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Abstract
Study Objectives: Insomnia is a common sleep disorder that is associated with a range of adverse outcomes. Patients with insomnia 
exhibit hyperarousal in multiple domains, including an elevated metabolic rate, but specific metabolic molecular perturbations 
are unknown. Furthermore, objective clinical markers of insomnia are not available and current assessment of pathological extent 
relies on self-report. Here, we provide preliminary evidence that chronic insomnia is remarkably reflected in the periphery through 
detailed metabolic assessments.

Methods: Serum from confirmed patients with insomnia and matched good sleepers (n = 15 per group) was sampled at high 
temporal resolution (every 2 hr over 48 hr). Food intake was controlled by providing hourly isocaloric snacks, and sleep architecture 
was assessed by overnight polysomnography. Quantitative metabolic assessments were conducted using nuclear magnetic 
resonance spectroscopy.

Results: Global metabolic profiles differentiated patients with insomnia from healthy controls, with elevated amino acid and 
energy metabolites and reduced branched-chain amino acid catabolic products. Strikingly, branched-chain amino acid catabolism 
was found to be specifically altered during the night with ~10 per cent increased accumulation of glucose in insomnia patients. 
Rhythmicity analysis revealed 11 metabolites that cycled diurnally across both groups, with phase advances noted for acetone and 
delays for lactate and branched-chain amino acids and their products.

Conclusions: These preliminary observations suggest that insomnia is associated with quantitative metabolic dysregulation 
and supports the hyperarousal hypothesis. Furthermore, we posit that these changes lead to a state of metabolic desynchrony in 
insomnia that is involved in the pathophysiology of the disorder and/or mediates its impact on health outcomes.
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Statement of Significance
Insomnia is associated with significant public health burden, but the biological mechanisms by which insomnia affects health 

are unknown. Here, we provide preliminary evidence that chronic insomnia is associated with altered metabolism compared with 
good sleepers, with specific alterations in rhythmicity of anabolic vs catabolic metabolite levels in blood. In particular, glucose 
metabolism was found to be elevated in patients with insomnia. These results suggest that insomnia is associated with systemic 
metabolic dysregulation potentially involved in the pathophysiology of the disorder and/or impact on health outcomes.
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Introduction
Chronic insomnia is estimated to be one of the top 10 causes of 
neuropsychiatric disability in the world by the National Institutes 
of Mental Health [1]. Insomnia currently affects 10%–15% of the 
population [2] and is associated with a number of negative seque-
lae including daytime fatigue, cognitive difficulties, impaired 
emotional regulation, and decreased quality of life [3]. Despite the 
public health impact of insomnia, very little is known about the 
underlying pathophysiology of the disorder or the mechanisms 
through which insomnia affects physical and mental health.

The metabolome offers a promising target for identifying these 
mechanisms for several reasons. First, there have been several 
studies documenting elevated metabolic parameters in patients 
with insomnia compared with good sleepers [4–6] although these 
studies did not seek to identify particular metabolic processes 
driving these differences. Brain metabolism studies by magnetic 
resonance suggested altered brain energetics and cell membrane 
dysregulation [7]. Second, it is likely that insomnia is associated 
with peripheral effects on physiology given that experimental 
sleep deprivation has been shown to affect peripheral metabo-
lism [8]. Finally, metabolic byproducts are exchanged with the 
bloodstream to potentially reflect brain-related metabolism.

Comprehensive metabolic profiling of patients with insom-
nia and differential features from healthy controls is rare, and 
possibly absent. However, there is a recent surge of compre-
hensive metabolic profiling to investigate the effects of experi-
mental sleep restriction or deprivation [8]. We have used mass 
spectrometry–based global profiling of blood serum in rodents 
and humans to demonstrate the presence of cross species bio-
markers post partial sleep restriction [7]. Similarly, Van den Berg 
et al. have reported that plasma acylcarnitines are significantly 
affected following one night of sleep restriction [9].

We have recently performed a meta-analysis of sleep and cir-
cadian metabolomics studies and have shown that existing mass 
spec studies are over-represented in nonpolar species [8]. As a 
result, the goal of this study was to conduct metabolite profiling 
on blood from patients with chronic insomnia and matched good 
sleepers with high temporal resolution (sampling every 2 hr over 
48 hr) in order to identify a metabolic signature of polar metabo-
lites to reveal insights into the pathophysiology of this common 
sleep disorder. Individuals were required to be free of comorbidi-
ties and medications in order to determine whether insomnia is 
associated with metabolic differences in a relatively “pure” sample 
with fewer potential confounding factors. Our results suggest that 
in spite of similar sleep architecture to normal participants, the 
metabolic profiles are perturbed both globally through the day and 
temporally through the night sleep period. Specifically, we see pre-
liminary evidence of a distinct signature of altered energy metabo-
lism throughout the day and nighttime changes in branched-chain 
amino acid (BCAA) metabolism. Furthermore, a number of metabo-
lites were rhythmic; however, there are phase differences between 
insomniacs and controls which lead to the hypothesis of metabolic 
desynchrony. We thus propose a future platform for investigating 
metabolic disorder phenotypes of patients with chronic insomnia.

Methods

Participants

Participants consisted of a group of with chronic insomnia disor-
der (n = 15) and age- and sex-matched good sleepers (n = 15). All 

participants were between the ages of 25 and 50 and had a BMI 
≤ 29. Recruitment was from the general community and involved 
placement of advertisements in online classified posting and local 
newspapers and other media. Both patients with insomnia and 
controls were recruited through the same methods. Participants 
with insomnia met the following Research Diagnostic Criteria for 
primary insomnia: subjective complaint of difficulty initiating or 
maintaining sleep, waking up too early or nonrestorative sleep; 
daytime consequences as a result of the poor sleep; duration of 
at least 1 month; and sleep disturbance was not secondary to a 
medical or psychiatric condition based on the effects of a sub-
stance, as determined by clinical history. To exclude individuals 
with mild insomnia, insomnia had to occur on three or more 
nights per week for 3 months or longer. A 30 min criterion was 
used such that participants had to report taking 30 min or longer 
to fall asleep and/or spend 30 min awake during the night. To be 
considered a good sleeper, participants had to report no lifetime 
history of significant insomnia symptoms. A 15 min criterion was 
used such that good sleepers had to report taking 15 min or less 
to fall asleep and spend 15 min or less awake during the night 
over the past month. Exclusion criteria for both groups were as 
follows: medical or psychiatric comorbidities that could affect 
sleep (e.g. major depression or chronic pain) as assessed by a his-
tory and physical and by structured clinical interview with the 
SCID-IV; sleep disorders other than insomnia as determined by 
clinical history and screening polysomnography; engaging in 
shiftwork within the past 6 months; current use of any prescrip-
tion medications of over the counter products; and women who 
were pregnant or lactating in the preceding 6 months. These eli-
gibility requirements were chosen in order to have a relatively 
“clean” insomnia sample given that comorbidities, medications, 
and other factors would likely influence metabolism and con-
found the results of the study. Although this limits the general-
izability of results, a priority was placed on internal rather than 
external validity in order to determine whether there is a meta-
bolic signal worth further investigation.

Interested participants meeting the basic criteria and who 
provided written informed consent for participation completed 
a screening visit, consisting of several self-reported question-
naires, a psychiatric interview (Structured Clinical Interview for 
DSM-IV) [10], a clinical sleep interview, and a physical examina-
tion, including height and weight. The Insomnia Severity Index 
(ISI) was used as a self-report estimate of sleep disturbance 
[11]. Individuals who met the inclusion criteria completed a 
48 hr inpatient stay. Upon arrival, participants had an indwell-
ing intravenous catheter placed and blood samples were then 
taken every 2 hr, for a total of 25 blood samples per participant. 
In order to maintain consistent caloric intake, participants ate 
small, isocaloric snacks every hour they were awake. Meals 
were prepared based on the participant’s height, weight, and 
body mass index. Participants were allowed to sleep each night 
according to their habitual sleep schedule. On one night, sleep 
was measured using overnight polysomnography.

Polysomnography

Standard polysomnographic (PSG)  procedures were used to 
record the EEG, EOG, EMG, and EKG using an ambulatory system. 
Participants went to bed at their habitual bedtime. Electrode place-
ments of FpZ, CZ, and OZ were used according to the International 
10/20 system. Two EOG electrodes were placed, positioned 1  cm 
below and lateral to the outer canthus of the left eye and 1 cm 
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above and lateral to the outer canthus of the right eye. Two surface 
EMG electrodes were taped onto the chin 2 cm apart. Additional 
leads were used to measure leg movements and breathing in order 
to rule out the presence of occult sleep disorders. Two electrodes 
were taped over the anterior tibialis muscle of each leg to detect leg 
movements during the night. Flexible Resp-EZ belts were placed 
around the abdomen and chest to measure breathing-related 
movements during the night. A nasal cannula was used to detect 
pressure and an oximeter probe placed on the finger to measure 
blood oxygen saturation. The criteria for defining sleep disorders 
were an apnea–hypopnea index greater than 15 events per hour 
for sleep apnea and a periodic limb movement index greater than 
15 events per hour for periodic limb movements in sleep. Records 
were manually scored in 30 s epochs according to standard criteria. 
All records were scored by the same registered polysomnographic 
technician. PSG data were used to compute standard sleep archi-
tecture variables of the amount of each stage of sleep in terms of 
minutes and percentage of total sleep time. In addition, the fol-
lowing sleep continuity variables were computed: sleep latency 
(SL; time from lights out to the first epoch of any sleep stage), total 
sleep time (TST), wake after sleep onset (WASO; number of min-
utes spent awake between lights out and lights on), and sleep effi-
ciency (SE; total sleep time divided by the total recording period).

Metabolomic assays

Metabolomics analysis of serum samples was carried out using 
nuclear magnetic resonance (NMR) spectroscopy as described 
previously [12]. This approach allows for rapid, unbiased, and 
quantitative metabolic profiles (fingerprints) to be acquired. The 
stability and reproducibility of the NMR assay allow for quantita-
tive comparisons across the large number of samples analyzed in 
this study. Samples for NMR analysis were stored at −80°C, and 
subsequently thawed on ice with 250 μL serum removed and fil-
tered using ultracentrifugation and buffered to pH 7.0 for analy-
sis. One-dimensional proton NMR spectra were acquired using 
standard methods (NOESY pulse sequence) on a 700 MHz Bruker 
instrument equipped with a SampleJet sample changer. Samples 
from five participant pairs were acquired in analytical triplicates, 
whereas the samples from the remaining 10 pairs were acquired 
in analytical singlet, resulting in 1246 total spectral recordings. 
Additional two-dimensional NMR experiments were performed 
for the purpose of confirming chemical shift assignments, 
including homonuclear total correlation spectroscopy (2D 1H-1H 
TOCSY) and heteronuclear single quantum coherence spectros-
copy (2D 1H-13C HSQC), using standard Bruker pulse programs. 
Raw NMR data were processed by spectral fitting using the tar-
geted profiling method [12] by Chenomx Inc. to obtain quantita-
tive metabolite information for all nighttime samples.

Data analysis

Individuals with insomnia and good sleeper controls were com-
pared on demographic and both self-report and PSG sleep vari-
ables using paired sampled t-tests in order to account for the 
matched pair design based on age and sex matching.

Spectral preprocessing

All spectra were binned into 0.005  ppm bins throughout the 
spectral width. DSS, water, and urea signal regions were 

excluded from the binning process. The binned spectral inten-
sity was normalized to total spectral integral of individual spec-
trum to generate the working data matrix. The data were mean 
centered followed by unit variance scaling and used for further 
multivariate analysis.

Multivariate data analysis

All multivariate data analyses were performed in Simca-P 14.0 
(Umetrics AB, Umea, Sweden). Initially, principal component 
analysis (PCA), an unsupervised method, was used to obtain 
a global overview of the data from 1246 recorded spectra. PCA 
is also a useful tool to identify outlier samples in a multivari-
ate data structure [13]. From the total data set of 1246 spectra, 
59 outlier spectra were excluded (based on the 95% confidence 
interval) due to poor water suppression/baseline correction 
issues. As a result, 1187 spectra for supervised multivariate 
analysis remained. These samples were used for clustering 
using orthogonal partial least square—discriminant analysis 
(OPLS–DA). OPLS–DA is a supervised technique which allows for 
separation of between-class and within-class variability [13, 14]. 
OPLS–DA was performed in two sets. In set 1, the analytical trip-
licate samples were used and in set 2, the singlet samples were 
used. For each model, significant bins were selected by variable 
importance on projection (VIP) > 1.0; overlapped and direction 
conserved bins from set 1 and set 2 were considered for further 
analysis. The model fit was judged based on the cross-validation 
parameter Q2 and CV-ANOVA p-value. The cross-validation pro-
cess employs an internal sevenfold validation. Briefly, 1/7th of 
the total samples are left out from the dataset and the model is 
fitted with the remaining samples. This model is then validated 
using the samples left out, thereby computing the Q2 as a meas-
ure of the predictive ability of the model. This process is repeated 
seven times such that each sample is used for prediction.

Initially, the bins representing spectral noise regions were 
excluded. Adjacent bins with opposing direction (a feature 
of spectral overlap) were also excluded. Spectral regions were 
assigned from the remaining bins. These regions were further 
investigated using Chenomx v 8.0 (Edmonton, Alberta, Canada) 
for metabolite assignment. The metabolites were assigned by 
targeted fitting of representative spectrum.

Targeted spectral profiling

In order to obtain a more quantitative temporal picture, night-
time samples (11 pm—7 am) from all participants were sub-
jected to targeted spectral profiling using Chenomx v 8.0 to 
identify the concentration of the metabolites. Metabolites that 
were judged significant using multivariate analysis were pro-
filed. Briefly, the processed spectral peaks were fitted using a 
pre-built metabolite library so that the residual signals could be 
minimized. A detailed description of this method can be found 
in the work of Weljie et al. [12].

Time course analysis by significance analysis on 
microarrays

Time-course analysis of nighttime metabolites was performed 
by significance analysis on microarrays (SAM) [15] using MeV 4.6. 
A slope-based method was employed. Briefly, SAM computes the 
signed area of two group time series data relative to one of the 
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groups (baseline group) and a SAM score based on the signed areas. 
A positive SAM score would mean that the signed area is larger in 
group 2 (insomnia) and a negative score would mean the opposite.

The study was approved by the Institutional Review Board of 
the University of Pennsylvania and is listed on clinicaltrials.gov 
(NCT01957111).

Results

Recruitment of participants

Forty-four people were screened for participation: five individu-
als were considered screen fails (two had BMIs over the cutoff, 
one medical concern precluding participation, one not meet-
ing threshold for insomnia symptoms but not a good sleeper, 
one smoker), seven individuals were lost to follow-up before 
completing the hospital stay, and two individuals did not com-
plete the full study protocol (see STROBE diagram in Figure 1). 
A total of 15 individuals with insomnia and 15 age- (± 5 years) 
and sex-matched good sleeper controls completed the study. 
The sample was largely non-Hispanic (87%) and identified as 
white (63%), with a smaller portion of participants identifying as 
Black/African American (20%) and Asian (10%), and 10 per cent 
preferred not to disclose their race. Each group had 10 females 
and 5 males; the insomnia group’s mean (SD) age was 37 (7.88) 
and the good sleeper group’s mean (SD) age was 35.93 (7.54). The 
insomnia group’s mean (SD) ISI was 15.14 (4.72) and the good 
sleeper group’s mean (SD) ISI was 1.73 (2.74). The only statisti-
cally significant group difference in PSG-assessed sleep was in 
the percentage of the night spent in REM, with the insomnia 
group having a slightly higher proportion compared with good 
sleepers (21.5% vs. 19.7%) (see Supplementary Table S1).

Correlation of sleep parameters with metabolic 
profiles of insomnia and good sleepers

Among the PSG parameters, only sleep efficiency and WASO 
demonstrated statistically significant association with metabolic 

parameters. There were no significant group differences on the 
variables (p = 0.13 and 0.07 for sleep efficiency and WASO, respec-
tively, Figure 2), but they were used as quantitative measures of 
insomnia severity. In order to understand if there is a quantita-
tive relationship between these two parameters and peripheral 
metabolism, regression analysis was performed on 49 metabo-
lites measured from first morning serum samples (7 am, post-
PSG night) using quantitative NMR [12]. Each metabolite was 
compared with WASO and sleep efficiency using Pearson corre-
lation separately for patients with insomnia and good sleepers 
(Figure 2). Significant correlations of acetate and succinate (nega-
tive with sleep efficiency, positive with WASO) and alanine (nega-
tive with sleep efficiency) were observed (Figure 2). Most of these 
correlations were weak/absent (|r| < 0.4, p > 0.1) in the good sleep-
ers. Only acetate level of good sleepers was moderately correlated 
to sleep efficiency (r = 0.49, p = 0.09, data not shown); however, 
unlike insomnia group, the correlation was positive. Such obser-
vations suggest that the metabolic profile of patients with insom-
nia is closely related to the severity of objective sleep disturbance.

Global metabolic profile differentiates patients with 
insomnia from healthy controls

Our previous metabolomics work has demonstrated that signifi-
cant variation can exist between measured batches of samples 
[7], and thus, the sample population was a priori divided into 
two subsets based on a matched-subjects design. The first sub-
set was strategically designed with five patients with insomnia 
and five age- and sex-matched controls and metabolomic sam-
ples measured in analytical triplicate to assess analytical vari-
ance (total of 15 spectra/timepoint/group; 750 spectra total). In 
this subset—dubbed the triplicate subset—each objective time of 
day sampled was represented by six spectra per participant (i.e. 
three replicates each on days 1 and 2 at 8 am, etc.). The second 
subset—termed the singlet subset—consisted of the remaining 
10 patients with insomnia and 10 matched controls measured 
across all time points over 48  hr (10 spectra/time point/group; 
500 spectra total). Therefore, each objective time of day sampled 
was replicated across the 48 hr cycle. Outliers were detected using 
PCA as indicated before. OPLS–DA modeling was performed inde-
pendently on the two subsets, resulting in clustering of insom-
nia and control samples from both (Figure 3A and B). The models 
were highly significant (Q2 = 0.84, CV-ANOVA p < 0.0001 for the 
triplicate subset and Q2 = 0.58, CV-ANOVA p < 0.0001 for the sin-
glet subset, respectively). Significant bins from both models were 
selected based on variable importance on projection (VIP > 1.0) 
and they were overlapped across the two subsets (Figure 3C).

The overlapped bins were further pruned as detailed in 
Methods and the metabolites were assigned from the bins 
using Chenomx suite v 8.0 and 2-dimensional HSQC and TOCSY 
experiments. Metabolites significantly perturbed are listed 
in Figure  3. In aggregate, 13 metabolites were elevated and 9 
metabolites were decreased in patients with insomnia across all 
times of day (Figure 3D). Loadings and VIP values are provided in 
Supplementary Table S2.

Time-of-day variations in metabolic profiles

To understand whether the overall metabolic profiles of patients 
with insomnia and good sleeper controls followed a diurnal 

Screened for 
par�cipa�on (n=44)

Eligible for inpa�ent 
protocol (n=39)

Found to be ineligible 
(n=5)

Lost to follow-up (n=7)

Began inpa�ent protocol 
(n=32)

Withdrew during 
inpa�ent protocol (n=2)

Completed protocol 
(n=30)

Figure 1. STROBE diagram showing the flow of participants through the study.
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pattern, the data were divided into discrete daytime (9 am–5 
pm) or nighttime (11 pm–7 am) blocks, with the remaining time 
points excluded. OPLS-DA analysis indicated that insomnia and 
control individuals were strongly segregated during the day-
time (Figure 4A and B, Q2 = 0.79, CV-ANOVA p < 0.0001 for trip-
licate and Q2 = 0.50, CV-ANOVA p < 0.0001 for singlet cohorts). 
Metabolites were assigned as before from the overlapped bins 
of two subsets (Figure  4C) and are listed in Figure  4D. During 
the daytime, patients with insomnia showed elevated levels of 
15 metabolites and decreased levels of 8 metabolites (Figure 4D) 
compared with good sleepers. These metabolites were used for 
pathway analysis using the metaboanalyst server (Metabanalyst 
v3.0). Significantly altered pathways (FDR < 0.05, pathway 
impact > 0)  included arginine and proline metabolism, pyru-
vate metabolism, glycine, serine and threonine metabolism, 
and glycolysis/gluconeogenesis (Supplementary Figure  S3). 
Similar analysis on the nighttime samples revealed significant 
clustering of the insomnia and control samples (Figure 4E and 
F, Q2 = 0.77, CV-ANOVA p < 0.0001 for triplicates and Q2 = 0.41, 

CV-ANOVA p < 0.0001 for singlets). Overlapped bins (Figure 4G) 
were assigned to metabolites (Figure  4H). During nighttime 
hours, patients with insomnia has elevated levels of 13 metabo-
lites and decreased levels of 7 metabolites compared with good 
sleepers (Figure  4H). Pathway analysis using metaboanalyst 
server revealed significant alteration in BCAA metabolism, argi-
nine and proline metabolism, pyruvate metabolism, and glyco-
lysis/gluconeogenesis (Supplementary Figure S3). Interestingly, 
the BCAA metabolic pathway was specifically different in night-
time samples. Pyroglutamate, creatine, and serine were spe-
cifically increased during daytime in patients with insomnia, 
whereas dimethylamine, citrulline, glucose, and fructose were 
elevated at night. On the other hand, propylene glycol, gluta-
mate, glycine, tryptophan, phenylalanine, and methylhistidine 
were decreased during daytime, and 2-oxoisocaproate and leu-
cine were decreased during night. Isoleucine and proline were 
elevated during day and decreased during the nighttime in 
patients with insomnia. Loadings and VIP values from all the 
models described above are listed in Supplementary Table S2.

Figure 2. Correlation of insomnia-specific parameters with level of metabolites at 7 am in the morning. Only sleep efficiency and WASO showed some trend towards 

significance. The normalized levels of acetate, succinate, and alanine were significantly correlated with sleep efficiency and those of acetate and succinate were sig-

nificantly correlated with WASO.
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Time-dependent changes in metabolites 
significantly altered during nighttime

Metabolites that were differentially altered during the night-
time (11 pm–7 am) were further subjected to time course analy-
sis using SAM. Individual metabolites were profiled from NMR 
spectra and time course samples from each individual were sub-
jected to time course analysis. Only the second night was used 
to reduce possible acclimation effects. The analysis suggests a 
significant average elevation of glucose over the second night 
along with acetate and tyrosine, whereas leucine metabolite 
2-oxoisocaproate decreased overnight in patients with insom-
nia (Figure  5). Separate AUC analysis on the metabolites sug-
gested a 10%–12% elevation in overnight glucose in the patients 
with insomnia along with a 13 per cent elevation in acetate 
and 10 per cent depletion in 2-oxoisocaproate (Supplementary 
Table S4).

Metabolic desynchrony between patients with 
insomnia and healthy controls

Recent studies have demonstrated that the metabolome and 
lipidome reflect diurnal rhythms in blood, urine, and saliva 
[16–18]. To understand how insomnia affects metabolic oscilla-
tions, all data from patients with insomnia and controls were 

independently subjected to JTK Cycle analysis for 24  hr peri-
odic oscillation using Metacycle 2D [19]. A  total of 17 metabo-
lites (Figure 6A and B) were found to be oscillating in controls 
(p-value < 0.05, BH.Q < 0.2 for respective bins) (Figure  6A), 
whereas 18 metabolites were oscillating in patients with insom-
nia (Figure  6A and B). Eleven metabolites were found to be 
cycling in both groups (Figure 6A and B). Notably, distinct differ-
ences in oscillatory amplitude and phase were noted between 
insomnia and control groups for the common cyclers (Figure 6C). 
Specifically, lactate amplitude was increased in patients with 
insomnia with a concomitant decrease in phase. Valine, isoleu-
cine, and 3-methyl-2-oxovalerate phases were earlier, whereas 
those of acetone and proline were later. 3-Hydroxyisobutyrate 
demonstrated suppressed amplitude. Control individual profiles 
revealed 6 metabolites that cycled only in this group, whereas 
7 unique cyclers in participants with insomnia were observed 
(Figure  6A). Supplementary Figure  S5 shows 48  hr timecourse 
plots of the metabolites demonstrating oscillations in both 
groups. Group differences in diurnal rhythms could be due to 
the insomnia group have delayed or advanced circadian phases 
relative to the good sleepers. Circadian markers were not 
assessed; however, there was no evidence of significant differ-
ences in habitual sleep/wake times between groups (mean [SD] 
bedtime was 11:14 [0:58] for the insomnia group and 10:55 [1:06] 
for the good sleepers).

Figure 3. Multivariate OPLS-DA analysis of insomnia and control samples over all collection time points. Cross-validated OPLS-DA scores plot showed significant 

clustering of insomnia and control samples over both triplicate (A) and singlet (B) sets. The bins were selected by overlap analysis (C) and metabolites were assigned 

by spectral profiling (D).
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Discussion

Peripheral metabolic profiles of insomniacs support 
hyperarousal

This study is among the first to utilize comprehensive periph-
eral metabolic profiling to compare patients with insomnia 
and matched good sleeper controls. We used time course blood 
sampling of patients with insomnia and healthy controls and 
employed two subsets from the sample population in order to 
differentiate true biological and analytical variation. Using this 
design, we found preliminary evidence of clear metabolic differ-
ences in patients with insomnia, with divergent patterns exhib-
ited during the day and night.

Insomnia was defined for this study as meeting diagnostic 
criteria for DSMIV Insomnia Disorder based on clinical interview 
by an experienced sleep disorders clinician (P.G.), but there was 
no requirement for a minimum severity on a quantitative meas-
ure such as the ISI. Although there were significant differences 
on the ISI between the insomnia and good sleeper groups, the 
mean for the insomnia group was only slightly above the stand-
ard cutoff of greater than 14 for moderate severity of insomnia 
[11]. The overall severity of insomnia for this sample was there-
fore not severe, which is supported by the lack of significant PSG 
differences between groups. This makes the results all the more 
striking and suggests that even milder insomnia is associated 
with robust metabolic effects in the periphery. Vgontzas and 
colleagues have made a compelling case that insomnia can be 
subdivided into cases of “objective insomnia,” in which there is 
PSG evidence of sleep duration less than 6 hr, and “subjective 
insomnia,” in which sleep duration is in a more normal range 
[20]. Objective insomnia is associated with greater biological 
severity across a range of measures and is thought to be a more 
severe phenotype. We would expect, had our sample had greater 
evidence of sleep disturbance on PSG, that the metabolic effects 
would be even larger. This also suggests that the metabolic dif-
ferences between patients with insomnia and good sleepers are 
due to some aspect of insomnia that is distinct from objective 
sleep disturbance. For example, patients with insomnia have 
been found to have dysregulation of the HPA axis [21], and it may 
be that abnormal cortisol activity is partially responsible for 
these findings. This intriguing finding will need to be examined 
in future studies that seek to disentangle the effects of sleep dis-
turbance compared with other biological aspects of insomnia.

Given the variability in insomnia severity in the sample, 
the association between metabolite profiles and quantitative 
measures of sleep disturbance was examined using PSG-defined 
sleep variables. Greater severity of sleep disturbance was associ-
ated with specific metabolites (acetate, alanine, and succinate), 
but only in the insomnia group, supporting the hypothesis that 
metabolic effects would be stronger in a more severe insomnia 
sample. Among these metabolites, nighttime acetate was also 
elevated in insomniacs, suggesting altered energy metabolism 
(Figures 4 and 5), potentially via elevated lipid breakdown.

Harper et al. have used 31P magnetic resonance spectroscopy 
(MRS) to show that phosophcreatine and phosphocholine levels 
in grey and white matter are differentially regulated in insom-
niacs with PSG-dependent differences, in support of the hypera-
rousal hypothesis, and increased energy demand in the brain [4, 
5]. Our results in the periphery are consistent with this hypothesis, 
although it is not clear what might be driving this arousal. Changes 
in peripheral metabolites may cause central arousal, or vice versa.

Central energy metabolism is desynchronized in 
insomniacs

A significant strength of this study was the use of 48  hr blood 
sampling so that group comparisons could be made both glob-
ally and at particular times of day, as well as decreasing reliance 
on single time-point assessments that are subject to a number of 
confounding factors. Specifically, central carbon pathway (glyco-
lysis/gluconeogenesis) metabolites were perturbed irrespective of 
time of day (Figures 3 and 4), pointing to a connection between 
insomnia and changes in energy metabolism. Indeed, decreased 
levels of lactate across the night and day along with increased glu-
cose at night and pyruvate during the day (Figures 4 and 5) sug-
gest specific, and chronic, changes in glycolysis/gluconeogenesis. 
Nighttime buildup of glucose in patients with insomnia compared 
with good sleepers (Figure 5) indicates that there is a decrease in 
nighttime glucose utilization. We should point out that such build-
up/decay is not entirely free from diet-related effects. To that end, 
however, our data suggest that patients with insomnia and good 
sleepers may handle nutrient resources via significantly differ-
ent modes. Metabolic oscillation analysis revealed that lactate 
levels began to increase at midnight and peaked around midday 
in insomniacs (Figure 6). Hyperarousal and hypermetabolism are 
hallmarks of insomnia and may be reflected by elevated nighttime 
glycolysis [23]; on the other hand, this suggests that there is an 
elevated bedtime catabolic activity. In general, sleep is considered 
to be important for anabolic processes [24], which seems to be 
affected by insomnia. However, irrespective of glycolytic activity, 
nighttime glucose build-up (Supplementary Table S4) in insomnia 
raises the possibility of prediabetic phenotypes. Epidemiological 
studies have found associations between chronic insomnia with 
incident diabetes [25]. These results are also reminiscent of circa-
dian alignment studies which demonstrate that elevated glucose 
results from both time-of-day and circadian misalignment effects, 
affecting glucose tolerance [26].

Branched-chain amino acid catabolism is phase 
advanced in insomniacs

Recent research has unraveled potential underlying molecular 
mechanism of diabetes in addition to classic parameters such 
as blood glucose. For example, BCAAs have been implicated 
in development of diabetes and obesity [27, 28]. Interestingly, 
BCAA metabolism was perturbed only during the nighttime 
(Supplementary Figure  S5). Specifically, branched-chain oxo-
acids were decreased during nighttime in patients with insom-
nia (Figure 4H). Moreover, patients with insomnia also showed 
overall depletion of in leucine catabolic product 2-oxoiso-
caproate (Figure 5, Supplementary Table S4) during the second 
night compared with controls and an almost 1.5–2 hr peak off-
set of BCAAs and related metabolite 3-methyl-2-oxovalerate in 
oscillatory analysis (Figure 6). Together, this implies elevated and 
advanced nighttime BCAA catabolism can potentially hamper 
glucose oxidation leading to nighttime accumulation of glucose 
[21]. Therefore, bedtime metabolic activity is shifted towards 
catabolism in insomnia. Oishi et al. have created a mouse model 
of chronic sleep disturbance by exposure to psychophysiological 
stress that leads to increased sleep fragmentation and reduced 
circadian amplitude [29]. Animals with chronic sleep distur-
bance, compared with controls, had elevated levels of BCAAs 
in plasma at night, similar to what we observe in day time 
(Figure 4). Lim and colleagues examined the influence of dietary 
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BCAA supplementation on sleep or wake disturbance in a mouse 
model of traumatic brain injury in which there was an impair-
ment in both the ability to maintain sleep at night and wake-
fulness during the day, leading to greater state fragmentation 

[30]. BCAA supplementation led to reduced fragmentation and 
hence better sleep at night in part through improvement in the 
function of the orexin system, which is a critical component of 
the sleep/wake regulatory system [31]. Furthermore, it has been 

Figure 4. Multivariate OPLS-DA analysis of insomnia and control samples over day (9 am–5 pm, A–D) and night (11 pm–7 am, E–H) samples. Cross-validated OPLS-DA 

scores plot showed significant clustering of insomnia and control samples over both triplicate (A/E) and singlet (B/D) sets. The bins were selected by overlap analysis 

(C/G) and metabolites were assigned by spectral profiling (D/H).
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argued that BCAAs can lead to daytime fatigue because of their 
capacity to reduce central nervous system uptake of tryptophan 
and affect serotonin levels [22]. Interestingly, our data also sug-
gest decreased daytime phenylalanine and tryptophan in the 
patients with insomnia (Figure 4). Given that serotonin plays a 
significant role in sleep/wake regulation, a similar mechanism 
at night could impair the ability initiate and maintain sleep. 
These disparate results suggest that BCAA metabolism has 
multiple interrelationships with the sleep/wake system and 
that insomnia may be associated with BCAA dysregulation. The 
role of BCAAs in the progression of glucose intolerance is also 
well documented [28]. Broadly, BCAA catabolism seems to be 
elevated and enter the tricarboxylic acid (TCA) cycle barring the 
glucose carbon, resulting in elevated glucose and glucose intol-
erance. We showed that altered nighttime BCAA catabolism and 
relative elevation in glucose concentration may be initial signs 
of glucose intolerance. Interestingly, acetate and succinate—the 
dethiolated forms of two entry points of BCAAs into TCA cycle—
are positively correlated with WASO and sleep efficiency in 
patients with insomnia, indicating a phenotypic connection of 
molecular events. The hypothesis of potential circadian desyn-
chrony in the insomnia group needs to take into consideration 
the fact that this study was not designed as a rigorous circadian 
protocol. No circadian phase markers were assessed, and there 
was no control of lighting levels or activity in the laboratory.

Biomarkers of insomnia compared with biomarkers 
of sleep deprivation/restriction

Insomnia is a chronic clinical disorder and is not directly 
equivalent to any acute experimental protocols such as recent 

reports describing metabolic effects of experimental sleep 
deprivation (SD)/restriction in healthy population [8], primarily 
because most human SD experiments are performed on other-
wise healthy individuals who do not have any chronic condi-
tions. Although SD experiments may be used to gauge acute 
effects of sleep disturbance, chronic insomnia models are 
not available. In spite of this important difference, some bio-
marker similarities are striking and may provide insight into 
common pathophysiological mechanisms for exploration. The 
most striking similarity is the elevation of glucose along with 
creatine post SD observed by Bell et  al. [32]. Tryptophan and 
phenyalanine were found to be significantly altered in other 
studies [8]; however, the directionality does not match with our 
data. On the other hand, Davies et al. found that the rhythm 
of isoleucine remains conserved under regular and perturbed 
sleep [18]. Indeed, isoleucine was one of the conserved metabo-
lites in our study. This pattern of conserved BCAA rhythm and 
elevated glucose post SD in multiple studies suggest that sleep 
loss may be generally related to altered glucose and BCAA 
metabolism.

A limitation of this study is the strict eligibility require-
ments, which required participants to be free of comorbidities 
and medications. This produced a relatively “clean” insomnia 
sample that may not be representative of the broader popula-
tion of patients with insomnia. Although this limits the gen-
eralizability of results, a priority was placed on internal rather 
than external validity given that these other factors would likely 
also influence metabolism and act as confounder. For this initial 
foray into the metabolomics of insomnia, the goal was to deter-
mine whether there is a meaningful metabolic worth pursuing 
in future samples that are more representative.

Figure 5. Time series analysis of metabolites. Only the second night data are shown here. The samples were analyzed by two-group SAM for significantly different 

temporal trend of metabolites in insomnia (red) and control (blue) population. Metabolites with significant differences across control and insomnia population are 

presented.
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Clinical implications of the study

Currently, there are no objective biomarkers of insomnia in 
clinical use and the availability of such a tool would be of tre-
mendous value to sleep medicine. These data provide a proof 
of principle that metabolic profiling can be used to identify a 

biological “signature” of insomnia. This biomarker signature 
will need to be validated in future studies, especially given the 
relatively small sample size reported here. A  validated signa-
ture would have potential use as a diagnostic tool for insomnia 
and for monitoring of treatment outcome. Recently, the work 
of Irwin and colleagues has shown that insomnia is associated 

Figure  6. Analysis of metabolite rhythm in insomnia and control population using Metacycle 2D. Insomnia and control population was subjected to metabolite 

rhythm analysis separately. Control population showed 6 and insomnia population showed 7 unique cyclers, whereas 11 cyclers were common (A and B). Among 

the common cycling metabolites, many showed differences in fold change and amplitude (C). Representative time course plots are shown for four common metabo-

lites (D, insomnia—blue, control—red). A proposed general metabolic state shift of insomniacs is shown over the diurnal day based on the time series analysis (E). 

3-Me-2-OV = 3-methyl-2-oxovalerate; 3-HIB = 3-hydroxyisobutyrate; 3-HB = 3-hydroxybutyrate; Trp = tryptophan.
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with inflammatory biomarkers of disease risk and that these 
indices improve following nonpharmacologic treatment [22, 
33]. The addition of metabolic profiling adds to the biomarkers 
identified in these studies and may lead to more comprehensive 
biomarker panels that could be integrated into routine clinical 
care. Second, the identification of metabolic processes that are 
dysregulated in insomnia may shed light on the pathophysiol-
ogy of the disorder and the mechanisms through which it nega-
tively affects physical and mental health, both of which are not 
understood. This study was not designed to assess whether the 
metabolic effects were a cause or a consequence of insomnia 
but future work in this area can begin to delineate the direction 
of causation and may lead to novel approaches to prevention 
and treatment of insomnia. Finally, the availability of biomark-
ers of insomnia would facilitate the identification of subtypes. 
It is widely assumed that insomnia can result from myriad 
biological processes, much as fever is a common endpoint of 
many mechanisms. Efforts to delineate diagnostic subtypes of 
insomnia-based self-report and clinical measures have failed to 
demonstrate sufficient reliability for clinical use [34]. Ultimately, 
a thorough understanding of insomnia will require a better 
understanding of the different pathways to insomnia so that 
prevention and treatment can be tailored to the unique constel-
lation of factors present for each patient.
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