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ABSTRACT

Background. Similar to natural rivers, manmade inlets connect inland runoff to the
ocean. Port Everglades Inlet (PEI) is a busy cargo and cruise ship port in South Florida,
which can act as a source of pollution to surrounding beaches and offshore coral reefs.
Understanding the composition and fluctuations of bacterioplankton communities
(“microbiomes”) in major port inlets is important due to potential impacts on
surrounding environments. We hypothesize seasonal microbial fluctuations, which
were profiled by high throughput 16S rRNA amplicon sequencing and analysis.
Methods & Results. Surface water samples were collected every week for one year.
A total of four samples per month, two from each sampling location, were used for
statistical analysis creating a high sampling frequency and finer sampling scale than
previous inlet microbiome studies. We observed significant differences in community
alpha diversity between months and seasons. Analysis of composition of microbiomes
(ANCOM) tests were run in QIIME 2 at genus level taxonomic classification to
determine which genera were differentially abundant between seasons and months.
Beta diversity results yielded significant differences in PEI community composition
in regard to month, season, water temperature, and salinity. Analysis of potentially
pathogenic genera showed presence of Staphylococcus and Streptococcus. However,
statistical analysis indicated that these organisms were not present in significantly high
abundances throughout the year or between seasons.

Discussion. Significant differences in alpha diversity were observed when comparing
microbial communities with respect to time. This observation stems from the high
community evenness and low community richness in August. This indicates that only
a few organisms dominated the community during this month. August had lower than
average rainfall levels for a wet season, which may have contributed to less runoff,
and fewer bacterial groups introduced into the port surface waters. Bacterioplankton
beta diversity differed significantly by month, season, water temperature, and salinity.
The 2013-2014 dry season (October—April), was warmer and wetter than historical
averages. This may have driven significant differences in beta diversity. Increased
nitrogen and phosphorous concentrations were observed in these dry season months,
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possibly creating favorable bacterial growth conditions. Potentially pathogenic genera
were present in the PEI. However their relatively low, non-significant abundance levels
highlight their relatively low risk for public health concerns. This study represents the
first to sample a large port at this sampling scale and sequencing depth. These data
can help establish the inlet microbial community baseline and supplement the vital
monitoring of local marine and recreational environments, all the more poignant in
context of local reef disease outbreaks and worldwide coral reef collapse in wake of a
harsh 2014-16 El Nino event.

Subjects Environmental Sciences, Genomics, Marine Biology, Microbiology, Environmental
Impacts
Keywords Microbiome, 16S, Port Everglades Inlet, Bacterioplankton, MiSeq

INTRODUCTION

A continental coastal zone can represent a gradient across distinct biogeographical
boundaries (freshwater, brackish and saltwater). Mangroves, streams, or manmade inlets
in these transition zones provide potential links. Fort Lauderdale’s Port Everglades Inlet
(PEI) (also known as the Port Everglades Shipping Channel [PESC]), in Broward County,
FL is a man-made, dredged, deep-water port located along the southeastern coast of
subtropical Florida (Stauble, 1993; http://www.porteverglades.net; NOS, 2011). Located
directly offshore from the PEI is a major US coral reef tract (Staley et al., 2017), as well as
multiple recreational beaches, fishing piers, and watersport areas (Stamates et al., 2013).
Coral reefs, beaches, and recreational water sport areas are impacted both positively and
negatively by resident microbial communities of these areas. The ecosystem services of
bacteria in marine communities include nutrient cycling and symbiosis, while disadvantages
include the possible presence of marine pathogens, which may cause illness in the marine
environment or to humans utilizing it.

Although large-scale bacterioplankton community (or “microbiome”) studies such
as the Tara expeditions or the Earth Microbiome project, have their place providing
important global information on a diverse array of marine microbial habitats (Sunagawa
et al., 2015; Thompson et al., 2017), much value can also be obtained by focusing on finer
scale microbial dynamics of distinct local habitats especially when unique. PEI is one
of largest cargo and cruise ship ports in the country and is susceptible to pollution and
pathogens from cargo and cruise ships via ballast water flushing, oil leakage, and cargo
spills, and through land-based pollution. The past decade has marked rapid increases in
human population and coastal development, resulting in the input of human pathogens
and enteric bacteria into coastal waters (Mallin et al., 2000; Lapointe et al., 2015). The
introduction of these pathogens can cause human illnesses such as skin, ear, and gastric
infections and can cause disease in marine organisms. This was seen with the introduction
of the human pathogen Serratia marcescens, into a coral reef ecosystem, which was found
to be the causative agent in the bleaching event seen in the Carribbean elkhorn coral
(Sutherland et al., 2011). Pollution into PEI also occurs via land-based runoff. Land-
based runoff contributes to nutrient, pathogen, and pollutant deposition into the marine
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environment, which can lead to eutrophication (Futch et al., 2011; Lapointe et al., 2015;
Staley et al., 2017). Eutrophication leads to conditions of hypoxia and anoxia and decreased
biodiversity causing major shifts in community structure of an ecosystem. These shifts can
result in an increase of phytoplankton, which can cause harmful algal blooms, and can
eventually lead to reduction of zooplankton and bacterioplankton diversity (Marcus, 2004;
Paerl et al., 2003). Southern Florida has two main seasons. The wet season mostly ranges
from May—September, while the dry season occurs from October—April. The wet season is
mostly during the hot summer months, and is characterized by increased rainfall levels and
increased temperatures. With increased rainfall levels, also comes increased runoff into
the marine environment. Previous research has indicated that influxes of nutrients from
agriculture practices in near-shore environments are contributing to degradation of Florida
reef ecosystems via eutrophication and introduction of pathogens (Finkl ¢ Charlier, 2003;
Banks et al., 2008; Walker, Riegl & Dodge, 2008; Lewis et al., 2017).

This study reports an extensive environmental next-generation sequencing characteriza-
tion of the bacterioplankton microbiome from the surface seawater in PEL. Water samples
were collected from June 2013 to May 2014 to determine monthly and seasonal alpha (&)
and beta () diversity fluctuations. Fluctuations of the bacterioplankton community in
PED’s surface water was monitored over a year. While samples were collected weekly, a total
of four samples per month, two from each location in the port, were used for consistency in
statistical analyses. This study provides a higher sampling resolution than has been currently
reported. To date, inlet study data has been collected bi-monthly, quarterly, and for a
shorter sampling periods (Wallace et al., 2018; Staley et al., 2017; Campbell et al., 2015).

The primary hypothesis of this study predicted strong seasonal effects on the inlet
microbiome in PEI due to temperature and rainfall. It was also hypothesized that potentially
harmful pathogens to both humans would be present in a higher abundance during the
wet season.

This study applied high-throughput (HTP) sequencing technology to complete DNA
sequencing of surface seawater samples in PEI, extending from previous inlet studies,
which were largely restricted to a smaller sample sizes, lower sampling frequency,
and culture-based or RT-qPCR methods (Symonds et al., 2016; Aranda et al., 2015;
Campbell et al., 2015).

MATERIALS & METHODS

Water sample collection, DNA extraction, and chemical analysis

A total of 151 surface seawater samples were collected weekly, at ebb tide, from PEI in
Broward County, FL by kayak over a year-long timespan (June 2013—July 2014). Three
1.0 liter water samples were collected at a depth of 0.5 m every week from two different
sites within the inlet. Water temperature was measured in situ at time of sampling with
a glass thermometer. Salinity measurements were taking immediately upon returning to
lab (within 30 min of sample collection) with a refractometer. Precipitation values were
obtained using NOAAs data from the National Center for Environmental Information
(http://www.ncdc.noaa.gov/cag/time-series). For each site, 1.0 L of water was filtered using
Pall GN Metricel® grid 47 mm, 0.45pm filters, by vacuum filtration.
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Total microbial genomic DNA was extracted using MO BIO’s PowerLyzer ™ PowerSoil®
kit (Carlsbad, CA, USA). Genomic DNA size and quality was verified with a 1% agarose gel
and Nanodrop measurements. A total of 81 samples were queued for sequencing based on
quality of extracted DNA. Samples that showed clear, non-degraded, high molecular weight
genomic DNA bands and had 260/280 ratios ~1.8 were considered quality DNA. After
gel verification, DNA concentration was measured using the Qubit 2.0 (Life Technologies,
Carlsbad, CA, USA).

Surface water samples collected at each site were subjected to ion chromatography (IC)
analysis using a Thermo Scientific Dionex ICS-1600 system (Bannockburn, IL, USA).
After filtration of particulates using syringe filters, samples were diluted 1,000 times
before injection into the IC. Ion chromatography analysis was used to detect the presence
and measure the concentrations of chemical ions in the PEI surface water. A total of five
anions—fluoride, chloride, nitrate, phosphate, and sulfate—were analyzed with calibration
curves from standard solutions and detection limits at approximately 10 ppb.

Sequencing preparation

Samples were prepared for MiSeq® sequencing following Illumina’s 16S Metagenomic
Sequencing Library Preparation guide (I/lumina, 2013). The amplicon primers used for
the first PCR were universal primers, MIDf-515F and 806rc which amplified the V4 region
of the 16S rRNA gene (Caporaso et al., 2010a; Caporaso et al., 2010b). Illumina adaptor
sequences were added to these primers as outlined in the aforementioned Metagenomic
Sequencing Library Preparation Guide (Il/lumina, 2013). A second PCR was completed to
attach Illumina Nextera indices using the Illumina Nextera indexing kit so that samples
could be demultiplexed (Illumina, 2013). The final pooled DNA library was diluted to a
concentration of 4 pM with a 50% spike in of 12.5 pM PhiX.

Sequence analyses

Sequence analysis was performed using Quantitative Insights into Microbial Ecology 2
(QIIME2) (Caporaso et al., 2010a). Paired ends were joined using PANDAseq 2.8.1 at a
90% confidence level (Masella et al., 2012). A total of 4 samples per month, 2 from each
location, resulting in a total of 48 samples were used for downstream analysis so as not to
skew statistical analysis. Paired end sequences were imported into QIIME2 and sequence
quality control was completed using the DADA?2 pipeline incorporated into QIIME. The
DADA?2 program filtered out phiX reads, removed chimeric sequences, and assigned
reads into Operational Taxonomic Units (OTUs). The sequences were truncated to 220
basepairs because the quality of reverse reads after base 220 declined. OTUs were grouped
into clusters at 97% sequence similarity (Callahan et al., 2016). Taxonomy was assigned
using the DADA?2 pipeline which implemented the Ribosomal Database Project (RDP)
naive Bayesian classifier (Callahan et al., 2016).

Statistical analyses

All statistical analyses were completed using QIIME2 and R Statistical Software Version
1.1.383. The R package phyloseq was used to generate stacked bar charts depicting relative
abundance of taxa (McMurdie ¢» Holmes, 2013). Richness and evenness estimates were
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calculated using QIIME2 (https://qiime2.org). To determine statistical significance in alpha
diversity non-parametric Kruskal-Wallis tests using Pielou’s evenness values were used to
complete pairwise comparisons between month, location, and weather at time of sampling
(rain vs. no rain). Non-parametric Kruskal-Wallis comparisons were performed using
Faith’s Phylogenetic Diversity to determine if there were statistical differences in species
richness in the PEI samples. Box and whisker plots for species richness and evenness were
generated using QIIME2. To test non-discrete metadata (salinity and water temperature)
for correlations with alpha diversity, Spearman’s Rank correlation analysis was completed
using Pielou’s evenness values. Taxonomic stacked bar charts were generated using data
from QIIME2 imported into Phyloseq. Analysis of composition of microbiomes (ANCOM)
test were run to determine if there were significant differences in the relative abundance of
any taxa between month or season (Mandal et al., 2015).

Statistical analyses for beta diversity were completed by calculating Bray—Curtis distance
using QIIME2. A PERMANOVA was run to complete pairwise comparisons of samples for
month, location, and season. Principle Coordinate Analysis (PCoA) plots were generated
for month sample taken and for season from Bray—Curtis distances using QIIME2. A
Mantel test was run to determine if there were statistically significant correlations in beta
diversity in relation to non-discrete metadata.

Regression analysis

A series of Multiple Least Squares Regressions were used to assess possible relationships
between each bacterial class and the environmental variables taken as part of the study.
The R? value is the measure used to determine how well the data fits the regression line.
The higher R? values indicated better data fits with the model. The class level taxonomic
classification was used to evaluate relationships between environmental variables because
majority of the sequences were classified to the class level. A backward selection method
was used with both entry and model retention. All regression analyses were carried out
using SAS Statistical Software (SAS Institute, Cary, NC, USA).

Potential pathogen detection

Potentially pathogenic bacteria were detected by filtering out genera that may be pathogenic.
Statistical analysis was completed on Staphylococcus and Streptococcus spp. using the
ANCOM test. This test compares abundances of genera to determine if they change
significantly between populations or environments (Mandal et al., 2015). To display
presence of potential pathogens graphically, the relative abundance, genus, and month
were plotted and faceted by season using the plot_bar command in phyloseq.

RESULTS

16S rRNA sequence output overview

A total of 151 samples were collected weekly from PEI from July 2013—June 2014; among
them 81 samples were queued for DNA sequencing. A total of 48 samples, four per month,
two from each site, were used for downstream bioinformatics analysis (Table S1). The
MiSeq sequencing yielded a total of 1,435,072 raw sequences with Q scores greater than
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30 and an average read length of 255 basepairs. The average number of reads per sample
was 20,586 with the minimum number of reads per sample being 9,199 and the maximum
number of reads per sample being 35,108. A total of 25,020 chimeric sequences were
removed from the dataset with a total of 1,410,052 sequences left for OTU table generation
and database alignment. After filtering of sequences to remove identical sequences and
subsequences a total of 395,009 unique sequences were left for taxonomic assignment using
the Greengenes 13_8 database. A total of 16,384 OTUs were generated.

Alpha diversity

Alpha diversity was assessed through species evenness and species richness measures.
Results for species evenness were statistically significant for month and season (p =0.015;
p =0.020 respectively). There were no significant differences in species evenness for PEI
samples by location, or weather at time of sampling (raining vs. not raining) (p > 0.05).
The month of August had the lowest species evenness values indicating that these samples
were dominated only by a few organisms. The month of December had the highest level
of species evenness (Fig. S1). The wet season has lower species evenness values than the
dry season (Fig. 1). In contrast, no significant differences in alpha diversity appeared in
relation to water temperature or salinity (p > 0.05).

Statistically significant differences were seen in species richness in relation to month
and season (p =0.010; p =0.025 respectively). For example, the month of December had
the lowest measure of species richness, while September had the highest measure of species
richness (Fig. 52). Concordantly, the wet season samples had higher species richness values
than the dry season (Fig. 1). In contrast, species richness analyses across samples indicated
that there were no statistically significant differences in species richness in relation to rain
at time of sampling versus no rain at time of sampling, water temperature values, salinity
measures, or sampling location (p > 0.05).

Beta diversity

The PEI samples were analyzed to determine if there were significant differences in the
microbial communities due to differences in sampling location, month that the sample
was taken, season, weather at time of sampling, salinity, and water temperature.

Location. The results of the PERMANOVA test using Bray—Curtis dissimilarity indicated
no significant differences in beta diversity of samples taken at two different locations in
PEI (p=0.99).

Weather at Time of Sampling (Raining vs. Not Raining). There were significant
differences in beta diversity of PEI samples in regards to weather (rain vs. no rain) at
the time of sampling (p =0.03).

Season. Results of the PERMANOVA indicated that there were significant differences
in the microbial community composition between seasons (p = 0.001) There is separation
of points in the PCoA plot between the wet and dry seasons, displaying that there are
differences in the microbial community composition (Fig. 2).

Month. The results of the PERMANOVA test using Bray—Curtis Dissimilarity indicated
that there were overall significant differences observed in the beta diversity of all months
tested (p=0.001). Multiple pairwise comparisons were completed to determine which
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Figure 1 Alpha diversity measurements of PEI microbiome. (A) Comparison of species evenness in PEI
between seasons. Pielou’s Evenness values were used to calculate species evenness. Significant differences
were observed between seasons of PEI for species evenness, with the dry season having lower species even-
ness (p = 0.020). (B) The comparison of species richness in PEI between seasons. Faith’s Phylogenetic Di-
versity values were used to calculate species richness. Significant differences were observed between sea-
sons of PEI for species richness, with the wet season having higher species richness values (p = 0.025).
Full-size & DOI: 10.7717/peerj.4671/fig-1

months differed significantly from one another. All months differed significantly in beta
diversity except for August and July, February and March, February and January, July and
September, July and October, and July and June (Table S2).

Abundant genera

To better understand how the microbial community composition fluctuated with season
we examined which organisms were present at different taxonomic levels and their
relative abundance levels. Proteobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes,
Actinobacteria, Verrucomicrobia, Tenericutes, and Euryarchaeota were the most abundant
phyla across all samples, with Proteobacteria making up at least 25% of the bacterial
community in all samples (Fig. S3). At the lower taxonomic levels, an increased number of
taxa were observed in wet season in comparison to the dry season (13 vs 11 taxa) (Fig. 3).
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Figure 2 Beta diversity measurements of PEI microbiome. Principle Coordinate Analysis of PEI wa-

ter samples using Bray—Curtis distance. Clustering of points indicates sample similarity. Significant differ-
ences in beta diversity were observed between the wet and the dry season (p =0.001).
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While observable fluctuations in relative abundance levels are seen in the Opitutus and
Anaerospora genera, results from the ANCOM tests indicated that at the genus level, only
Synechococcus differed significantly in its abundance levels from the dry to the wet season.
Synechococcus spp. went through large increases in abundance levels from the dry season to
the wet season (Table 1).

Linear regression analysis with chemical and environmental
metadata

Multiple least Squares regression analysis results showed that there were statistically
significant relationships between certain taxa and salinity measures, chloride ion
concentration, water temperature, sulfate ion concentration, and rainfall (Table 2). An
interesting trend to point out in the data was that Proteobacteria and Cyanobacteria showed
an inverse trend in abundance, which correlated with temperature and rainfall data to some
degree (Fig. 54). Environmental metadata for average precipitation levels and temperature
was obtained through NOAA National Centers for Environmental information (NOAA,
2018). Rainfall averages for the month of August were 3.4 inches lower than average
historical data. The remaining wet season months (May—October) generally had higher
than average rainfall levels (Fig. 4). The average temperature during the wet season months
was generally higher than the historical average, while the winter months had lower than
average temperatures in comparison to historical data (Fig. 4).

Potentially Pathogenic Bacteria

Results of the ANCOM tests demonstrated that there were no significant differences
in the relative abundance levels of potential pathogens during the year (Tables S3; 54).
In the Bacillales, Clostridiales, and Lactobacillales orders, the most abundant potentially
pathogenic genera were Staphylococcus and Streptococcus. Staphylococcus was in highest
relative abundance during the summer months of July and August, though this increase
in abundance was not statistically significant (Fig. 5). Staphylococcus was also present
during April and March, but this increase in abundance was not statistically significant.
Streptococcus was present in much lower abundance than Staphylococcus sp. It was present
in its highest abundance in April and was too low to be detected in other months. This
increase in abundance was not statistically significant (Fig. 5).

DISCUSSION

Inlets are not rivers, but both share several similarities: large volumes of water flowing out
of them; connection of inland city and agriculture runoff with the ocean; and generation
of visible plumes distinct from offshore marine waters. However, as a mostly artificial
construction, inlets may be subject to more detailed or controlled characterizations. Our
study considered that different water masses (shallow and deeper) may be generated during
ebb tides, which can lead to hydrodynamic complexity (Stamates et al., 2013). For example,
the mean volume of ebb tide surface water flow (4.41 million cubic meters per tidal phase)
through the PEI is about half the water flow of the deep channel. Although our sampling
site was slightly outside the Intracoastal waterway (ICW), we expected our water samples
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Table 1 ANCOM test results for differential abundance of Synechococcus spp. The ANCOM results for Synechococcus spp. that differed significantly in abundance levels
between seasons. High W values indicate significant differences in abundance levels between seasons. The higher the W value the more significant the differences in abun-

dance levels between seasons.

Percentile 0 25 50 75 100 0 25 50 75 100
OTU Dry Dry Dry Dry Dry Wet Wet Wet Wet Wet Reject null w
hypothesis

Unidentified Synechococcus sp. 1 1 1 42.5 60.5 159 31 86.25 120 159.75 313 TRUE 14
Unidentified Synechococcus sp. 3 1 1 1 1 11 1 1 1 1 21 TRUE 13
Unidentified Synechococcus sp. 5 1 1 1 8 57 1 23.75 41.5 79 132 TRUE 14
Unidentified Synechococcus sp. 7 86 160.25 378 539.5 2,172 231 822 1,725 2,411.25 4,189 TRUE " 11
Unidentified Synechococcus sp. 8 1 1 1 1 34 1 1 1 1 57 TRUE 13
Unidentified Synechococcus sp. 9 1 1 1 1 1 1 1 1 1 25 TRUE " 13
Unidentified Synechococcus sp. 11 1 1 1 1 1 1 1 1 1 27 TRUE 13
Unidentified Synechococcus sp. 13 1 1 1 1 1 1 1 26.5 41.75 114 TRUE " 14
Unidentified Synechococcus sp. 15 1 1 1 1 1 1 1 51.5 123.25 237 TRUE 18
Unidentified Synechococcus sp. 18 1 1 1 1 1 1 1 12.5 51 98 TRUE " 11
Unidentified Synechococcus sp. 20 1 1 1 1 1 1 1 32.5 64.25 213 TRUE 15
Unidentified Synechococcus sp. 21 97 164.25 202.5 292.75 539 44 129.25 179 301.75 752 TRUE" 13
Unidentified Synechococcus sp. 24 1 1 1 1 1 1 1 30.5 47.75 105 TRUE 16
Unidentified Synechococcus sp. 25 1 1 1 1 29 1 1 1 1 1 TRUE" 14
Unidentified Synechococcus sp. 29 1 1 1 1 1 1 1 1 1 19 TRUE 13

Notes.

“Indicates statistical significance.
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Table 2 Linear regression analysis of environmental metadata in relation to microbial taxa observed. Multiple least squares regression analysis
at class level taxonomy. Gammproteobacteria, Alphaproteobacteria, & Betaproteobacteria were abbreviated for space. There were statistically signif-
icant relationships with specific taxa and salinity, water temperature, rainfall, and chloride ion concentration. Alpha = 0.10.

Gamma  Flavobacteriia  Acidomicrobiia  Alpha Beta Synechococcophy Actinobacteria ~ Unclassified
cideae
R-Squared 0.21 0.21 0.21 0.13 0.14 0.2 0.21 0.07
Salinity 0.017" 0.101 0.0013" 0.0008 0.0005 NA 0.051" NA
Water 0.060 0.020 NA NA NA 0.001 0.0001" NA
Temperature
Chloride NA NA NA NA NA 0.016 NA NA
Sulfate NA NA NA NA NA NA NA NA
Rainfall NA NA NA NA NA NA NA 0.0184"
Notes.

“Indicates statistical significance.

to more closely resemble a brackish surface water microbial community rather than an
open ocean water microbial community. This was expected as PEI is influenced by human
development and is subject to land-based pollution, which is not as common in open ocean
waters. Beach samples and oceanic samples would need to be collected and compared to see
which of these environments the inlet most resembles. In a study by Miller and colleagues
(2016), it was found that dredging of the Port of Miami from late 2013 to early 2015
increased coral tissue loss on adjacent reefs due to sedimentation. The dredging in the Port
of Miami appears to have exacerbated local environmental stress due to the coincidence
with increased water temperatures leading to a mass bleaching event and increases in reef
disease (Miller et al., 2016). This points to the utility of the present report as a baseline
prior to the PEI dredging slated to occur in the near future.

An earlier study from our laboratory (Campbell et al., 2015) utilized high-throughput
454-pyrosequencing technology to generate baseline knowledge of PEI microbiomes,
but was limited to sampling quarterly. In the current study multiple samples per month
were analyzed to assess variation and generate a more complete baseline of the microbial
community present in PEI. Utilization of Illumina MiSeq sequencing technology also
provided more reads per sample, and therefore more coverage, adding confidence to
taxonomic assignments. Both studies on the PEI microbiome yielded complementary data
creating a strong baseline of the microbiome present in the inlet. These studies can be
used by local county and public health officials, who conduct routine monitoring on port
waters, and by environmental scientists looking to see what the impacts of the microbial
community in PEI might have on the surrounding coastal beaches and the adjacent Florida
coral reef (Aranda et al., 2015).

Bacterioplankton community composition fluctuations: location,
month, and season

Seasonal and monthly diversity fluctuations were observed for the PEI samples. The dry
season had much higher species evenness, but lower species richness when compared to
the wet season. This means that the communities in the dry season were dominated by a
few organisms in relatively equal abundances, while during the wet season more taxa were
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Figure 4 Average rainfall and temperature values for PEI from July 2013 to June 2014. (A) The aver-
age rainfall values for PEI and surrounding areas. The red line indicates the average rainfall levels for PEI
during the study. The black line indicates the historical average of rainfall levels for PEI and surround-
ing areas. The black line is comprised data collected from 1981-2010. (B) The average temperature val-
ues for PEL The red line indicates the average temperature values during the current study. The black
line indicates the historical average of temperature values for PEI The black line is comprised of data col-
lected from 1981-2010. The historical averages were obtained from: https://www.ncdc.noaa.gov/cdo-web/
datatools/normals.

Full-size Gal DOI: 10.7717/peerj.4671/fig-4

present, but not in similar abundances. This was not unexpected. The wet season in Florida
is characterized by increased rainfall that can result in more runoff into the inlet. August
had the lowest levels of species evenness and average levels of species richness. August also
significantly differed in its microbial community composition when compared to July and
September, which did not differ significantly in their bacterioplankton composition. The
lower than average rainfall levels in August may have led to decreased sample diversity.
Beta diversity of PEI samples was examined and showed that community composition
fluctuations were seen between months, seasons, weather at time of sampling, and that
there were strong correlations between fluctuations in community composition relating to
salinity levels and water temperature. The difference in beta diversity due to weather at time
of sampling (rain vs. no rain) was most likely due to surface water dilution during sampling
resulting in fewer bacterioplankton organisms sampled during times with rain. Taxonomic
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Figure 5 Comparison of relative abundance levels of potentially pathogenic genera in PEL. (A) Stacked
bar chart displaying the prevalence of Staphylococcus spp. between wet and dry season. Each box compris-
ing the bars in the plots is a different OTU. (B) Stacked bar chart displaying the prevalence of Streptococcus
spp. between wet and dry season. Staphylococcus spp. were present in much higher relative abundance lev-
els than Streptococcus spp. as displayed by the different y-axis scales.
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classification of sequences at the phylum level yielded similar bacterioplankton community
composition results to previously completed coastal seawater studies (Campbell et al.,
2015; Gifford, Sharma ¢ Moran, 2014; Elifantz et al., 2013; Rappe et al., 2002). The most
evident microbial abundance shifts are seen at lower taxonomic levels. Interestingly, an
inverse trend in abundance levels was observed between Proteobacteria and Cyanobacteria
throughout the year. It is unknown what caused this trend and more research needs to be
completed to determine if these taxa are impacting each other’s growth and abundance
levels, or if it is other environmental factors causing this trend.

Synechococcus. The genus Synechococcus, decreased in relative abundance during the
winter months, or dry season, and increased in abundance during the summer and early
fall, or wet season months. Synechococcus spp. are in the Cyanobacteria phylum. Our data
correlate with previous observations of increased cyanobacterial blooms in Florida coastal
and freshwater ecosystems in the late summer and early fall months. The blooms are caused
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by warm water conditions paired with increased sunlight levels, and nutrient loading from
urban runoff (Flombaum et al., 2013).

Thalassiosira. Another taxon seen to fluctuate in abundance with the seasons was
the diatom Thalassiosira spp. Previous studies have shown that this genus is a common
resident in marine coastal surface waters, and tends shift in abundance on a seasonal cycle,
increasing in abundance with spring algal blooms (Heinzelimann et al., 2016). Our results
indicate that this organism increased in abundance during dry season months, however
it was seen at its highest relative abundance in early spring. While it would be expected
that Thalassiosira spp. should increase in abundance during the wet season, it was present
in highest abundance in the month of April, the month which marks the start of the wet
season.

Rhodovibrio. Interestingly, members of the genus Rhodovibrio were seen only in
samples in Florida’s wet season. Rhodovibrio is a genus commonly seen in oceanic biofilms
or microbial mats. There have not been many studies completed on ecosystem roles of
Rhodovibrio, although it is known that this organism is classified as a purple non-sulfur
bacterium which can secure energy through light by being a photoorganoheterotroph
or can secure energy through organic matter by being a chemoorganoheterotroph (Stal,
Bolhuis ¢ Cretoiu, 2017). The Florida wet season spans summer months when typically,
more light availability and warmer water temperatures occur. These conditions could have
stimulated biofilm formation and proliferation which could explain why members of the
Rhodovibrio genus were present in higher abundance during the wet season.

Acholeplasma. Fluctuations in abundance were seen in the genus Acholeplasma.
Microbes in this genus are in the class Mollicutes and are characterized by lacking a
cell wall. Microbes in this genus are known to be commensal organisms in plants, insects,
and vertebrates (Kube et al., 2014). It is unlikely that microbes from this taxon are residents
of the surface water microbial community, and most likely the presence of this genus in
PEI samples is due to size selection when filtering, or because this is the closest classified
organism at 97% sequence similarity in the RDP database.

Potential pathogens

PEI represents a point source of pollution introducing harmful pollutants into the
surrounding marine environments including the Florida coral reef tract and recreational
beaches (Barnks et al., 2008; Stamates et al., 2013). Due to the influence of the inlet waters
on the surrounding marine environments, it is important to examine the presence of
potentially pathogenic organisms in the inlet waters.

The Bacilli class contained two known potentially pathogenic genera Staphylococcus,
and Streptococcus. Staphylococcus abundance levels were highest in the months of July
and August; however, members of this genus were also present in March and April.
Staphylococcus is a genus of gram-positive bacteria commonly found on the nails, skin,
and hair of humans (Lian et al., 2012). This taxon can thus be shed directly into coastal
waters from bathers. The well-known species in this genus, S. aureus, can also cause illness
in humans. S. aureus has a high resistance to salinity, making it a potential threat to other
humans using the contaminated water source for recreational purposes. While this species
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commonly links to both human symbiosis and illnesses, marine mammals have also been
infected (Van Elk et al., 2012; Bik et al., 2016). The origin of the strain of S. aureus that is
contracted by marine mammals was most likely from terrestrial sources introduced into the
marine environment via runoff (Van Elk et al., 2012). Studies examining the abundance of
Staphylococcus over a wet and dry season at a heavily visited coastal area observed increased
abundance of S. aureus during the wet season (Curiel-Ayala et al., 2012). These data also
showed the highest increased abundance of Staphylococcus during Florida’s wet season.

Streptococcus sp. were present in highest abundance in April. Increased freshwater input
and warm water conditions could have been the cause of the increased abundance of
these organisms. This presence also coincided during the prime shipping season in Port
Everglades, which may have had an impact on abundance levels of Streptococcus spp.

Enterococcus spp. are important fecal indicator bacteria, most often utilized to assess fecal
contamination on recreational beaches and coastal areas (Aranda et al., 2015; Heaney et al.,
2014; Wade et al., 2003; US Environmental Protection Agency, 1986; US Environmental
Protection Agency, 2004). A recent study examining the number of exceedances of
enterococci on recreational beaches in Miami-Dade County, FL from 2000-2010 (Aranda
et al., 2015) showed that beaches were only in exceedance of the allowable levels of
enterococci 3% of the time. This study examined data generated by the Florida Healthy
Beaches Program, which samples weekly. No patterns in regard to rainfall or storms were
seen in correlation with enterococci exceedances, although this may be due to the sampling
frequency and high decay rate of enterococci in marine waters (Aranda et al., 2015). In
contrast to this, a study completed by Curiel-Ayala and colleagues in Mexico (2012), showed
increased Enterococcus levels during the rainy season, and the highest concentrations of
the genus corresponding to highest tourist presence. The highest levels of enterococci seen
in the Miami-Dade study were in March and October, which could be due to high tidal
levels in October, and possible tourism influences in the month of March overlapping with
spring break (Aranda et al., 2015). It was expected that presence of Enterococcus spp. would
be in highest abundance in PEI during March-April when shipping season and tourist
season start. Interestingly, Enterococcus spp. were not observed in any of the samples taken
in PEL This was also seen in the previous study examining presence of pathogens in PEI
(Campbell et al., 2015). It is possible that Enterococcus spp. are not prevalent inhabitants
in PEL. More intensive studies would need to be completed to determine if there is the
presence of Enterococcus spp. in PEL

It was interesting that the causative agent of the white pox disease for coral Acropora
palmata, human fecal bacteria S. marcescens was not observed in the top 100 OTUs in
the Enterobacteriales class. A recent high throughput molecular study of coral white
band disease identified only five orders with large numbers of disease-associated OTUs:
Flavobacteriales, Alteromonadales, Oceanospirillales, Campylobacterale and Rhodobacterales
(Gignoux-Wolfsohn & Vollmer, 2015). Also of note is the absence of Vibrionales pathogens
in our dataset. The previous analysis of PEI microbiomes by Campbell et al. (2015) showed
a low abundance of Vibrionales.

While it is intriguing that potentially pathogenic genera were detected in PEI, it is
not possible to conclude that these organisms are virulent without culturing, in depth

O’Connell et al. (2018), PeerJ, DOI 10.7717/peerj.4671 15/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.4671

Peer

metagenomic sequencing, or oligotyping analyses (Eren et al., 2013). A general pitfall of
16S amplicon sequencing is the lack of taxonomic resolution down to the species and strain
level. Without this level of classification pathogenicity cannot be confirmed. A previous
16S amplicon and shotgun sequencing study completed on the microbiomes present in the
subway system in Boston, showed that there were very few antibiotic resistant genes and
virulence factors found in the samples. They also found that there were very few sequences
that were identified as opportunistic pathogens or potentially pathogenic organisms (Hsu et
al., 2016). This suggests that most likely the microbes identified in this study did not contain
virulence factors and are non-pathogenic commensals living in the inlet. However, future
research utilizing deeper sequencing and culture-based methods should be completed to
further examine presence of pathogens in PEL

SIGNIFICANCE AND CONCLUSIONS

This study has provided one of the first in-depth profiles of the bacterioplankton
community in metropolitan S. Florida inlet waters. The current dataset complements and
expands upon a previous a pilot HTP study characterizing the bacterioplankton community
of Port Everglades inlet and surrounding coastal waters. Specific marine habitats, such as
coral reefs or mangroves, have well defined optimal conditions for thriving and can be
sensitive to small perturbations (Precht ¢ Miller, 2007; Hoegh-Guldberg et al., 2007). The
data from this study will be helpful to local environmental managers, such as the Southeast
Florida Coral Reef Initiative (SEFCRI, http://www.dep.state.fl.us/coastal/programs/coral/
sefcri. htm), which aims to protect and monitor S. Florida reef habitats. The timeframe
of this study appeared poignant, showing that anomalous weather patterns (dry August)
can affect community composition. This study also preceded a protracted 2014-2016 El
Nifio event outbreak of coral disease on the Florida reef tract in 2014 and the planned
expansion and deepening of PEI in the upcoming years. Understanding the microbial
composition in the inlet prior to these perturbations will contribute to better management
and mitigation of the environment and may help to protect the adjacent coral reef where
the inlet outflows.
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