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Abstract

Schatzkin et al. and other authors demonstrated that the ratios of some conditional statistics such 

as the true positive fraction are equal to the ratios of unconditional statistics, such as disease 

detection rates, and therefore we can calculate these ratios between two screening tests on the 

same population even if negative test patients are not followed with a reference procedure and the 

true and false negative rates are unknown. We demonstrate that this same property applies to an 

expected utility metric. We also demonstrate that while simple estimates of relative specificities 

and relative areas under ROC curves (AUC) do depend on the unknown negative rates, we can 

write these ratios in terms of disease prevalence, and the dependence of these ratios on a posited 

prevalence is often weak particularly if that prevalence is small or the performance of the two 

screening tests is similar. Therefore we can estimate relative specificity or AUC with little loss of 

accuracy, if we use an approximate value of disease prevalence.
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1. Introduction

Some large, well-funded clinical trials of diagnostic tests follow all patients in the study to 

determine whether those patients were truly diseased and whether the diagnostic tests were 

correct. These studies will report sensitivities, specificities, and sometimes areas under the 

ROC curve (AUC). However, there are also many large, observational, screening studies that 

do not follow all patients. In these studies only patients found positive by the diagnostic test 

to go through further confirmatory diagnoses or reference procedures. For examples see 

Friedewald et al. [1] or Brem et al. [2]. This happens in clinical practice because the 

confirmatory gold-standard procedures are frequently invasive, costly, or time consuming. In 

these large observational clinical studies authors may report only detection and recall rates. 
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Here the detection rate is defined as the fraction of all patients who have the disease and are 

called positive by the diagnostic test. The recall rate is the fraction of patients who test 

positively. To calculate detection and recall rates only patients found positive by the 

diagnostic test need to be followed.

In the notation of Table 1, the number of true positives t and false positives f are measured in 

these observational clinical studies, but the number of true and false negatives, υ and u, in 

the sample are unknown. The numbers of patients who are truly diseased n = t + u or not 

diseased m = f + υ are also unknown. The detection rate can be calculated as d = t/N where 

N = t + f + υ + u is the total number of patients in the study. The recall rate is estimated as r 
= (t + f)/N. Typical estimates of conditional probabilities such as the true positive rate (TPR) 

or sensitivity, t/n, or the true negative rate (TNR) or specificity, υ/m, are not possible. The 

usual estimate of the prevalence of disease in the population, π̂ = n/N,1 can not be 

calculated.

Typically we use measures of sensitivity and specificity to determine which of two 

diagnostic tests is superior. Many observational studies report results for two diagnostic tests 

on the same set of patients or on the same patient population. Though we can not calculate 

an absolute sensitivity or specificity of either diagnostic from these studies, we can calculate 

relative sensitivities or false positive rates between two tests.

Schatzkin et al. [3] demonstrated that estimates of ratios of the conditional positive rates (the 

true positive rate and the false positive rate) of diagnostic tests X and Y on the same sample 

can be calculated from the measured positive values. Indeed the relative sensitivity or 

relative true positive rate estimate,

rSens = rTPR =
TPRX
TPRY

=
tX /n
tY /n =

tX
tY

, (1)

is the ratio of two estimated detection rates, (tX/N)/(tY/N) = (tX/tY), where tX is the number 

of true positives of test X. (Note that estimating ratios in this manner is slightly biased, 

particularly when tX is small.) The relative sensitivity of two tests on different samples from 

the same population can be estimated as

rSens = rTPR =
TPRX
TPRY

=
tX /nX
tY /nY

=
tX /(NXπ)
tY /(NYπ) =

tX
tY

NY
NX

(2)

which is also the ratio of two estimated detection rates where NX is the total number of 

patients in the study of test X. This estimate may be more variable than a ratio that was 

calculated on same set of patients (eq. (1)), because the actual fraction of diseased patients in 

the two samples may be different, though the expected fractions are the same. Other authors 

1In this work most variables represent measured values or estimated values. The exceptions are the values of π and p, which may be 
considered true population values.
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[4, 5] have developed approaches for performing inference on estimates of ratios of statistics 

from screening data without disease confirmation.

Schatzkin et al. [3] also showed that the relative false positive rate is estimated as

rFPR =
FPRX
FPRY

=
f X /mX
f Y /mY

=
f X

NX(1 − π)
NY(1 − π)

f Y
=

f X
NX

NY
f Y

. (3)

This ratio is calculable using only the numbers of false positives and numbers of patients, 

which are measured in observational studies.

With these ratios we can compare diagnostic tests. If we were to perform a study, and the 

relative sensitivity of X to Y were 1.1, and rFPR were 0.9, then we would judge test X to be 

about 10% better on both diseased and non-diseased patients, indicating that it was an 

overall superior test. However if the ratios of both positive rates were greater than 1, then 

superiority would be ambiguous. Therefore before performing the study we may want to 

select a single study endpoint that is less ambiguous, such as AUC, on which we would 

perform our inference. This paper examines the calculation of relative AUC, expected utility, 

and specificity in scenarios where the number of false negatives is unmeasured, and the 

prevalence may only be known approximately.

Abbey et al. [7] defined the metric “expected utility”. We can write it as

EU = TPR − 1 − π
πUr

FPR . (4)

Expected utility is a measure proportional to the total utility (benefits minus costs) of 

performing screening with a particular diagnostic test in the intended population. Calculated 

from the positive rates it shows how utility changes as a function of the decision threshold 

used on the diagnostic. Ur is the relative utility, which can be thought of as a ratio of the 

utility benefit for making a correct decision when a patient has the disease to that of making 

a correct decision when a patient does not have the disease. Abbey et al. [6] and [7] 

examined large clinical studies and estimated Ur to be approximately 162 for breast cancer 

screening. This indicates that the average benefit of finding a breast cancer is considered to 

be about 162 times greater than the benefit of calling a normal patient negative. Another 

quantity, the “recall-corrected detection rate” [7], is proportional to expected utility and can 

be written as

RCDR = d − r
1 + Ur

. (5)

This metric is the detection rate penalized by a utility-dependent fraction of recalls.
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In Section 2 we demonstrate that ratios of expected utility, have the same property as the 

positive rates. Those relative utilities can be estimated independently of the number or 

fraction of diseased patients in the sample.

In Section 3 we demonstrate that for some metrics which depend upon the number or 

fraction of diseased patients, such as specificity and AUC, the ratios of such metrics 

typically depend only weakly on the prevalence of disease in the population, particularly if 

the prevalence is low and the difference in performance of diagnostic tests is small. 

Therefore we can use approximate values of prevalence to estimate ratios of specificities and 

AUCs with little loss of accuracy for many screening studies of diagnostic tests.

2 Ratios of expected utilities

Even if we did not measure the number of true or false negatives in an observational clinical 

study, we can estimate the true and false positive rates as

TPR = t
Nπ (6)

FPR = f
N(1 − π) (7)

if we know the disease prevalence π. Then we can write the ratio of two estimated expected 

utility (eq. (4)) expressions for two tests X and Y as

rEU =
EUX
EUY

=

tX
NXπ − 1 − π

πUr

f X
NX(1 − π)

tY
NYπ − 1 − π

πUr

f Y
NY(1 − π)

=
tX − f X /Ur
tY − f Y /Ur

·
NY
NX

. (8)

This relative EU value, like relative TPR and FPR, can be calculated from a study where the 

only patients who test positively have confirmed diagnoses, as described in the introduction. 

Specifically it depends only upon the numbers of true and false positives and sample sizes. 

Because expected utility is proportional to the total utility of performing a diagnostic test, 

ratios of total utility must also be independent of disease prevalence.

Using our previous definitions of recall and detection rates, d = t/N and r = (t + f)/N, we can 

show that the ratio of two recall-corrected detection rates eq.(5) is

RCDRX
RCDRY

=

tX
NX

−
tX + f X

NX(1 + Ur)
tY
NY

−
tY + f Y

NY(1 + Ur)

=
tX(1 + Ur) − tX − f X
tY(1 + Ur) − tY − f Y

·
NY
NX

=
tX − f X /Ur
tY − f Y /Ur

·
NY
NX

,
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which is the same as the ratio of two expected utilities in eq. (8),

RCDRX
RCDRY

=
EUX
EUY

.

3 Estimating ratios of metrics with weak dependence on prevalence

Schatzkin et al. [3] showed that are a number of statistics, such as TPR and FPR, whose 

ratios we can estimate independently of the total number or prevalence of diseased patients. 

Therefore ratios of these statistics can be estimated from studies where there is no 

confirmation of disease status for negatively tested patients. In addition we show below that 

there are some statistics, such as specificity and AUC, whose ratios we can estimate with 

little loss of accuracy without knowing the number of diseased patients.

Frequently we can do the following.

1. Write an estimate of our statistic Z in terms of the measured true and false 

positives and the true unknown prevalence, π.

2. Show that the dependence of the estimated ratio of two of these statistics, ZX/ZY, 

on the common disease prevalence π is weak for the scenario of interest.

3. Use an approximate, commonly accepted, value of prevalence πp in our estimate 

of the ratio. The use of this approximate value of prevalence πp instead of the 

true population value will bias our estimates of ZX/ZY. However for screening 

tests, the prevalence of disease is small, and we expect that the magnitude of an 

error in our posited prevalence can not be much larger than the true value of 

prevalence itself. Therefore the bias in our estimates of ZX/ZY due to our 

uncertainty in π should be small.

4. Perform a sensitivity analysis to demonstrate empirically that the uncertainty in 

the value of πp leads to an absolute bias in the estimated ratio that is below some 

tolerated limit.

For step 4 a typical, tolerated limit is the statistical standard error of the ratio itself. If we are 

willing to accept a value for a statistic that is within two standard errors of a measured value, 

then in general we will accept an absolute systematic bias below one standard error, as it 

increases the total root-mean-squared error less than 40%. In this paper we do not discuss 

how to calculate this statistical standard error, because it depends on the design, 

experimental factors, and correlations in the study. Here we just assume that variance 

calculations will be done properly, and other texts deal with these calculations.

In the following sections we show that we can do the above steps for specificity and a simple 

estimate of AUC.

3.1 Specificity

As Schatzkin et al. [3] points out, the specificity and ratios of specificity estimators
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rTNR = rSpec =
vX /m
vY /m =

vX
vY

depend upon the number of true negatives, which we do not know. While the specificites do 

not contribute any statistical inference beyond what the false positive rates provide, we still 

may wish to estimate their ratios for the purposes of communicating the differences between 

two tests to others.

We can rewrite the estimate of specificity in terms of the prevalence,

TNR = Spec = 1 − f
N(1 − π) , (9)

For screening tests π is typically small compared to one. Therefore using a first order Taylor 

approximation we can write

TNR = Spec ≈ 1 − f
N (1 + π) . (10)

If π is small, then its contribution to the specificity is small.

If we use for π a value of prevalence inferred from other published studies on similar 

populations of patients, πp, then there will be a bias in our estimate of specificity because 

this is not the true prevalence. However, we expect that this bias can not be much larger than 

the true value of prevalence. So if prevalence is small, any bias due to its mis-estimation in 

eq. (10) is also small.

From eq. (9) the relative specificity of two tests X and Y can be written

rTNR = rSpec =
1 − f X /NX − π
1 − f Y /NY − π . (11)

A Taylor series expansion of this equation about π = 0 is

rSpec = 1 +
zX − zY

zY
1 + π

zY
+ π

zY

2
+ … (12)

where zX = 1 − fX/NX and zY = 1 − fY/NY. From this expression we see that if the 

approximate prevalence is much less than the fraction of all patients who are not false 

positives, i.e. π ≪ 1 − fY/NY or nY ≪ tY + uY + υY, then the relative specificity will be very 

weakly dependent upon the value of that prevalence. This is frequently the case in clinical 
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screening studies of diagnostic tests. Typically the rate of disease in the tested population or 

sample is much smaller than the true negative rate.

If we let δ be the error in our posited prevalence, πp = π + δ, and if we use πp in expression 

(14) instead of the true population value π, then the first order bias in that expression is

zX − zY

zY
2 δ . (13)

This expression comes from the first π dependent term in eq. (12) and implies that the bias 

in the ratio of two estimated specificities will be very small if the difference in false positive 

rates between the two tests X and Y is much smaller than zY and if the error in our 

prevalence is small, which is probably the case when the prevalence itself is small. If this 

bias is small, then we can make estimates of the relative specificity without knowing the 

number of true negatives. An example of a small bias in relative specificity is given in 

Section 4.

3.2 AUC

Baker and Pinsky [8] demonstrated that ratios of a partial area under an empirical ROC 

curve below a recall threshold can also be calculated without knowledge of the total number 

or prevalence π of actually diseased patients. Shaw et al. [9] demonstrated the construction 

of ROC curves using only data from patients who were called positive by a diagnostic test. 

Here we demonstrate that under certain conditions the ratios of total estimated areas under 

parametric ROC curves are weakly dependent upon an estimated prevalence.

Frequently published observational clinical studies do not report ROC data for the diagnostic 

tests under investigation. They present only a single detection and single recall measurement 

for each diagnostic test. If we write estimators of the true and false positive rates in terms of 

the number of positives and an unknown prevalence, as in eqs (6) and (7), then we can 

estimate an approximate AUC value for the diagnostic. If that TPR, FPR point lies upon the 

ROC curve of the screening diagnostic, and we assume a parametric form of the diagnostic 

test’s ROC curve described by a single parameter, then we can choose the parametric ROC 

curve that passes through that point as an estimate of an ROC curve and the area under that 

curve as an estimate of AUC.

For example if we assume a power-law ROC model ([10, 11]) the theoretical relationship 

between the true positive rate pt and the false positive rate pf is pt = p f
β, or

β = log pt / log p f . (14)

The area under an ROC curve is the integral of pt over pf,
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AUCP = ∫
0

1
pt · dp f = ∫

0

1
p f

β · dp f = 1
1 + β . (15)

Our ROC curve estimate should pass through the estimated (TPR, FPR) point, where TPR 

and FPR may be estimated from eqs (6) and (7). Inserting TPR for pt and FPR for pf into our 

equation for β eq. (14), and putting that β into eq. (15), we get our parametric estimate of the 

AUC,

AUCP = log FPR
log TPR+log FPR =

log f
N(1 − π)

log t
Nπ + log f

N(1 − π)
. (16)

Using the same methodology, if we assume a parametric, equal-variance, bi-normal ROC 

model, then an estimate of AUC is

AUCN = Φ Φ−1(1 − FPR) − Φ−1(1 − TPR)
2 (17)

where Φ is the standard cumulative normal distribution.

In general we do not recommend estimating values of AUC from a single estimated true 

positive rate and a single estimated false positive rate. Estimates of AUC derived from 

multiple decision points with different FPR and TPR values [10] rely on fewer assumptions 

about the distribution of the data. However, if a recall, detection or sensitivity, specificity 

pair is all the data available, e.g. in a meta-analysis, then such an estimated AUC may still be 

informative or useful for comparisons with other studies.

If we let wX = log FPRX + log TPRX, then an estimator of the ratio of two power-law AUC 

estimators (eq. (16)) for two diagnostic tests X and Y is

rAUCP =
log FPRX
log FPRY

·
wY
wX

(18)

If we assume that π is small, and our posited estimate of prevalence is R times larger than 

the true prevalence, πp = Rπ, then the bias in our estimate of rAUCP due to this posited 

prevalence is approximately

log FPRX
log FPRY

·
wY − wX

wX
2 log R . (19)

We give a short proof of this approximation in the appendix.
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Here we see that the bias in the relative AUC depends upon the logarithm of the fractional 

error in the assumed prevalence. If this error is not far from unity, then the logarithm of it 

should be close to zero. Likewise this bias is small when the difference between wY and wX 

is small. In the Example section we analyze a study where this bias in rAUCP is small 

compared to the statistical uncertainty of the statistic.

3.3 Discussion

The errors in the estimates of relative specificity and relative AUC depend upon the true 

value of prevalence, the error in our assumed prevalence value, the positive rates, and the 

difference of the test results themselves. The dependence upon the true value of π is not 

evident in approximate expressions (16) or (22), because these expressions assume a π that 

is not large. Indeed when π is small, the errors in these ratios depend little on true value π 
itself and depend more on the error in π (δ or R) and the difference in performance of the 

tests. When π is large these approximate expressions are not as accurate and the actual 

errors of the ratios have a stronger dependence on π.

If the difference in positive rates between the tests is small, then the error in our posited 

prevalence can be quite large without affecting the estimates of relative specificty or relative 

AUC. This is frequently the case if the test X is an incremental improvement over test Y.

4 Example

As an example we use a study from Rose et al. [12]. In this study recall rates and detection 

rates in breast cancer screening were compared for two diagnostic tests. The first test was 

digital mammography (DM, or test Y) and the second test was digital mammography 

combined with digital breast tomosynthesis (DM+DBT, or test X). In this study the patients 

on whom the two tests were applied were not all the same, but we can assume that the two 

tests were applied on the same population with the same prevalence of disease.

Rose et al. give the number of recalls and detections for each reader who participated in the 

study for both DM+DBT and DM. From these numbers we calculated estimates of the 

average ratios of sensitivity, false positive rate, and expected utility between these two tests. 

These values and their estimated errors are given in Table 2. These estimated values do not 

depend on the number or prevalence of truly diseased patients.

We calculate all these relative statistics in this section to demonstrate their values and errors 

in an applicable study, not to infer anything from the study. When analyzing a study for 

purposes of diagnostic inference, we might only calculate the predetermined endpoint of the 

study and its error. But if we were to calculate multiple diagnostic metrics for inference, as 

is quite common in applications, it would be important to report p-values and confidence 

intervals that account for the testing of these multiple metrics [13].

We performed a bootstrap [14] across the six readers to estimate the uncertainty in our 

ratios. Because of the variability among readers, this method gave estimates of variance 

larger than those found in the original Rose et al. paper, whose error estimates are binomial 

based on the patient sample size. Because cases are nested within readers, our method 
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should be accurate. The bootstrap distributions were not normal, so bootstrap or other [4] 

confidence intervals should be used.

The top half of Table 3 gives the estimates of the average relative specificities and their 

errors for several different possible prevalence values. It also gives the estimates of the 

difference or bias in these ratios that we presented in Section 3. The bottom half of the table 

gives the same information for relative AUC.

Estimates of the prevalence of breast cancer in the U.S. population differ significantly. The 

Digital Mammographic Imaging Screening Trial [15] gives an estimate as high as 0.0079. 

Using Breast Cancer Surveillance Consortium data [16] we estimated a value of prevalence 

around 0.005. The detection rate for DM+DBT in the Rose et al. study was 0.00537, so our 

working estimate of prevalence must be greater than that. For a reasonable range of 

prevalence we use 0.0055 to 0.0080 to calculate our estimated performance ratios. In 

addition we include a substantial overestimate of 0.0110.

In Table 3 we see that the rSpec and rAUC values depend weakly upon the value of π. For 

all possible values of prevalence, the relative specificity is almost constant. Over the 100% 

change in prevalence in the table, rAUCP changes by only 1.5%. Within the reasonable 

range of prevalence (0.0055–0.008) the change in all ratios is less than the estimated 

standard error of the ratios. Therefore we can make estimates of the relative increase in 

specificity or AUC values with useful accuracy using only approximate estimates of the 

prevalence of disease.

In Table 3 we also see that our approximate bias expressions 13 and 19 for rSpec and rAUCP 

give reasonably good estimates of the difference between two relative estimates with 

different prevalences. Therefore we can be confident that the conditions for the insensitivity 

of the ratios to the prevalence are those conditions that make those bias expressions small.

Table 3 also shows that the relative AUC values are very similar for the power-law ROC 

model and the bi-normal ROC model. The differences between these models are less than 

the estimated standard errors. Though eqs (16) and (17) for estimating AUC appear very 

different, our results are not sensitive to the choice of equation.

Using a posited prevalence to estimate the absolute values of some statistics would lead to 

much larger errors than using that prevalence to estimate their ratios. Obviously over a 100% 

change in prevalence, an absolute sensitivity estimate (eq.(6)) would change by 100%, 

whereas its ratio is independent of prevalence and does not change. For the Rose et al. data 

set the value of AUCP (eq. (16)) changes by about 25% with our 100% prevalence change.

These estimators of rSpec and rAUC can be used on populations with significantly higher 

prevalences than the prevalence of breast cancer in screening in this example. Indeed πp 

could be 10%, if that is much less than the true negative rate and the positive rates of the two 

tests are similar. Because the dependence on πp can be quite complicated, we recommend 

that users test how sensitive their relative estimates are to values and errors of the posited 

prevalence.

Samuelson and Abbey Page 10

Int J Biostat. Author manuscript; available in PMC 2018 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5 Conclusions

Like relative sensitivities and false positive rates [3], we have shown that we can calculate an 

estimate of the ratio or percent increase between two expected utilities for two screening 

tests from the same population, even if negative-test patients in the study do not undergo 

disease confirmation with a reference procedure, and the true and false negative rates are 

unknown. Using resampling or other methods we can perform uncertainty estimation and 

inference on this ratio.

Additionally the ratios of some other statistics, such as specificity and AUC, can be written 

in terms of the number of true and false positives and an approximately known disease 

prevalence. We showed that if the approximate prevalence and its uncertainty are small, and 

if the performance of the two tests are not substantially different, then those ratios are 

frequently insensitive to the value of that prevalence in screening studies. Therefore we can 

use approximate values of prevalence known from published literature to obtain estimates of 

percent increases in specificity or AUC with little loss of accuracy for many purposes such 

as meta-analyses.

We have found that the requirements for these ratios being insensitive to the prevalence 

occur frequently in clinical screening studies. However, before publishing results of 

estimates of relative specificity and AUC using this technique, we recommend testing how 

sensitive your estimates are to your assumed prevalence and ROC model, as we did in Table 

3. If you find that reasonably modifying the assumed prevalence leads to changes in the 

inference on the relative statistic, then these approximate methods may not be appropriate 

for your data set, or your finding is probably not significant.
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Appendix

In this appendix we show how we calculated expression (19), the approximate bias in the 

ratio of the power-law AUC estimate, rAUCP.

In eq. (16) we do not know the true population value of disease prevalence π, so we use our 

posited value πp = Rπ in place of it. Therefore our estimate of AUCP using our posited 

prevalence will be

AUCP
∗ =

log f
N − log(1 − Rπ)

log t
Nπ + log f

N − log(1 − Rπ) − log R
(20)

If π is not large and R is not much different from 1, then log(1 − Rπ) and log(1 − π) will be 

small and approximately equal, and eq. (20) differs from eq. (16) primarily by a factor of log 

R. We can write
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AUCP
∗ ≈ log FPR

log TPR+log FPR − log R = log FPR
w − log R

where we define w = log TPR + log FPR.

If we define

S =
log FPRX
log FPRY

then we can write the ratio of two biased AUC estimates as

rAUCP
∗ ≈ S

wY − log R
wX − log R ≈ S

wY − log R
wX

1 + log R
wX

≈ S
wY
wX

+ S
wY − wX

wX
2 log R = rAUCP + S

wY − wX

wX
2 log R

Here we have assumed that log R is smaller than wX. The first term is the ratio of two AUC 

estimates calculated with the population prevalence which is eq. (18). The term on the right 

is expression (19) and is the very approximate bias in our estimate of that ratio if our posited 

prevalence is incorrect by a factor of R.
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Table 1

A contingency table from a hypothetical study. This table gives the number of patients who have disease, the 

number who do not, and how many of each of those tested positively. In many clinical studies only t and f are 

known.

Diagnostic Test
Positive Negative Sum

Patient state
Diseased t, true positives u, false negatives n

Not Diseased f, false positives υ, true negatives m
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