

input structures is N, the number of possible structure pairs is then

N(N � 1)/2. From TM-align, the PSAs and the associated TM-score

for each pair of structures are obtained. In this study, the TM-score

is normalized by the size of the smaller protein. When the sizes of

two proteins differ significantly, the TM-score will be different con-

siderably when normalized by the bigger one. This may impact the

subsequent steps of mTM-align. Our tests reveal that this leads to

about half of the families/groups with different phylogenetic trees.

However, the TM-score of the common core (defined later) of the

final MSTAs does not have a significant difference, reflecting

that mTM-align is robust remarkably (please see Supplementary

Table S1).

Fig. 1. The architecture of mTM-align for progressive construction of a MSTA
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2.3.2 Step 2. Construct a structure-based phylogenetic tree

In order to guide the next step, a structure-based phylogenetic tree is

constructed using the UPGMA algorithm (Sokal and Michener,

1958). The distance matrix used for the tree construction is calcu-

lated based on the TM-score from TM-align (i.e. 1-TM-score).

A rooted tree is then constructed based on the distance matrix using

the UPGMA algorithm.

2.3.3 Step 3. Build a MSTA progressively

The branching order from the phylogenetic tree is used to guide the

progressive construction of a MSTA. Alignment of two structures is

directly taken from TM-align. Aligning an already constructed

alignment with another alignment/structure is performed using the

NWDP algorithm.

There are two important factors in the procedure of NWDP.

One is the scoring function for measuring the matching state. The

other is the gap penalty (to be determined later). The score S(i, j) for

matching the i-th column of the alignment A with the j-th column of

the alignment B (or the j-th residue of a structure if B only contains

one structure) is defined by the following equation.

S i; jð Þ ¼
XM
m¼1

XN
n¼1

s im; jnð Þ (3)

where M (N) is the numbers of structures in the alignment A (B); im

(jn) is the index of the residue at the i-th (j-th) column for the m-th

(n-th) structure; this index is null and the score s(im, jn) is set to 0 if

it is a gap insertion for the structure at this column; otherwise, it is

calculated based on the PSA from TM-align below.

s im; jnð Þ ¼
1

�
1þ dðim; jnÞ

d0

� �
2

� �
; if d im; jnð Þ < dcut

s; otherwise

8>><
>>: (4)

where d(im, jn) is the distance between the im-th residue in the m-th

structure and the jn-th residue in the n-th structure from PSA. Note

that the calculation of d(im, jn) is based on the TM-score rotation

matrix in the first step and is unchanged in this step. dcut is a dis-

tance cutoff introduced to punish matching distant residue pairs

with a distance-dependent penalty:

s ¼
�0:1� 1� edcut�dðim ;jn Þ

� �
; if TM-score > 0:5

�0:1� 1� edcut�dðim ;jn Þ
� �

=b im; jnð Þ; otherwise

(

(5)

where b(im, jn) is the corresponding value in the normalized

BLOSUM62 matrix by 20.1x BLOSUM62, which has been used in pre-

vious work to convert the position-specific scoring matrix into a fre-

quency matrix (Xia et al., 2017; Yang and Chen, 2011). The

division by b(im, jn) is inspired by the fact that both structure and

sequence similarities have been considered in the HOMSTRAD

database. Intuitively, the punishment is enlarged/shrunk for dissimi-

lar/similar residues. This adjustment is only applied for the groups

with low structural similarity (i.e. the mean pairwise TM-score

is�0.5).

2.4 Metrics for performance evaluation
The quality of a MSTA is evaluated globally and locally. The PSAs

deduced from a MSTA are called imposed pairwise alignments

(IPAs).

The global metrics are defined based on the IPAs. For each IPA,

four metrics are first defined. Two aligned residues are said to be

structurally equivalent if they are within the distance of 4 Å after

superimposition. We can calculate the number of structurally equiv-

alent residues (Lali), the associated Root-Mean-Square Deviation

(RMSD) and TM-score. Here the TM-score is normalized by the

length of the smaller protein. Because the reference MSTAs are

available for the HOMSTRAD dataset, we can define another met-

rics accuracy (ACC). The reference MSTAs are also superimposed

and the 4 Å cutoff is applied. The ACC of an IPA is defined as the

number of structurally equivalent residue pairs consistent with the

reference divided by the Lali of the reference IPA. The global quality

of a MSTA is then measured accordingly by averaging the values

over all IPAs. For brevity, the same notations are also used.

The local metrics are defined for the common core regions. The

common core of a MSTA is defined as the columns that do not con-

tain any gap and all pairwise residue distances are smaller than 4 Å

(Lupyan et al., 2005). To calculate the distances, the structures are

superimposed to the same reference structure. Here, the reference

structure is selected as the one with the longest non-gap alignment.

The first local metric is the number of columns in the common core

(Lcore). The other two are the average pairwise RMSD (ccRMSD)

and TM-score (ccTM-score), defined similarly as the average global

RMSD and TM-score with the pairwise IPAs limited to the common

core. The pairwise TM-score is also normalized by the length of the

smaller protein. Note that because the length of a common core is

usually smaller than the lengths of the individual proteins, the values

of the ccTM-score are smaller than TM-score. However, it is

still meaningful to compare different MSTA methods using the

ccTM-score because it is normalized consistently for different

methods.

It is worthwhile to mention that the alignment length Lali (Lcore)

and RMSD (ccRMSD) are interdependent. Longer alignment tends

to give higher RMSD (ccRMSD) values. Therefore, only comparing

these values for different MSTA methods may be problematic. On

the contrary, the TM-score (ccTM-score) is a length-independent

metrics and is more suitable for comparing different methods

objectively.

Finally, the running time (RT, in seconds) is used to compare the

speed of different methods. The RT for a dataset is computed as the

total amount of the time spent divided by the number of families/

groups in the dataset.

3 Results and discussion

3.1 Parameter optimization
Two parameters remain to be determined: the gap penalty in NWDP

and dcut in Equations (4 and 5). A training set was constructed by

randomly selecting 50% groups from the dataset SABmark_twi.

To reduce the training time, the gap penalty was set to 0 when tun-

ing dcut. The gap penalty was optimized after dcut was fixed. The

ccTM-score was used for optimization. After the optimization, the

values for dcut and the gap penalty were 4 and 0.2, respectively (see

Supplementary Fig. S1).

Note the ACC was not used for optimization based on the fol-

lowing observations. First, the ACC is only available for the

HOMSTRAD dataset. This dataset might be too easy (as indicated

by the high pairwise TM-score in Supplementary Table S1) to be

sensitive to the parameter tuning. In fact, the ACCs for almost all

the compared methods are above 0.9. Second, when optimizing for

the ACC, a slightly higher accuracy could be obtained (0.946 versus
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0.934). However except ccRMSD, the results for other metrics all

became worse for all datasets (Supplementary Table S2).

3.2 Comparison with other MSTA methods
We compare mTM-align with five widely used MSTA programs:

MUSTANG (Konagurthu et al., 2006), Matt (Menke et al., 2008),

MultiProt (Shatsky et al., 2004), Promals3D (Pei et al., 2008) and

MAMMOTH-mult (Lupyan et al., 2005). These programs were

installed locally and ran with the default parameters. As MultiProt

does not generate alignment of the full structures, the global metrics

for this method are not applicable. The comparison results on the

four benchmark datasets are listed in Tables 1–4.

On the HOMSTRAD dataset, mTM-align achieves the highest

Lcore and ccTM-score of 146.6 and 0.674, respectively. The ccTM-

score improvements by mTM-align over Matt, MAMMOTH-mult,

MUSTANG, Promals3D and MultiProt are 5.1%, 9.1%, 12.0%,

23.4% and 5%, respectively. The ccRMSD of mTM-align is 1.3,

slightly higher than other methods. This is because the common core

returned by mTM-align is much larger than others (e.g. 146.6 versus

117.2 for Promals3D). The global TM-score by mTM-align are also

higher than other methods (e.g. 0.784 versus 0.758 for Matt).

Interestingly, the RMSD for mTM-align is lower than other methods

though its alignment is the longest, suggesting that the longer align-

ments by mTM-align are indeed structurally more conserved than

others. The ACC for mTM-align is 0.934, slightly higher than other

methods as well. As shown by the RT, the speed of mTM-align is

slightly slower than MAMMOTH-mult. However, this method has

significantly lower ccTM-score than mTM-align (0.618 versus

0.674). Compared with the second best methods (in terms of ccTM-

score), mTM-align is 12.9 and 13.7 times faster than Matt and

MultiProt, respectively.

We also calculated the corresponding metrics for the reference

MSTAs given in the HOMSTRAD dataset and the results are also

listed in Table 1. We can see that except the ccRMSD, other metrics

for mTM-align are all better than the reference. A head-to-head

ccTM-score comparison between mTM-align and the reference is

shown in Figure 2. mTM-align’s alignment has higher/lower ccTM-

score for 362/12 families than the reference. For the remaining 24

families, the ccTM-scores for both are equal. Note that the reference

MSTAs in HOMSTRAD were obtained with automated structure

alignment followed by manual investigation. Replacing the auto-

mated alignment part by mTM-align should be beneficial for con-

structing more accurate MSTAs.

Figure 3 shows an example family (‘YgbB’) that mTM-align gen-

erates more reasonable alignment. There are three structures in this

family. From the front view, compared with the reference (Fig. 3A),

the four beta strands highlighted in magenta are aligned much better

for mTM-align (Fig. 3C). After rotating by 180
�

to the back view,

we can see that the three alpha helices are also aligned very well for

mTM-align (Fig. 3D). In contrast, the reference alignment is very

divergent for these helices (Fig. 3B). These make the common core

of mTM-align’s MSTA much bigger (124 versus 76) and thus has a

higher ccTM-score than the reference MSTA (0.78 versus 0.49).

Table 2 lists the results on the SABmark_sup dataset, which

shows that the ccTM-score and TM-score for all methods are lower

than the HOMSTRAD dataset, meaning that the structures in this

dataset are less similar and more challenging to align. We can see

that mTM-align outperforms other methods in terms of Lcore,

ccTM-score, Lali and TM-score. For example, the ccTM-score for

mTM-align is 0.426, which is 8.7%, 26.8%, 32.3%, 73.2% and

9% higher than Matt, MAMMOTH-mult, MUSTANG, Promals3D

and MultiProt, respectively. The slightly higher ccRMSD by mTM-

align can be explained by the common core with bigger size (72.9).

Table 1. The comparison of methods on the HOMSTRAD dataset

Metrics M1 M2 M3 M4 M5 M6 Ref.

Lcore 146.6 139.4 135.6 130.2 117.2 138.6 134.1

ccRMSD 1.3 1.29 1.26 1.26 1.21 1.22 1.24

ccTM-score 0.674 0.641 0.618 0.602 0.546 0.642 0.619

Lali 173.8 167.8 166 162.7 154.3 NA 164.4

RMSD 1.46 1.48 1.48 1.49 1.50 NA 1.48

TM-score 0.784 0.758 0.746 0.735 0.7 NA 0.742

ACC 0.934 0.914 0.918 0.918 0.879 NA 1

RT 2.48 31.94 1.7 19.72 187.3 34.03 NA

Note: M1–M6 represents mTM-align, Matt, MAMMOTH-mult,

MUSTANG, Promals3D and MultiProt, respectively. Ref. denotes the refer-

ence alignment given in the HOMSTRAD database. The best results are high-

lighted in bold type.

Fig. 2. Comparison of the ccTM-score between the MSTAs generated by

mTM-align and the reference MSTAs in the HOMSTRAD database

A B

C D

Fig. 3. An example family (‘YgbB’) showing that mTM-align (C, D) has struc-

turally more convergent MSTA than the reference given in HOMSTRAD (A, B)
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For the global metrics, mTM-align achieves the highest TM-score

(0.627) and Lali (112.9) while maintaining similar RMSD with other

methods. As shown by the RT, mTM-align takes 4.22 seconds per

group, about 1.8 times of the method MAMMOTH-mult, which

however does not perform well as indicated by the lower ccTM-

score. The ones with relatively closer performance to mTM-align

are Matt and MultiProt, which are about 11.9 and 16.3 times slower

than mTM-align, respectively.

The dataset SABmark_twi is even more challenging to align than

SABmark_sup, as shown by the low TM-score of all methods in

Table 3 (<0.5). The ccTM-score of all methods are relatively lower

because the contribution to this score is only from the common core

but normalized by the full length of the structures. The common

core for this dataset is relatively smaller as shown by the low ratio

of Lcore/Lali (50%) for mTM-align. In comparison, the correspond-

ing ratios for the HOMSTRAD and SABmark_sup datasets are 84%

and 65%, respectively. mTM-align achieves ccTM-score (TM-score)

of 0.273 (0.486), which is 8.3% (20%) higher than Matt. The

ccRMSD of Promals3D is the lowest because it generates MSTAs of

very small common core, indicated by the low value of Lcore (12

compared with 38.1 for mTM-align). For the running time, mTM-

align takes 4.2 s per group in this dataset, which is about 12.3 times

faster than Matt.

Comparisons on the SISY-multiple dataset demonstrate that

mTM-align outperforms other methods again. Table 4 shows that

mTM-align generates the longest alignment (with Lali of 135.5) and

the biggest common core (with Lcore of 80.5). Compared with Matt,

the TM-score and ccTM-score of mTM-align are 10.7% and 7.4%

higher, respectively, while with similar RMSD and ccRMSD. As to

the running time, mTM-align takes 6.19 seconds per group, which is

about 15 times faster than Matt and MultiProt, the two methods

with the second highest ccTM-score.

3.3 Running time analysis for mTM-align
As mTM-align builds the MSTA based on the PSA generated by

TM-align, we decompose the total running time into two parts, the

PSA part by TM-align and the remaining used for building the

MSTA (mainly by NWDP). The results are shown in Table 5. We

can see that the major running time for mTM-align is in the PSA

part. For example, TM-align takes about 85%, 75%, 75% and

80% of the total running time for the HOMSTRAD, SABmark_sup,

SABmark_twi and SISY-multiple datasets, respectively. Note that

the running time by mTM-align is dependent on two factors: the

average number of the structure pairs to be aligned and the average

length of the structures. Table 5 shows the average number of pairs

in the HOMSTRAD dataset is about half of the other three datasets.

Such a significant difference makes both the PSA and the NWDP

parts take more time for these datasets than the HOMSTRAD data-

set. In addition, though the numbers of structure pairs are similar

(28) for the SABmark_sup and SISY-multiple, the structures in the

latter are bigger (172.6 versus 228.8), making it takes more time for

the latter (4.22 versus 6.19).

3.4 Factors affecting the performance of mTM-align
As shown in Figure 1, mTM-align consists of three key steps for gen-

erating a MSTA: the PSA by TM-align, the phylogenetic tree con-

struction by UPGMA, and the progressive build of a MSTA by

NWDP. Thus we analyze the factors in these steps impacting the

performance of mTM-align.

3.4.1 Impact of the PSA

The program TM-align with the default option has been used to gen-

erate the PSAs. It would be interesting to use other programs to pro-

duce alternative PSAs. We tried to output different PSAs from TM-

align, representing different alignment methods. As there are five

different initial alignments in TM-align, we tested five alternative

PSAs that are obtained with only one of those initial alignments

(IA1–IA5. Please refer to the Section 2.2). Supplementary Table S3

lists the average TM-score of different PSAs and the corresponding

ccTM-score and TM-score of the MSTAs. We can see that for all

datasets, the default PSA has the highest pairwise TM-score and the

MSTA built based on it also has the highest ccTM-score and TM-

score. Comparison between these alignments suggests that the PSA

with a higher TM-score tends to produce a MSTA with better qual-

ity. Thus, a direct way to improve mTM-align in future is improving

the first step of PSA.

Table 5. The running time for mTM-align

Dataset #Pairs Length PSA NWDP Total

HOMSTRAD 15 205.5 2.12 0.36 2.48

SABmark_sup 28 172.6 3.16 1.06 4.22

SABmark_twi 36 153.4 3.15 1.05 4.2

SISY-multiple 28 228.8 4.98 1.21 6.19

Table 2. The comparison of methods on the SABmark_sup dataset

Metrics M1 M2 M3 M4 M5 M6

Lcore 72.9 66.1 57.5 53.6 41 64.4

ccRMSD 1.43 1.37 1.13 1.15 0.9 1.34

ccTM-score 0.426 0.392 0.336 0.322 0.246 0.391

Lali 112.9 101.9 95.9 94.1 82.1 NA

RMSD 1.80 1.82 1.71 1.75 1.71 NA

TM-score 0.627 0.576 0.537 0.533 0.467 NA

RT 4.22 50.34 2.29 50.55 325.8 68.65

Table 3. The comparison of methods on the SABmark_twi dataset

Metrics M1 M2 M3 M4 M5 M6

Lcore 38.1 34 23.2 21.3 12 31.8

ccRMSD 1.39 1.34 0.88 0.91 0.56 1.32

ccTM-score 0.273 0.252 0.171 0.168 0.1 0.24

Lali 76.1 60.8 51.9 52.7 38.3 NA

RMSD 2.04 1.94 1.73 1.89 1.75 NA

TM-score 0.486 0.405 0.344 0.356 0.264 NA

RT 4.2 51.79 2.03 60.78 391.1 71.15

Table 4. The comparison of methods on the SISY-multiple dataset

Metrics M1 M2 M3 M4 M5 M6

Lcore 80.5 75.2 59 53.1 38.9 76

ccRMSD 1.33 1.31 0.95 0.84 0.74 1.27

ccTM-score 0.422 0.393 0.289 0.271 0.197 0.39

Lali 135.5 116.6 108.6 106.2 94.3 NA

RMSD 1.74 1.75 1.58 1.57 1.54 NA

TM-score 0.629 0.568 0.505 0.494 0.432 NA

RT 6.19 90.98 3.23 69.73 240.5 90.19
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3.4.2 Impact of the phylogenetic tree construction algorithm

The UPGMA algorithm has been used to construct the phylogenetic

tree to guide the progressive merging of alignments. For comparison,

we tried the neighbor-joining (NJ) method (Saitou and Nei, 1987) to

construct the phylogenetic tree. As an extreme case, we skip the step

of tree construction and merge the alignments randomly. The time

used for phylogenetic tree construction is negligible and thus the

running time is not compared here. Supplementary Table S4 shows

that the utilization of phylogenetic tree does help build MSTA with

higher ccTM-score and TM-score than the random method.

Comparison between the UPGMA and NJ suggests that the former

is consistently better for all datasets.

3.4.3 Impact of the scoring function in DP

In the scoring function [i.e. Equation (4)], matching distant residue

pairs is discouraged by a penalty given by Equation (5). We tested

its impact to mTM-align when not using any penalty. The ccTM-

score and TM-score with both scoring functions are shown in

Table 6. It suggests that using penalty consistently outperforms that

without penalty for all datasets.

3.5 What went right?
As discussed in the last section, the MSTA built from more accurate

PSAs has higher ccTM-score and TM-score. This means that when

the PSAs are accurate, mTM-align is anticipated to build accurate

MSTAs. The HOMSTRAD dataset is used to verify this hypothesis.

We calculate the average accuracy (ACC) of TM-align’s PSA and the

IPA from mTM-align’s MSTA. The correlation is shown in

Supplementary Figure S2. The Pearson correlation coefficient (PCC)

is 0.94, indicating that more/less accurate PSA results into MSTA of

higher/lower accuracy.

It is worthwhile to mention that there are 95 groups above the

diagonal line of Supplementary Figure S2, meaning that the MSTA

by mTM-align has higher accuracy than the PSA by TM-align. This

can be attributed to the progressive merging of alignments by

NWDP, which helps fixing some wrong PSAs. For example, for the

family ‘EF-TS’ (Fig. 4) that consists of three structures, the accuracy

of the PSAs is 0.667, which increases to 0.947 in the MSTA. This

improvement is due to the correction of the PSA between the struc-

tures shown in Figure 4A, which has accuracy of 0 and goes up to 1

after the correction. In addition, Figure 4B and C shows that in the

zoomed regions, the mTM-align alignment is much more convergent

than the HOMSTRAD alignment. As a result, the MSTA by mTM-

align has significantly higher ccTM-score than the MSTA in

HOMSTRAD (0.37 versus 0.124).

3.6 What went wrong?
From Figure 2, we can see there are a few families (12) for which

mTM-align generates MSTAs with lower ccTM-score than the refer-

ence. We took a closer check at the one with the biggest difference,

i.e. the family ‘hexapep’. There are three structures in this family.

Compared with reference, the ACC for the PSA is very low (0.328).

This is mainly because there is a shift of 31 residues in the PSA

between the red structure and the other two shown in wheat cartoon

in Figure 5. However, the pairwise TM-score of the alignment with

the one in red trace is slightly higher (0.795 versus 0.741) than that

in blue trace, which is understandable as TM-align aims to maxi-

mize the TM-score. The consideration of the sequence similarity in

the scoring function [i.e. Equation (5)] was proposed to solve such

issues. This does help improve the alignments for some families/

groups. Unfortunately, it failed to correct the errors for this exam-

ple. In addition, we tried to use multiple sub-optimal PSAs

from TM-align to partially solve such issue. However, this strategy

makes the algorithm complicated and significantly slows down the

program and thus is not considered here. Better strategy may be

explored in future work.

4 Conclusions

A new algorithm mTM-align for multiple protein structure align-

ment has been developed, which is an extension of the highly

efficient pairwise structure alignment program TM-align. The algo-

rithm was benchmarked on four datasets, demonstrating that

Table 6. The impact of the scoring function to mTM-align

Dataset With penalty Without penalty

ccTM-score TM-score ccTM-score TM-score

HOMSTRAD 0.674 0.784 0.647 0.766

SABmark_sup 0.426 0.627 0.394 0.594

SABmark_twi 0.273 0.486 0.247 0.451

SISY-multiple 0.422 0.629 0.382 0.587

A

B C

Fig. 4. An example family (‘EF-TS’) showing that mTM-align corrects the PSA

and generates a MSTA with higher ccTM-score than the reference alignment

by HOMSTRAD. (A) The PSA by TM-align and the IPA for the chains 1efud1

(in green) and 1efud2 (in blue). The correct alignments compared with the

reference are highlighted in orange. (B) and (C) are the MSTAs by mTM-align

and HOMSTRAD, respectively

Fig. 5. An example family (‘hexapep’) showing that mTM-align fails to gener-

ate an accurate MSTA due to the very low accuracy of the pairwise alignment,

caused by a shift in the pairwise alignment. Following the branching order in

the phylogenetic tree, the two structures (shown in wheat cartoon) were first

aligned and the third structure (shown in red trace) was then added to the

alignment. The structure in blue trace is from the reference alignment, which

is basically a shift of the structure in red trace

1724 R.Dong et al.

Deleted Text: . 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx828#supplementary-data
Deleted Text: . 
Deleted Text: (
Deleted Text: ,
Deleted Text: )
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx828#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx828#supplementary-data
Deleted Text: ,
Deleted Text: (
Deleted Text: ,
Deleted Text: )


mTM-align outperforms many other MSTA algorithms, such as

Matt, MUSTANG and MultiProt. In addition, comparison with the

manually curated alignments in the HOMSTRAD database shows

that the automated alignments built by mTM-align are in general

more accurate. Therefore, mTM-align may be used as a reliable

complement for constructing multiple structure alignment for real-

world applications.
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