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When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented

through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every gener-

ation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic

admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of re-

combination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which

no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing

existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking

into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of

the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular

markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties

of empirical data and can serve to study the genomic patterns following admixture.
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Hybridization has long been recognized as a potential driver in the

evolution of plants (Grant 1981) and more recently as a process

that generates biological diversity in animals (Abbott et al. 2013).

Admixture among previously isolated populations may occur nat-

urally, or result from many facets of human induced ecological

change in recent historical time (Taylor et al. 2006; Vonlanthen

et al. 2012; Bhat et al. 2014). It seems to be conspicuously asso-

ciated with the colonization of new or perturbed habitats (Nolte

et al. 2005; Krehenwinkel and Tautz 2013). In these examples, re-

cent admixture has been suspected to contribute to the ecological

success of emerging lineages (Nolte and Tautz 2010). Genetic ad-

mixture between differentiated lineages may even lead to hybrid

speciation when the joint contribution of both parental species is

instrumental in the rise of the new species, for example by cre-

ating direct barriers to reproduction with the parental species or

by facilitating ecological isolation of the emerging hybrid lineage

(Mallet 2007; Nolte and Tautz 2010; Abbott et al. 2013; Schumer

et al. 2014). The genomic regions that convey a fitness advantage

to a hybrid lineage can be expected to be subject to positive selec-

tion. On the other hand, we expect the purging of parental genetic

variance that reduces the fitness of an admixed lineage (Buerkle

et al. 2000; Barton 2001). Although these studies predicted an ini-

tial lag phase during which an emerging hybrid lineage has to go

through an evolutionary optimization, empirical studies suggest

that hybrid speciation can occur rapidly, possibly within hundreds

of generations (Nolte et al. 2005; Buerkle and Rieseberg 2008;

Lamichhaney et al. 2017).

Studies considering hybrid speciation are accumulating in

recent years, but even well-studied examples remain contentious

(Schumer et al. 2014) and a multitude of evolutionary processes

related to hybrids are difficult to generalize (Gompert and Buerkle

2016). On the other hand, hybridization receives great interest
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from evolutionary biologists and conservationists alike. Hence,

there is a need to develop methods that permit extensive compar-

isons among different study systems to identify shared evolution-

ary patterns. This includes models that can help to develop neutral

evolutionary expectations for hybrid lineages (Stemshorn et al.

2011), which in turn permits to identify candidate genomic loci

that may be subject to selection. Conventional molecular clock

estimates are too coarse to be applied to any cases of rapid speci-

ation, but lineages of hybrid origin hold the potential to estimate

rather short time frames from the ancestry structure of admixed

genomes (Ungerer et al. 1998; Buerkle and Rieseberg 2008; Liang

and Nielsen 2014; McTavish and Hillis 2014). Newly formed F1

hybrids contain complete chromosomes from either one of the

ancestral species that constitute blocks (or tracts) of contiguous

genomic ancestry. Genetic recombination leads to an exchange

of genetic material between homologous chromosomes, which

interrupts blocks of contiguous ancestry. As a consequence, the

number of blocks accumulates while their size decreases from

generation to generation. Modeling the accumulation of ances-

try block junctions can elucidate processes and timeframes of

genomic admixture. Since this process begins after the first gen-

eration of admixture, it holds the potential to study even the initial

evolutionary steps that are of particular interest to study how a

hybrid lineage evolves (Nolte and Tautz 2010).

The study of genomic blocks dates back to Fisher, who

recognized that genetic material is organized within contigu-

ous haplotype blocks after a hybridization event (Fisher 1949,

1954). He termed the delineations between these blocks junc-

tions, and established that junctions have inheritance properties

similar to those of point mutations: over time they are either

lost from the population, or they become fixed. Fisher formu-

lated the expected number of junctions given the number of

generations passed since the initial hybridization event, for the

case of sib-sib mating (Fisher 1954). Following Fisher, the the-

ory of junctions was quickly extended toward self-fertilization

(Bennett 1953), alternate parent-offspring mating (Fisher 1959;

Gale 1964) and a population of randomly mating individuals

(Stam 1980). Apart from the number of junctions per chromo-

some, the distribution of block sizes has proven to be highly infor-

mative as well. Building upon the multilocus clines work of Barton

(1983), which describes the block size distribution at equilibrium,

Baird developed a robust framework describing the full dynam-

ics of the block size distribution (Baird 1995). Furthermore, using

efficient simulation techniques, Baird showed the impact of selec-

tion on the distribution of haplotype blocks, and used this frame-

work to infer the onset of hybridization in Helianthus Sunflowers

(Ungerer et al. 1998).

Parallel to the development of the theory of junctions, theory

has been developed to describe the genomic contribution of past

migrants (Gravel 2012; Pool and Nielsen 2009; Liang and Nielsen

2014). Here, the focus is on the breakdown of large ancestry

blocks (within this context often referred to as “admixture tracts”)

introduced by migrants, either due to a single migratory event

(Gravel 2012) or due to ongoing migration (Pool and Nielsen

2009). These studies illustrate that allele frequencies affect the

formation of junctions. When only a few, rare blocks (depending

on the rate of migration) are introduced into a foreign background

the decay of these blocks is asymmetric as it depends on how often

they may recombine with blocks that have a shared (here rare)

ancestry. This line of research is especially applicable to the study

of the history of humans, where migration between for instance

European and African populations can be detected from genomic

patterns (Hellenthal et al. 2014; Payseur and Rieseberg 2016).

Whereas the theory of junctions often focuses on a two-species

mixture (but see (Baird et al. 2003)), the study of admixture

tracts allows the application to be broadened to multiple migratory

source populations.

The theory of junctions has focused on a starting popula-

tion inspired by the genome of F1 hybrid individuals that contain

equal proportions of the parental genetic material. Although the

work of Fisher (Fisher 1949, 1954) and subsequent extensions by

Bennett (1953), Stam (1980), Chapman and Thompson (2002,

2003) and MacLeod et al. (2005) allows for deviations of this sit-

uation by changes to the initial heterozygosity H0 at time t = 0,

typical analysis has focused on the idealized situation of H0 = 0.5.

Such equal proportions are only expected if a hybrid lineage is

founded by a sufficiently large population of F1 hybrids. Under

natural conditions, however, a hybrid lineage of outcrossing or-

ganisms more likely emerges from a heterogeneous hybrid swarm,

and the overall ancestry contribution of parental species to the

founding hybrid swarm may differ (Edmands et al. 2005; Nolte

and Tautz 2010; Stemshorn et al. 2011; Schumer et al. 2016).

Deviations from equal founding ancestry proportions and strong

stochastic or fitness effects during the first few generations can

sway the ancestry of an emerging hybrid lineage in favor of one of

the ancestral species. Strong deviations from equality are likely to

affect the formation of junctions as they decrease the frequency at

which genotypes comprise material from both species. Moreover,

the effect of drift is exacerbated when the ancestry contribution is

strongly deviating from equal proportions. The impact of devia-

tions from an even ancestry contribution of both ancestral species

and the interaction with population size and drift remains under-

studied so far.

Paramount to applying the theory of junctions, is accurate

detection of these junctions. MacLeod et al. 2005 showed that

detection success was dependent on two crucial factors: the dis-

tribution of markers, and the density of markers (MacLeod et al.

2005). Macleod et al. compared markers that were equidistantly

distributed with markers that were randomly distributed over the

genome, while keeping the average density constant. Although
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equidistantly distributed markers did not detect 100% of all junc-

tions, they detected 10–20% more junctions than randomly spaced

markers. Furthermore, Macleod et al. found that the required den-

sity of markers to detect 90% of all junctions had to be at least

12.5 times the number of junctions. Because the expected num-

ber of junctions scales with the number of generations since the

onset of hybridization, even for intermediate time-scales between

500 and 1000 generations, the number of markers required to ac-

curately infer the number of junctions quickly escalates toward

extremely high numbers. To circumvent this problem, Buerkle

and Rieseberg (2008) used simulations to apply a correction to

observed junction densities to infer the true junction density. Our

aim is to extend the theory of junctions to better include the effect

of a finite number of markers.

Using only a finite number of markers leaves gaps between

markers that remain understudied. So far, the theory of junc-

tions has assumed that recombination never occurs twice at the

same location (e.g., there is an infinite number of recombination

sites along the chromosome) (Fisher 1954; Stam 1980; Chapman

and Thompson 2003) and, accordingly, that all recombination

events are detected. However, recent work has shown that such

a distribution of the recombination rate might be the exception,

rather than the rule, and that the recombination landscape is of-

ten organized into “warm” and “cold” areas, including hot spots

(Gerton et al. 2000; Myers et al. 2005; Mackiewicz et al. 2013;

Singhal et al. 2015; Arbeithuber et al. 2015; Smagulova et al.

2011). Repeated crossovers in the same area can impact the for-

mation of new junctions, and can cause existing junctions to dis-

appear. The same effect may manifest in genomic data even in the

absence of recombination hotspots. Across the genome, ancestry

informative markers are typically interspersed with fragments for

which no ancestry information is available. As a result, recombi-

nation may occur repeatedly between markers. Hence, inclusion

of recurrent recombination into the theory of junctions could add

to our understanding of recombination hot spots and accommo-

dates effects of incomplete information in studies using molecular

markers.

This warrants methods that can be applied broadly in empir-

ical studies on the consequences of admixture. Here, we present

an extension to the theory of junctions including a finite number

of recombination sites, and for hybrid swarms with an arbitrary

contribution of either parental species. We first extend the theory

of junctions toward a finite number of recombination sites in in-

finite populations, and then extend this framework toward finite

populations. Then, using a novel approach, we derive a general-

ized theory of junctions, which only depends on the number of

junctions obtained at equilibrium (e.g., at t = ∞). Lastly, using

individual-based simulations, we demonstrate the validity of our

framework, and explore the implications of marker distributions

on junction detection.

Analytical Model
Our aim is to derive the expected number of junctions per chromo-

some, in an isolated hybrid lineage depending on the time since

the onset of hybridization. A scenario in which a single mating

event and the resulting F1 hybrids are the sole founders of a hy-

brid lineage seems to be too constrained to represent the breadth

of results from empirical studies. Conversely, we assume that a

hybrid lineage emerges from a hybrid swarm. Individuals repre-

senting parental species or backcrossed individuals may become

part of the hybrid swarm and bias the overall ancestry proportions

of the founding population. As such, the hybrid swarm approach

allows us to study situations in which there are deviations from a

50–50 distribution of ancestral genomic material at the onset of a

hybrid lineage. Note that the special case of a founding popula-

tion of only F1 individuals constitutes a special case of the more

permissive scenario studied here. We assume full knowledge of

ancestry along the genome. For simplicity, we ignore selection

and drift and study the dynamics of junctions in neutrality. We as-

sume that a Poisson number mean C crossover events occurs per

chromosome per meiosis, which corresponds to the assumption

that chromosomes are C Morgan long. The recombination rate is

assumed to be uniform across the chromosome. Each individual is

diploid. Orthologous chromosome pairs are interchangeable and

paralogous chromosome pairs are inherited independently, which

allows us to track junctions within only one chromosome pair,

rather than all pairs simultaneously. Furthermore, we assume that

populations are in Hardy–Weinberg equilibrium.

AN INFINITE NUMBER OF RECOMBINATION SITES

We first assume infinite population size and an infinite number

of recombination sites along the chromosome. We denote the

frequency of genomic material of parental species P by p, and

the frequency of genomic material of the other parental species

Q by q , where p = 1 − q . The initial average heterogenicity

across the genome is then defined by: H0 = 2pq , where Ht is the

heterogenicity at time t . Heterogenicity here refers to the mean

proportion of the genome heterozygous by source, for example

stemming from different parental species (sensu (Fisher 1954,

1959; Stam 1980)). If we would substitute all genomic content

from species P by allele A, and all genomic content from species

Q by allele a, it follows that the mean heterogenicity is equivalent

to the mean heterozygosity across the genome. In our following

derivations it turns out that we can use known expressions for

the change in mean heterozygosity, which makes it important to

realize that here, the mean heterozygosity is equivalent to the

mean heterogenicity.

During crossover, a junction is only formed if crossover takes

place at a site that is heterozygous for the parental genomic con-

tent. Thus, in an infinite population with an infinite number of
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recombination sites along the chromosome, the average number

of junctions per chromosome, after t generations, is given by

(Chapman and Thompson 2002; MacLeod et al. 2005; Buerkle

and Rieseberg 2008)

Jt =
t−1∑
i=0

Hi C = H0Ct, (1)

where Hi = H0 is the proportion of the heterozygous genomic

material (following (Fisher 1954; MacLeod et al. 2005; Buerkle

and Rieseberg 2008)) in an infinite population, where the propor-

tion of heterozyous genomic material does not change over time.

In a finite population, the average heterozygosity changes over

time (Crow and Kimura 1970) as

Ht = H0

t−1∏
j=0

(
1 − 1

2N j

)
. (2)

Assuming a constant population size over time, Nt = N for all

t , and substituting Hi in equation (1) by equation (2), we obtain

an expression for the average number of junctions at time t , in a

finite population (Chapman and Thompson 2002)

Jt = H0C
t−1∑
i=0

(
1 − 1

2N

)i

= 2H0CN − 2H0CN

(
1 − 1

2N

)t

. (3)

In the limit of N → ∞ we recover equation (1). For t → ∞, we

have (MacLeod et al. 2005)

J∞ = 2H0CN. (4)

Thus, for finite N the expected number of blocks in the descendant

hybrid lineage converges to a finite number determined by the

population size, the size of the chromosome in Morgan, and the

initial heterozygosity (which in turn depends on the frequency of

the ancestral species in the hybrid swarm).

A FINITE NUMBER OF RECOMBINATION SPOTS

In the previous section, we have assumed that recombination never

occurs twice at the same spot. In reality, a chromosome can not be

indefinitely divided into smaller parts. Furthermore, the presence

of recombination hot spots (Gerton et al. 2000; Myers et al. 2005;

Smagulova et al. 2011; Mackiewicz et al. 2013; Arbeithuber et al.

2015; Singhal et al. 2015) indicates that recombination in fact

often does occur multiple times at the same site. We therefore

proceed to study the change in number of junctions in a chro-

mosome consisting of R + 1 different genomic segments, where

each segment represents a minimal genomic element that cannot

be broken down further due to recombination. The most general

interpretation would be a genomic area delineated by two genetic

markers. Considering a chromosome of R + 1 genomic segments,

0.5 (1- )0.5 (1- ) (p*2+q*2)(1- )2 2p*q*(1- )2

BA
0.5 (1- ) 0.5 (1- )

C D

0.5 2 0.5 2

Figure 1. Change in number of junctions depending on the ge-

nomic match between blocks. Full chromosomes are shown here,

but the same rationale applies to subsets of a chromosome. Top

rows within each panel indicate the two parental chromosomes,

bottom row indicates one of two possible resulting chromosomes

aftermeiosis, where recombination takes place at the dashed gray

line. Genomic material of type P is indicated in black, genomic

material of type Q is indicated in white. (A) With probability α2

recombination takes place on an existing junction on both chro-

mosomes, (B) with probability α(1 − α) recombination takes place

on an existing junction on one chromosome, and within a block

on the other chromosome, (C) with probability (1 − α)α recombi-

nation takes place on within a block on one chromosome, and on

an existing junction on the other chromosome, (D) with proba-

bility (1 − α)2 recombination takes place within a block on both

chromosomes.

there are R possible junction sites (we do not distinguish the pro-

cess of junction formation at different recombination positions,

we validate this assumption using individual-based simulations,

see the section“Individual Based Simulations”). We assume that

the R + 1 genomic segments are of equal size, and as a result, the

R junction sites are uniformly spaced across the chromosome (in

Section “A finite number of markers” we relax this assumption).

Given that at time t , there are Jt junctions, the probability that

a recombination event takes place at an existing junction is then

given by

αt = Jt

R
.

We focus on the dynamics of one of the two produced chromo-

somes. Because the choice of chromosome is random, averaging

across a large number of recombinations ensures that we cover

all possible outcomes. During recombination, we can then dis-

tinguish four possible events, taking into account the location of

recombination on both chromosomes (Fig. 1):

7 3 8 EVOLUTION APRIL 2018



BREAKDOWN OF ANCESTRY BLOCKS AFTER HYBRIDIZATION

(A) With probability α2, recombination takes place on an ex-
isting junction on both chromosomes. In this case, there are

two possible outcomes, depending on the transitions that the

two junctions represent. Either there is no change in the num-

ber of junctions (when the transitions of the two junctions are

identical), or a decrease in the number of junctions (when

the transitions of the two junctions are of opposing type).

The probability of either event happening is 1
2 , yielding an

average change in the number of junctions when crossover

takes place on an existing junction on both chromosomes of

− 1
2 .

(B) With probability α(1 − α), recombination takes place on
an existing junction on one chromosome, and within a
block on the other chromosome. There are two possibili-

ties: either the block on the other chromosome is of the same

type as the genomic material before the existing junction, or

it is of the other type. If it is of the same type, the existing

junction disappears, and the number of junctions decreases

by one. If it is of the other type, the existing junction remains

and the number of junctions does not change. The probabil-

ity of either event happening is 1
2 , and hence we expect the

number of junctions on average to change by − 1
2 .

(C) With probability (1 − α)α, recombination takes place on
within a block on one chromosome, and on an existing
junction on the other chromosome. The outcome is ex-

actly the opposite of case (B). If the genetic material after

the junction on the second chromosome is of the same type

as the block on the first chromosome, no new junction is

formed and the number of junctions stays the same. If the

genetic material after the junction on the second chromo-

some is of a different type than that of the block on the first

chromosome, a new junction is formed and the number of

junctions increases by one. The probability of either event

happening is 1
2 , and hence we expect the number of junctions

on average to change by 1
2 .

(D) With probability (1 − α)2, recombination takes place
within a block on both chromosomes. In this case, mat-

ters proceed as described for the continuous chromosome:

with probability H0 we observe an increase in the number

of junctions. However, since we are dealing with a finite

number of recombination positions along the chromosome,

the frequency of recombination sites of a genomic type is no

longer directly related to H0. If there would be no blocks,

that is if the genomic material would be distributed in an

uncorrelated way, pR potential recombination sites are of

type P , that is, they are within a block of type P . Similarly,

q R potential recombination sites are within a block of type

Q. As new junctions are formed, the number of potential

recombination sites that are still within a block decreases.

With the formation of a new block, on average both a recom-

bination site within a block of type P and a recombination

site within a block of type Q are lost, such that on average,

after the formation of a new junction, the number of recom-

bination sites of type P decreases by 1
2 Jt . Thus the number

of recombination sites within a block of type P is pR − Jt
2 .

Similarly, the number of recombination sites within a block

of type Q is q R − Jt
2 . The probability of selecting a recom-

bination site within a block of type P is then given by the

number of recombination sites of type P divided by the total

number of recombination sites. Let us denote the probability

of selecting a recombination site of type P by p∗, which is

then given by:

p∗
t = pR− 1

2 Jt

pR− 1
2 Jt +q R− 1

2 Jt
= pR− 1

2 Jt

R−Jt
. (5)

Concluding, for scenario D, we observe that the number

of junctions increases on average by 2p∗
t q∗

t (where q∗ =
1 − p∗).

Combining the scenarios (A)–(D), and noticing that 2pq =
H0, we can formulate the total expected change in number of

junctions

Jt+1 = Jt + C

(
−1

2
α2

t + 1

2
αt (1 − αt ) − 1

2
αt (1 − αt )

+ 2p∗
t q∗

t (1 − αt )
2

)
= Jt + C

(
2p∗

t q∗
t (1 − αt )

2 − 1

2
α2

t

)

= Jt + H0C − C
Jt

R
(6)

The solution of recursion equation (6) is given by

Jt = H0 R − H0 R

(
1 − C

R

)t

(7)

which is reminiscent of equation (3). The exponentially decaying

term leads to convergence at t → ∞, where we obtain

J∞ = H0 R. (8)

Note that the number of junctions obtained at t → ∞ does not

depend on the size of the chromosome in Morgans C , but the

speed of convergence does. A Taylor expansion of equation (7) at

t = 0 shows that initially, the number of blocks increases linearly

Jt ≈ −H0 R ln

(
1 − C

R

)
t.

Once the number of junctions has reached the limit H0 R, new

junctions will still be formed. Nevertheless, the average number

of junctions does not increase further, because the population

has reached the maximum packing density of junctions. Another

approach to understanding the link between genome size and
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the maximum packing density of junctions is the following: As

t → ∞, all alleles are in linkage equilibrium, and we can consider

the probability of observing either allele P or Q as independent

along the chromosome. Then, assuming that each allele has a

probability p of being P , the sequence consists of R + 1 inde-

pendent Bernouilli trials, and the number of consecutive P sites

(and Q sites) is given by a Negative Binomial distribution param-

eterized with r = 1 (the number of successes before 1 failure)

and p. The full haplotype sequence then consists of alternating

sequences of NB(1,p) sites of type P and NB(1,q) sites of type

Q. The mean length of junctions intervals is then given by:

E[NB(1, p) + 1]

2
+ E[NB(1, q) + 1]

2
= 1

2pq

Then, the average number of junctions packed in a chromosome

of R + 1 length, is given by J∞ = 2pq R = H0 R, which is identi-

cal to our previous result in equation (8). Hence, whereas initially

accumulation of junctions is hampered by repeated recombination

in the same site, at equilibrium it is the maximum packing density

of junctions, rather than the dynamic equilibrium between for-

mation and removal of junctions, that determines the maximum

number of junctions across the population.

A FINITE NUMBER OF RECOMBINATION SPOTS IN A

FINITE POPULATION

Arguably the most realistic scenario involves a finite number of

recombination sites, within a finite population. For a finite chro-

mosome in a finite population, accumulation of junctions is lim-

ited by two processes: decay of the heterozygous proportion of

the genome due to drift in a finite population, and the probability

of junction removal due to recombination occurring at a previ-

ous recombination site. We have described limitation of junction

accumulation due to repeated recombination at the same site as

a recurrence equation (cf. eq. 6). We can similarly express the

limitation of junction accumulation due to the decrease in the

proportion of the genome heterozygous due to finite population

size (eq. 3) as

Jt+1 = Jt + H0C − Jt

2N
. (9)

In equation (6) the accumulation of junctions over time is slowed

down by the term C Jt
R , representing the slowdown of junction

accumulation due to repeated recombination at the samesite. For

a finite population we observe a similar pattern, where the ac-

cumulation of junctions is slowed down by the term Jt
2N , which

represents the decay of the portion of genome heterozygous. As-

suming that these two effects are independent, and only focusing

on mean junction dynamics (ignoring drift in p) (we will show

with individual-based simulations that these assumptions are good

approximations), the combined effect of a finite population and

of a finite number of recombination sites, is then given by

Jt+1 = Jt + H0C − Jt

2N
− C

Jt

R
. (10)

The solution to equation (10) is given by

Jt = H0C
2NR

2NC + R
− H0C

2NR

2NC + R

(
1 − 1

2N
− C

R

)t

,

(11)

the exponentially decaying term leads to a convergence at t → ∞,

where we obtain

J∞ = H0C
2NR

2NC + R
. (12)

For R → ∞, equation (12) simplifies to equation (4), and for

N → ∞ equation (12) simplifies to equation (8).

Generalized Junction Dynamics
The general pattern of the accumulation of junctions over time

is highly similar across the different scenarios we have studied

here: after an initial period of a strong increase in the number

of junctions, the increase in the number of junctions slows down

and eventually approaches a maximum. Furthermore, compar-

ing equations (3), (7), and (11) we observe that there are some

generalities. Generally speaking, we can express the number of

junctions at time t as a function of the maximum number ob-

tained at t → ∞. We find (a full derivation can be found in the

Appendix)

Jt = K − K

(
1 − H0C

K

)t

. (13)

Where K is the maximum number of blocks obtained at t → ∞.

the derivation is graphically summarized in Figure 2: although for

different values of N and R, junction accumulation curves differ

strongly (Fig. 2A), we find that after normalizing the curves by

the number of junctions obtained at t → ∞ (Fig. 2B), the curves

partially collapse on each other. After rescaling the time axis by

the initial slope of each curve, all curves collapse on each other

(Fig. 2C), and are described by equation (13). In the most general

case, K is then given by equation (12).

The Limit of Accuracy
Given knowledge of the number of junctions and the population

size, one can use information about the number of junctions to

infer the onset of hybridization, which is given by (cf. eq. 11)

t = log
(
1 − J

K

)
log

(
1 − 1

2N − C
R

) (14)

In contrast to using a molecular clock, information about the

number of junctions provides information on a relatively short
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Figure 2. Graphical example of the construction of universal junction dynamics using results from individual based simulations. (A)

Mean number of junctions for H0 = 0.5, N = [50, 100, 200] and R = [50, 100, 200], number of replicates = 10,000. (B) The mean number

of junctions for the same parameter combinations, after rescaling the number of blocks relative to the maximum number of junctions

K . (C) The rescaled number of junctions versus rescaled time, by rescaling time according to β in equation (A6). After rescaling both the

number of junctions according to K , and time according to β, all curves for different values of N and R reduce to a single, universal,

curve, which follows equation (13).

timescale. However, because the number of junctions plateaus

over time, there is a limit in the accuracy of this method. The

maximum accurate time τMAT for which one can still infer the

onset of hybridization using equation (14), is given by (the full

derivation can be found in the Supplementary Material):

τMAT = log
(
K −1

)
log

(
1 − 1

2N − C
R

) , (15)

where K is given by equation (12). Figure 3 shows that τMAT scales

roughly exponential with both population size and chromosome

size.

Individual-based Simulations
To verify our analytical framework, and test the impact of marker

distributions, we test our findings using an individual-based

model. We use a Wright–Fisher process, extended with recom-

bination, assuming a constant population size N , diploid indi-

viduals, and a uniform recombination rate across the genome.

During initialization of the model, N individuals are generated,

where each individual can have either two parents of type P (with

probability p2), two parents of type Q (with probability q2) or

one parent of type P and one parent of type Q (with probability

2pq = H0). In every consecutive time step, N new individuals

are produced, where each individual is the product of a reproduc-

tion event between two individuals from the previous generation.

Parental individuals are drawn with replacement, such that one

individual could reproduce multiple times, but will on average re-

produce one time. We assume that in a mating event, both parents

produce a large number of haploid gametes from which two ga-

metes (one from each parent) are chosen to form the new offspring.

During production of the gametes, the number of recombination

sites is drawn from a Poisson distribution with a mean of C .

AN INFINITE NUMBER OF RECOMBINATION SITES

To model an infinite number of recombination sites, we represent

each chromosome as a continuous line of arbitrary length, that

can be subdivided into an infinite number of smaller lines. We

only keep track of junctions delineating the end of a block (fol-

lowing Baird (1995); Ungerer et al. (1998)). For each junction,

we record the position along the chromosome and whether the

transition is from genetic material of type P → Q or Q → P .

We observe that over time, the number of junctions reaches a max-

imum value, but only if the population is finite (Fig. 4), in line

with our mathematical predictions. In the first few generations the

accumulation of junctions follows that of an infinite population

(dashed line in left panel in Fig. 4), but rapidly simulation results

start deviating from the infinite population dynamics. When one

of the two ancestral species is overrepresented in the initial hy-

brid swarm (e.g., H0 = 0.1), the maximum number of junctions

is lower (as expected, following eq. (4), and is reached within a

shorter timespan.

A FINITE NUMBER OF RECOMBINATION SITES

To represent a chromosome consisting of a finite number of ge-

nomic elements, we model the chromosome as a bitstring, where

a 0 indicates a chromosomal segment of type P , and a 1 in-

dicates a chromosomal segment of type Q. To approximate an

infinite population we use a population size of 100,000 (simula-

tion results using a population size of 100,000 are very close to
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Figure 3. (A) Number of junctions over time for N = 1000, R = 1000 (black line), and the associated relative error dt/t (eq. 4 in the

Supplementary Material) (dashed blue line). Y-axis at the left hand side corresponds to the number of junctions, y-axis on the right hand

side corresponds to the associated relative error. As the number of junctions approaches K , the relative error approaches infinity. (B)

Maximum accurate time (eq. 15) for N = 1000, for an increasing number of markers. As the number of markers increases toward high

numbers (107), the maximum accurate time approaches 14,000. (C) Maximum accurate time (eq. 15) for R = 1000, for increasing population

size. As population size increases toward large values, the maximum accurate time plateaus around 6000 generations. (D) Maximum

Accurate Time (τMAT) for N and R, please note the logarithmic scale. Results show that the accurate range increases exponentially

with increasing N and R. Results show that the accurate range increases exponentially with increasing N and R. For all four plots,

H0 = 0.5, C = 1.

our predictions assuming an infinite population size). The mean

number of junctions in the stochastic simulations closely follow

our analytical estimates (Fig. 4, middle column), for all chromo-

some lengths considered here. Again we observe that for strongly

skewed ancestral proportions (H0 = 0.1), the maximum number

of junctions is lower (as expected following eq. 8), and the max-

imum is reached within a shorter timeframe. When we simulate

using a finite population size and a finite number of genomic

elements (Fig. 4, right column), we observe similar patterns,

where the number of junctions approaches a maximum value,
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Figure 4. Number of junctions over time for individual-based simulations, and analytical predictions. Left column: Results assuming a

chromosome with an infinite number of junction sites, R = ∞, and a population size (N) of 100 or 1000 individuals (circles), the analytical

prediction for an infinite population size (dashed line), or the analytical prediction for a finite population size (eq. (3)), solid line. Middle

column: Results assuming a chromosome with a finite number (R) of junction sites, where R is 100 or 1000, and a population size of

100,000 (circles), or the analytical prediction according to equation (7) (solid line). Right column: Results for a chromosome with a finite

number of junction sites of length R of 100 or 1000, and a finite population of size N is 100 or 1000 (circles), or the analytical prediction

according to equation (11). Error bars indicate the standard error of the mean across 1000 replicates. Shown are results for different

initial frequencies of heterozysity H0. For all results shown, C = 1.

albeit that this maximum value is lower than for an infinite pop-

ulation. Furthermore we observe that mean results of simulations

are highly similar to our analytical expectations following equa-

tion (11). We have shown here only results for R ≤ 2NC, which

ensures that limitation in the accumulation of junctions is the

result of both the effect of a finite chromosome size, and of

a finite population size (see equation (A14) in the Appendix).

For R � 2NC, our results reduce to the infinite chromosome

case.

THE DISTRIBUTION OF JUNCTIONS IN THE

POPULATION

So far, we have focused on the mean number of junctions within

the population. Apart from the mean, the distribution of junctions

within the population has some interesting properties as well.

Most interestingly, the number of chromosomes with an even

and with an odd number of junctions is not distributed equally.

We find that for increasing deviations from H0 = 0.5, the fre-

quency distribution of junctions starts to resemble more and more

a ”stegosaurus” pattern, where the high peaks are associated with

chromosomes with an even number of junctions, and the low peaks

(the back of the stegosaurus) are associated with chromosomes

with an odd number of junctions (See Fig. 5A). Furthermore, we

find that the degree of “stegosaurusness,” for example the relative

frequency of chromosomes with an even number of junctions,

is directly proportional to p (Fig. 5B). The number of even and

uneven junctions could therefore potentially be used as an in-

dependent estimator of p. However, empirically estimating the

exact number of junctions per chromosome is hard, and errors

in estimating the number of junctions smoothens out the distri-

bution, making the relative frequency of even chromosomes an

unreliable predictor of p. Furthermore, due to this smoothing, for

empirical applications it seems better to focus on the mean of the

distribution (as described in the previous and next section), rather

than focus on the peculiarities of this distribution. Lastly, although

the disparity between chromosomes containing even and uneven

numbers of junctions could introduce errors when estimating the

mean number of junctions at t , we do not find such errors (See

Fig. 5C), most likely because we focus here on the mean, rather

than variation round the mean. This shows that although from a

mathematical viewpoint interesting patterns appear, for practical

purposes it is possible to ignore these.
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Figure 5. (A) Example distribution of number of chromosomes with n junctions. Results are shown for N = 500,000, C = 1, H0 = 0.1,

R = 100 at t = 500. Results show the “stegosaurus” pattern, where chromosomes with an even number of junctions are more frequent

than chromosomes with an odd number of junctions. (B) Linear relationship between the degree of “stegosaurusness” and the frequency

of the most common ancestor in the hybrid swarm, p. Results are shown for N = 500,000, C = 1, R = 100 at t = 500. (C) Inaccuracy in the

estimate of the maximum number of blocks K , depending on the initial heterozygosity H0 = 2 pq. Although the degree of stegosaurusness

increases with decreasing H0, error in the estimate of K , and overall estimate in the accumulation of junctions, does not increase. Points

are the mean of 10 replicates.

A FINITE NUMBER OF MARKERS

A finite number of recombination sites can also be interpreted

as a number of markers uniformly spaced across the genome.

In reality, however, markers are seldom placed uniformly spaced

across the genome. In this section, we numerically explore the

impact of having randomly spaced markers along the genome.

We simulated markers by simulating a chromosome consisting of

an infinite number of recombination sites (as described above),

and then superimposing a fixed (random) marker distribution. For

each marker position, we assessed the ancestral state by checking

the transition direction at the junctions surrounding the marker

position.

We performed individual-based simulations for N =
100, 500, and 1000, H0 = 0.5, C = 1, and explored marker num-

bers R = 50, 100, 500, 1000, and 5000. Per parameter combi-

nation we simulated 100 random marker distributions, and per

marker distribution, 100 replicate simulations. We find (Fig. 6A

and D, dots) that the number of detected junctions is lower than

expected using K based on evenly spaced markers (eq. 12) (Fig. 6,

A, D, dashed line). Because K is the number of junctions obtained

in the limit t → ∞, we can substitute the maximum number of

junctions obtained at the end of the simulations (e.g., a numer-

ical estimate for K ), and plot the expected number of junctions

over time following the generalized framework (eq. 13) (Fig. 6A

and D, dashed lines). We find that the simulation data follows

the expected number of junctions reasonably well. Nevertheless,

it appears that in the initial generations, the detected number of

junctions is lower than that expected under this adjusted frame-

work (Fig. 6B and E). Indeed, we find (Fig. 6B and E) that the

detected number of junctions divided by the number of junctions

expected using the value of K estimated from the simulations,

tends to one as t tends to large values (as expected), but is lower

in the initial stages of hybridization, and can be as low as 0.8. Nev-

ertheless, we find that the observed values of K (e.g., the number

of junctions at the end of the simulation), and those expected for

the respective R values, correlate strongly (Fig. 6, right panel).

For N = 100 we find a slope of 0.97 (R2 > 0.99), for N = 500

we find a slope of 0.88 (R2 > 0.99, figure not shown) and for

N = 1000 we find a slope of 0.84 (R2 > 0.99). Hence, we find

that the difference between the expected and observed value of K

increases with increasing N . This seems to suggest an interaction

between population size and the number of randomly distributed

markers that we cannot account for. If the effect of randomly

distributed markers follows generalized underlying dynamics,

we expect to be able to rescale obtained junction accumulation

curves in a similar fashion as shown in Figure 2 and in Section

“Generalized Junction Dynamics,” for example by first rescal-

ing the number of junctions by the obtained maximum, and then
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Figure 6. Shown are results for two different population sizes: N = 100 (A–C) and N = 1000 (D–F). (A and C) The number of junctions

over time (H0 = 0.5, C = 1). The black line indicates the true number of junctions, assuming an infinite number of recombination sites. The

dashed lines indicate the expected number of junctions for a chromosome consisting of a finite number of recombination sites, where

R = 100, 1000, and 5000, respectively. Dots indicate the mean number of junctions from simulations using randomly spaced markers

across the chromosome. The solid line indicates the expected number of junctions, using the generalized framework with K equal to

the maximum mean number of junctions from simulations using random markers. (B and E) Correlation between the observed value

of K , and the expected value for K , with R = 50, 100, 500, 1000, and 5000, and N = 100 (B), and N = 1000 (E). R2 values are for both

population sizes above 0.99. Slopes are 0.97, and 0.84 for N = 100 and N = 1000, respectively. (C and F) The ratio between the mean

number of junctions with R = 100, 1000, and 5000 in simulations using randomly spaced markers, and the expected number of junctions

using the universal framework with K equal to the maximum mean number of junctions from simulations using random markers.
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rescaling time by the initial slope. We find that after rescaling, the

curves do not line up (results in the Supplementary Material), sug-

gesting that there are effects affecting the number of detected junc-

tions other than a fixed penalty of junction detection. Nevertheless,

as R increases, the approximation of an even marker distribution

becomes increasingly accurate, which is demonstrated by the

close fit of R = 5000, N = 100, as shown in Figure 6. This might

also reflect the decaying impact of a finite number of markers,

which suggests that the impact of a finite number of markers is

less important if R � 2N (derivation in the Appendix).

Discussion
Although the theory of junctions dates back to Fisher (1949)

and has been developed toward modern analysis of hybrid zones

(Barton 1983; Baird 1995) empirical studies on the evolution

of junctions in admixed lineages are still scarce. This may be

partly owed to the fact that genomic data and relevant study sys-

tems are only starting to become available. Moreover, existing

methods were challenging to use. Whereas previous work on the

theory of junctions assumes a chromosome that consists of an

infinite number of recombination sites, we take into account a fi-

nite number of recombination sites, and a nonzero probability of

recurrent recombination events (eq. 7). This accommodates study

systems where the recombination landscape is not homogenous

and where the number of markers that are informative of ances-

try is limited. We developed a novel framework that describes

the accumulation of junctions over time as a generalized function

only dependent on the number of junctions obtained at t = ∞
(eq. 13). Furthermore, we have derived general expressions that

provide the upper limit for inferring the age of hybridization,

given the number of molecular markers used (R) and the popu-

lation size (N ). Lastly, we have used this general framework to

study the effect of randomly distributed markers as compared to

evenly distributed markers.

Our framework can serve as a neutral model of the accu-

mulation of ancestry junctions in studies that seek to analyze the

early stages of hybrid speciation and recent admixture, which

are particularly informative of evolutionary processes (Nolte and

Tautz 2010; Gompert and Buerkle 2016). The junction frame-

work that we have presented provides a neutral expectation but

it considers only certain effects of drift. Drift causes allele fre-

quencies to change over time. Initially these changes are coupled

among linked markers, but they become more and more indepen-

dent through consecutive rounds of recombination. As a result,

within genome variation in allele frequencies increases over time

(Stemshorn et al. 2011) that might impact junction formation.

For simplicity, we have not taken into account the effect of inter

and intrachromosomal variation in allele frequencies on junction

formation, and have only modeled the effects of population size

on drift, as described by Crow and Kimura (Crow and Kimura

1970). However, effects of recombination on drift were explicitly

modeled in the individual-based simulations. It is reassuring that

the mean dynamics of the simulations agree well with our math-

ematical model (Fig. 6). Nevertheless, we acknowledge that for

a complete and full description of neutral junction dynamics, the

effect of within genome variation in allele frequencies on junction

formation should be taken into account.

Here, we summarize properties of our method and we dis-

cuss processes that may cause deviations from the model that

may be relevant to interpret results. Our extension of the theory

of junctions accurately describes the expected number of detected

junctions, provided that the markers are regularly spaced across

the chromosome. Unfortunately, regular marker spacing can be

difficult to obtain in reality. We have therefore simulated the ef-

fect of randomly spaced markers, while keeping the overall marker

density across the chromosome fixed. We found that the amount

of junctions that remained undetected varied over time, and that

applying a fixed ratio to correct the expected number of junctions

did not resolve this issue. In the absence of an explicit description

of the number of detected junctions over time, we have shown

how to obtain a numerical approximation by using simulations

to estimate the value of K within our generalized framework.

Although this approximation still tends to overestimate the num-

ber of junctions at intermediate timescales, estimates are much

closer than predictions from the evenly spaced markers model.

The overestimation of the approximation seems to be the result

of an interaction between the number of markers, the number

of junctions and the population size. This is in line with previ-

ous findings by MacLeod et al. (2005), who found that the ratio

between markers and junctions (e.g., R/Jt ) was the main fac-

tor driving the detection probability. We would like to note, that

the mismatch between our predictions and the observed number

of junctions due to the difference between evenly and randomly

spaced markers reduces significantly as the number of markers

(R) increases (see Fig. 6). Note also, that although it has become

increasingly feasible to analyze large numbers of markers, alleles

in empirical data are often not fully ancestry informative. The an-

cestry of genomic blocks can still be determined with a degree of

uncertainty (see for instance Corbett-Detig and Nielsen (2017)),

but problems arising from ancestry uncertainty are outside the

scope of the current work.

Processes that cause deviations from the neutral model fall

into two general categories: either processes acting upon the un-

derlying genomic content, or processes that affect population dy-

namics. When a genomic region from only one parent is under

selection this reduces heterozygosity and therefore recombina-

tion events in this region, as individuals recombined in this region

are selected against (Kimura 1956; Lewontin and Hull 1967).

Hence, selection can slow down the formation of new junctions.
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Future work could focus on the minimal level of selection to off-

set neutral junction dynamics, or whether deviations from neutral

junction dynamics can be used to identify genomic areas that are

under selection. However, caution should be taken as the signal

of selection may be lost due to overshadowing effects of drift due

to limited population size, or changes in population demography

(see also below).

Chromosomes share the same evolutionary history but con-

stitute separate genetic elements. Hence, it would be conceivable

that a comparison of the number of junctions could reveal in-

teresting differences at the level of chromosomes. Under neutral

dynamics, the number of junctions per chromosome is expected

to be approximately Poisson distributed. Although we have a firm

understanding of the expected mean of this distribution, an un-

derstanding of the expected variation around the mean has so far

only been accessible through simulation (Chapman and Thomp-

son 2002, 2003). Using our simulations, we have also explored

how variation in the number of junctions changes over time (see

Supplementary Material). It appears that the variation does not

follow straightforward dynamics, especially if the population is

finite in size. Furthermore, the variation appears unrelated to the

mean, suggesting that a Poisson approximation is invalid (see also

(Chapman and Thompson 2002, 2003)). We observe that varia-

tion increases initially until a tipping point is reached, where the

increase in variation due to the creation of new junctions is off-

set by the reduction in variation due to fixation as a result of

finite population size. After this point, variation decreases until

all junctions are fixed in the population. The exact mathematical

description of the expected variance of the number of junctions

among chromosomes currently lies outside our grasp.

A non-uniform recombination rate across the physical chro-

mosome could also cause deviations from neutral junction dynam-

ics. Empirical work has shown that recombination rates are often

not equal across the chromosome, but may be increased towards

the peripheral ends of the chromosome (Lukaszewski and Curtis

1993; Pan et al. 2012; Roesti et al. 2012)). As long as the num-

ber of recombination sites is infinite in the chromosome, the exact

shape of the recombination landscape has no effect on junction dy-

namics. For a chromosome with a finite number of recombination

sites, however, junction dynamics change (see the Supplementary

Material for a demonstration of increased recombination toward

the peripheral ends). If some sites have an increased probabil-

ity of recombination compared to others, recombination is more

likely to occur at a site that has already experienced a recombina-

tion event before. As a result, the formation of new junctions is

slower than expected under uniform recombination. Interestingly,

the maximum number of junctions that can be reached remains

unaffected.

Population level processes are also expected to affect junction

dynamics. Firstly, deviations from having a constant-population

size over time are expected to cause deviations from our universal

junction framework. A natural extension of this study would be to

include either exponentially or logistically growing populations to

mimic real-life dynamics more closely. In exponentially growing

populations, the average heterozygosity does not change (Crow

and Kimura 1970), which results in dynamics that resemble an in-

finite population. Similarly, for logistically growing populations,

during the initial growth phase, junction dynamics are expected to

closely resemble junction dynamics in an infinite population. We

do have to take into account drift effects even though a popula-

tion (hybrid lineage) is growing exponentially when this involves

a wave front invasion of an open habitat or space (Hallatschek

et al. 2007). This could be particularly relevant to cases of hybrid

speciation that involve the segregation of a hybrid lineage into a

habitat that is not available to the parental species (Mallet 2007;

Nolte and Tautz 2010). How drift and the rate of growth interact

and influence junction dynamics remains the subject of future

study. Population subdivision, founder effects, a bottleneck or a

permanent decrease in population size could speed up fixation of

junctions in the population through drift. Accordingly, the average

heterozygosity decreases faster than expected, and the accumula-

tion of new junctions is slowed down. Furthermore, the maximum

number of junctions decreases as well (following eq. 12) although

previously accumulated “excess” junctions might not be lost after

a population change. Thus, depending on the speed and timing of

the decrease, individuals in the final population potentially dis-

play a larger number of junctions than expected from the current

population size, retaining junctions fixed in the population before

the population decreased in size.

An important population level process that affects junction

dynamics is given by secondary introgression of genetic material

from parental populations after the hybrid lineage has emerged.

This can be expected to occur in young systems studied in

the context of hybrid speciation (Stemshorn et al. 2011; Trier

et al. 2014) and introduces parental genomic blocks into the

population that have not yet recombined. It leads to an apparent

reduction of the number of junctions (Pool and Nielsen 2009)

effectively turning back time in an analysis of junctions if not

taken into account. Secondary introgression introduces haplotype

blocks that are disproportionally large, compared to the standing

haplotype block size distribution and these blocks are expected

to be randomly distributed across the genome as opposed to

larger blocks that were fixed through selection (Baird 1995;

Ungerer et al. 1998). The haplotype block size distribution

therefore provides information that can help to assess whether

secondary introgression leaves a strong footprint in an admixed

lineage (Barton 1983; Baird 1995; Ungerer et al. 1998; Pool and

Nielsen 2009).

We expect that there are more processes that can affect

the accumulation of junctions, including, but not limited to, sib
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mating, interference between recombination events, chromoso-

mal inversion polymorphisms, mutation, meiotic drive, segrega-

tion distortion, and heterochiasmy. All processes mentioned above

cause a slowdown in the accumulation of junctions. In contrast,

the formation of new junctions could speed up under balanc-

ing selection, when the combination of alleles from both parents

provides a selective advantage. The resulting overdominance fa-

vors a heterozygous genotype (Maruyama and Nei 1981), in turn

favoring the formation of new junctions. Likewise, positive epis-

tasis among linked loci could favor a combination of alleles of

different parents. As a result, recombination between these loci

would be selected for, speeding up junction formation. With the

exception of overdominance or positive epistasis, this suggests

that the additions to the theory of junctions that we have pre-

sented here provides an upper speed limit to junction dynamics.

Thus, estimates of the onset of hybridization using our framework

reflect the youngest age of the hybrids in question. Our frame-

work will help to identify patterns of admixed genome evolution

and provide insights in the early evolutionary history of hybrid

lineages.

CODE AVAILABILITY

Code used for the individual-based simulations, and code to eval-

uate relevant equations has been made available in the cran-

R package “junctions” (https://CRAN.R-project.org/package=
junctions), and has been included in the Supplementary Infor-

mation as stand-alone R code.
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APPENDIX: DERIVING THE
UNIFYING FRAMEWORK

Generally, we can infer that the maximum number of junc-

tions is dependent on p, N , R, and C , as do the time dynamics

required to reach this maximum. Hence, we can describe the

number of junctions relative to the number of junctions at t = ∞,

which we define here as K . During meiosis, the average number

of junctions in the most ideal case can increase with γ junctions.

There might be limitations, dependent on p, N , R or the number

of already existing junctions. As such, we make the ansatz

dJ

dt
= γ − λJ (A1)

where γ is the maximum growth rate and λ encompasses all

factors limiting the formation of new junctions. This includes, but

is not limited to, factors induced by a finite population size N and

by a finite number of recombination spots R. Defining τ = λt ,

we can rescale time in equation (A1) such that

dJ

dτ
= γ

λ
− J. (A2)

Measuring the number of junctions in terms of their asymptotic

values, J̃ = λ J
γ

, we obtain

d J̃

dτ
= 1 − J̃ (A3)

The solution of equation (A3) is of the form

J̃ (τ) = 1 − e−τ. (A4)

(Please note that we refer to the number of junctions in continuous

time as J (τ) and the number of junctions in discrete time as Jt ).

We can find the scaling of time by solving

J̃ (1) − J̃ (0) = K (1 − e−βt ) − K (1 − e0) (A5)

EVOLUTION APRIL 2018 7 4 9



T. JANZEN ET AL.

By definition J̃ (0) is zero, which allows us to calculate β

β = − ln
(
1 − J (1)

K

)
(A6)

Returning to discrete time, we can formulate the universal dy-

namics as

Jt = K
(
1 − exp

(
ln

(
1 − J (1)

K

)
t
))

= K − K
(
1 − J (1)

K

)t
(A7)

For t → ∞, this converges to K , and for t = 0 this is equal to

zero. Equation (A7) provides us with a general scalable equation

where all junction dynamics are described in terms of K and J (1).

To implement the unifying equation (A7), we only need to

know K and J (1). Since J (0) = J0 = 0, we obtain from equa-

tion (10) J (1) = H0C . Thus, regardless whether the chromosome

contains a finite or infinite number of recombination sites, and re-

gardless of whether the population is finite or infinite, we find that

the initial change is always H0C , and that J (1) = H0C . This also

makes intuitive sense: in the first generation, none of the factors

that limit recombination as a result of finite population size, or

finite chromosome size come into play yet. When the population

is finite, the formation of new blocks is limited by recombination

taking place at a recombination spot where in a previous gen-

eration recombination has already taken place. However, in the

first generation, all chromosomes are nonrecombined, and finite

population effects have no effect yet. When the number of re-

combination sites is finite, the formation of new blocks is limited

by the maximum packing density of junctions. However, in the

first generation, no junctions are apparent yet, and this effect is

negligible. Concluding, we can formulate our general haplotype

framework as (eq. 13 in the main text):

Jt = K − K

(
1 − H0C

K

)t

. (A8)

Importance of finite chromosome length
Our universal framework introduces the possibility to take into

account a finite number of recombination sites. Previous work

has inferred junction dynamics for chromosomes with an infi-

nite number of recombination sites. An important question to be

answered is for which values of R our universal framework ap-

proaches previous results.

For small H0
K , we can approximate our unifying framework

(eq. A8 in the Appendix, and eq. 13 in the maintext) by

Jt ≈ H0Ct − H 2C2

2K
(t2 − t). (A9)

Where the last term describes the limitation in the number of

junctions dependent on K . For K → ∞, we recover Jt = H0Ct .

Substituting the upper limit for finite R, K = H0 R in equation

(A9), we obtain

Jt ≈ H0Ct − H0C

(
C

2R

)
(t2 − t). (A10)

We expect that the impact of R is negligible compared to the linear

term in t if the second term of equation (A10) is much smaller

than the first term. This implies that

R � C
t − 1

2
, (A11)

which for t � 1 is approximately t 	 2R/C ; the approximation

of an infinite R is good as long as the time in generations is

much shorter than twice the length of the chromosome (in genetic

elements), divided by the size in Morgan.

When both R and N are finite, we can substitute the appro-

priate K (eq. 12) into equation (A9), and obtain

Jt ≈ H0Ct − H0C

(
C

2R
+ 1

4N

)
(t2 − t). (A12)

Comparing this with the approximation for a finite population (but

an infinite number of recombination spots), where K = 2H0CN,

we see that

Jt ≈ H0Ct − H0C

(
1

4N

)
(t2 − t). (A13)

Differences induced by a finite R (e.g., differences between equa-

tions (A12) and (A13)) are then due to the term C
2R in equation

(A12), and the impact of finite R thus decreases rapidly with

increasing R. Furthermore, the impact of R on the number of

junctions, compared to the impact of N , is negligible if:

R � 2NC (A14)
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