The title Schiff base compound is considerably non-planar, with the outer phenol and pyridine rings being inclined to each other by 70.21 (3)°.
Keywords: crystal structure, Schiff base, pyridine-2-carbaldehyde, aminophenylaminomethylphenol, hydrogen bonding, offset π–π interactions
Abstract
In the title Schiff base compound, C19H17N3O, the configuration about the C=N bond is E. The molecule is non-planar, with the phenolic and pyridine rings being inclined to the central benzene ring by 56.59 (4) and 15.13 (14)°, respectively. In the crystal, molecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are connected to neighbouring dimers by N—H⋯O hydrogen bonds and C—H⋯π interactions, forming layers parallel to the bc plane. The layers are linked by offset π–π interactions [intercentroid distance = 3.779 (2) Å], forming a three-dimensional supramolecular structure. Quantum chemical calculations of the molecule are in good agreement with the solid-state structure.
Chemical context
Schiff bases often exhibit various biological activities and, in many cases, have been shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975 ▸). Hydroxy Schiff bases have been studied extensively for their biological, photochromic and thermochromic properties (Garnovskii et al., 1993 ▸; Hadjoudis et al., 2004 ▸). They can be used as potential materials for optical memory and switch devices (Zhao et al., 2007 ▸). Schiff bases derived from pyridinecarbaldehydes have also attracted considerable interest in synthetic chemistry. This category covers a diverse range of bidentate or polydentate bridging (Wu & Liang, 2008 ▸; Dong et al., 2000 ▸; Knödler et al., 2000 ▸), which played a significant role in coordination chemistry (Faizi & Hussain, 2014 ▸). Transition metal complexes of pyridyl Schiff bases have found applications in laser dyes (Genady et al., 2008 ▸), catalysis (Wang et al., 2008 ▸) and in crystal engineering, as they form coordination polymers (Huh & Lee, 2007 ▸) or grid-type complexes (Nitschke et al., 2004 ▸). The present work is part of an ongoing structural study of Schiff bases (Faizi et al., 2016 ▸) and their utilization in the synthesis of metal complexes (Faizi & Prisyazhnaya, 2015 ▸). We report herein on the crystal structure and DFT computational calculation of the title Schiff base compound.
Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1 ▸. The compound is non-planar; the dihedral angle between the central benzene ring (C8–C13) and the terminal phenolic ring (C1–C6) being 56.60 (13)°. The central benzene ring (C8–C13) is situated in a trans position with respect to the terminal pyridine ring (N3/C15–C19); these rings are inclined to each other by 15.13 (14)°. The configuration about the C14=N2 bond is E, with a C11—N2—C14—C15 torsion angle of 176.40 (2)°. The C7—N1—C8 angle is 123.43 (1)° and the C7—N1—H1A—C8 fragment is approximately planar; the amine N1 atom exhibits a geometry what is typical for an sp 2 rather than an sp 3 atom. Bond angles C11—N2—C14 and C15—N3—C19 are also near 120° [121.54 (1) and 117.20 (1)°, respectively], and the imine group has a torsion angle C11—N2—C14—C15 of 176.40 (2)°.
Figure 1.
A view of the molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
Supramolecular features
In the crystal, pairs of O—H⋯N hydrogen bonds link the molecules to form inversion dimers, with an
(32) ring motif (Table 1 ▸ and Fig. 2 ▸). The dimers are linked by N—H⋯·O hydrogen bonds (Table 1 ▸ and Fig. 2 ▸) and C—H⋯π interactions (Table 1 ▸), forming slabs lying parallel to the bc plane (Fig. 3 ▸). The slabs are linked by offset π–π interactions involving the pyridine rings, forming a three-dimensional supramolecular structure [Cg⋯.Cg
iii = 3.779 (2) Å; Cg is the centroid of the N3/C15–C19 ring; interplanar distance = 3.462 (1) Å and slippage = 1.516 Å; symmetry code (iii) −x + 1, −y + 2, −z + 1].
Table 1. Hydrogen-bond geometry (Å, °).
Cg is the centroid of the pyridine ring, N3/C15-C19.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯N3i | 0.88 (2) | 1.92 (2) | 2.796 (3) | 179 (3) |
| N1—H1A⋯O1ii | 0.86 | 2.13 | 2.982 (3) | 170 |
| C7—H7A⋯Cg iii | 0.97 | 2.93 | 3.687 (3) | 136 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 2.
A view along the b axis of the inversion dimers, formed via. pairs of O—H⋯N hydrogen bonds (thin blue lines), enclosing an
(32) ring motif. The dimers are linked by N—H⋯O hydrogen bonds (see Table 1 ▸ for details).
Figure 3.
A view along the a axis of the layer-like structure in the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (Table 1 ▸) and only the H atoms involved in hydrogen bonding have been included.
Database survey
A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016 ▸) for similar structures gave a number of hits for the principal moiety of the title compound, i.e. N-(2-pyridylmethylene)benzene-1,4-diamine (CSD refcode EXOQAK; Marjani et al., 2011 ▸), and its metal complexes. The pyridine ring in EXOQAK is inclined to the benzene ring by 24.69 (13)° and the adjacent amine and pyridine N atoms are trans to each another. In the title compound, the pyridine ring is inclined to the benzene ring by 15.13 (14)° and the N atoms are also trans to each another. This is in contrast to the situation in the metal complexes of EXOQAK, e.g. dichloro{N-[(pyridin-2-yl)methylene]benzene-1,4-diamine}zinc(II) (CSD refcode TUJXIG; Marjani et al., 2009 ▸), where on coordination, the pyridine ring rotates and the adjacent amine and pyridine N atoms are then cis to each other.
DFT study
The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993 ▸) as implemented in GAUSSIAN09 (Frisch et al., 2009 ▸). DFT structure optimization of (I) was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2 ▸). In general, the calculated values are in good agreement with the experimental data.
Table 2. Comparison of selected geometric data for (I) (Å, °) from calculated (DFT) and X-ray data.
| Bonds | X-ray | B3LYP/6–311G(d,p). |
|---|---|---|
| N1—C7 | 1.439 (3) | 1.438 |
| N1—C8 | 1.368 (3) | 1.368 |
| N2—C11 | 1.409 (3) | 1.409 |
| N2—C14 | 1.256 (3) | 1.256 |
| C1—O1 | 1.388 (3) | 1.388 |
| C4—C7 | 1.512 (3) | 1.512 |
| C14—C15 | 1.460 (3) | 1.460 |
| N1—C7—C4 | 112.3 (2) | 112.28 |
| C8—N1—C7 | 123.4 (2) | 123.45 |
| C11—N2—C14 | 121.5 (2) | 121.54 |
| N2—C14—C15 | 122.2 (3) | 122.23 |
| C4—C7—N1—C8 | −166.3 (2) | −166.34 |
| C15—C14—N2—C11 | 176.4 (2) | 176.39 |
The highest occupied molecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO) are named frontier orbitals (FMOs). The LUMO and HOMO orbital energy parameters are considerably answerable for the charge transfer, chemical reactivity and kinetic/thermodynamic stability of a molecule 1. The DFT study of the title compound revealed that the HOMO and LUMO are localized in the plane extending from the whole phenol ring to the pyridine ring and electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4 ▸. Molecular orbitals of HOMO contain both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ-density, while LUMO+1 is composed of both σ and π electron density. The HOMO–LUMO energy gap is very important for the chemical activity and explains the eventual charge transfer interaction within the molecule. The HOMO–LUMO gap was found to be 0.128907 a.u. and the frontier molecular orbital energies, E HOMO and E LUMO were found to be as −0.19367 and −0.06476 a.u., respectively.
Figure 4.
Electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels for the title molecule.
Synthesis and crystallization
The title compound was prepared from an equimolar mixture of 4-aminophenylaminomethylphenol (0.50 g, 2.3 mmol) and pyridine-2-carbaldehyde (0.20 g, 2.30 mmol) in (50 ml) methanol. The yellow reaction mixture was stirred for 3 h at room temperature and solvent was evaporated to 5 ml. The resulting yellow solid was isolated by filtration, washed successively with a cold water and methanol mixture (10 ml) and hexane (20 ml). The compound was recrystallized from hot methanol, giving yellow plate-like crystals. Finally, the yellow solid was dried in a vacuum desiccator (yield 0.50 g, 70%; m.p. 446–448 K).
Spectroscopic data: UV–Vis (MeOH): λmax nm (∊, M −1 cm−1): 258 (13,000), 383 (16,000). IR (KBr, cm−1): ν(C=N) 1625, ν(N—H) 3265.
1H NMR (400 MHz, DMSO-d 6): δ 8.6 (1H, s, CH=N), 7.4 (1H, s), 7.8 (1H, t, J = 8.4, 6.8 Hz), 8.0 (1H, d, J = 6.4 Hz), 8.5 (1H, s), 6.7 (2H, d, J = 6.0 Hz), 6.6 (2H, d, J = 6.4 Hz), 4.1 (2H, s), 7.1 (2H, d, J = 6.4 Hz), 7.2 (2H, d, J = 6.4 Hz), 9.3 (–OH), 6.5 (NH).
HRMS (ESI) m/z [M + H]+ calculated for C19H17N3O: 304.1444; found: 304.1455.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. The crystal diffracted very weakly beyond 20° in θ, and only ca 40% of the data can be considered to be observed; hence the large value for R int of 0.122. The N—H and O—H H atoms were located in difference Fourier maps. The OH H atom was freely refined, while during refinement, the N- and C-bound H atoms were included in calculated positions and treated as riding, with N—H = 0.86 Å and C—H = 0.93 Å, and U iso(H) = 1.2U eq(C,N).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C19H17N3O |
| M r | 303.22 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 10.5652 (7), 7.9136 (6), 20.8153 (13) |
| β (°) | 118.408 (4) |
| V (Å3) | 1530.77 (19) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.08 |
| Crystal size (mm) | 0.21 × 0.15 × 0.11 |
| Data collection | |
| Diffractometer | Bruker SMART CCD area detector |
| Absorption correction | Multi-scan (SADABS; Bruker, 2012 ▸) |
| T min, T max | 0.785, 0.856 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 17211, 2664, 1087 |
| R int | 0.122 |
| (sin θ/λ)max (Å−1) | 0.595 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.092, 0.73 |
| No. of reflections | 2664 |
| No. of parameters | 212 |
| No. of restraints | 7 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.14, −0.15 |
Supplementary Material
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989018003043/su5421sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018003043/su5421Isup2.hkl
CCDC reference: 1542988
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.
supplementary crystallographic information
Crystal data
| C19H17N3O | F(000) = 640 |
| Mr = 303.22 | Dx = 1.316 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 10.5652 (7) Å | Cell parameters from 1114 reflections |
| b = 7.9136 (6) Å | θ = 2.8–18.2° |
| c = 20.8153 (13) Å | µ = 0.08 mm−1 |
| β = 118.408 (4)° | T = 296 K |
| V = 1530.77 (19) Å3 | Plate, yellow |
| Z = 4 | 0.21 × 0.15 × 0.11 mm |
Data collection
| Bruker SMART CCD area detector diffractometer | 2664 independent reflections |
| Radiation source: sealed tube | 1087 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.122 |
| phi and ω scans | θmax = 25.0°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −12→12 |
| Tmin = 0.785, Tmax = 0.856 | k = −9→9 |
| 17211 measured reflections | l = −24→23 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
| S = 0.73 | w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3 |
| 2664 reflections | (Δ/σ)max < 0.001 |
| 212 parameters | Δρmax = 0.14 e Å−3 |
| 7 restraints | Δρmin = −0.15 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.2029 (2) | 0.4843 (3) | −0.37245 (9) | 0.0677 (6) | |
| N2 | 0.3840 (2) | 0.9002 (3) | 0.25128 (10) | 0.0575 (6) | |
| N1 | 0.0654 (2) | 0.8060 (2) | −0.05048 (10) | 0.0584 (6) | |
| H1A | 0.104122 | 0.846064 | −0.075424 | 0.070* | |
| N3 | 0.4388 (2) | 0.7338 (3) | 0.42061 (11) | 0.0551 (6) | |
| C6 | −0.2709 (3) | 0.6253 (3) | −0.29168 (13) | 0.0618 (8) | |
| H6 | −0.363931 | 0.638443 | −0.329860 | 0.074* | |
| C1 | −0.1675 (3) | 0.5496 (3) | −0.30408 (13) | 0.0536 (7) | |
| C2 | −0.0284 (3) | 0.5374 (3) | −0.24837 (13) | 0.0569 (7) | |
| H2 | 0.042773 | 0.490422 | −0.257010 | 0.068* | |
| C3 | 0.0050 (3) | 0.5955 (3) | −0.17948 (12) | 0.0560 (7) | |
| H3 | 0.099320 | 0.587513 | −0.142046 | 0.067* | |
| C4 | −0.0990 (3) | 0.6653 (3) | −0.16507 (12) | 0.0517 (7) | |
| C5 | −0.2366 (3) | 0.6822 (3) | −0.22213 (13) | 0.0611 (8) | |
| H5 | −0.307393 | 0.732180 | −0.213979 | 0.073* | |
| C8 | 0.1329 (3) | 0.8340 (3) | 0.02322 (13) | 0.0489 (7) | |
| C7 | −0.0669 (3) | 0.7130 (3) | −0.08846 (12) | 0.0603 (8) | |
| H7A | −0.145423 | 0.781051 | −0.090815 | 0.072* | |
| H7B | −0.060997 | 0.611176 | −0.061241 | 0.072* | |
| C13 | 0.0849 (3) | 0.7669 (3) | 0.06958 (13) | 0.0584 (7) | |
| H13 | −0.001697 | 0.708081 | 0.050074 | 0.070* | |
| C12 | 0.1648 (3) | 0.7869 (3) | 0.14445 (13) | 0.0579 (8) | |
| H12 | 0.131692 | 0.738651 | 0.174403 | 0.069* | |
| C11 | 0.2923 (3) | 0.8763 (3) | 0.17598 (13) | 0.0508 (7) | |
| C10 | 0.3358 (3) | 0.9513 (3) | 0.12946 (13) | 0.0567 (7) | |
| H10 | 0.419007 | 1.016616 | 0.149006 | 0.068* | |
| C9 | 0.2582 (3) | 0.9308 (3) | 0.05489 (13) | 0.0554 (7) | |
| H9 | 0.290049 | 0.982488 | 0.025065 | 0.066* | |
| C14 | 0.3648 (3) | 0.8223 (3) | 0.29852 (13) | 0.0590 (7) | |
| H14 | 0.285013 | 0.752151 | 0.283243 | 0.071* | |
| C15 | 0.4635 (3) | 0.8382 (3) | 0.37661 (13) | 0.0515 (7) | |
| C16 | 0.5780 (3) | 0.9501 (3) | 0.40340 (13) | 0.0598 (8) | |
| H16 | 0.592239 | 1.021323 | 0.371868 | 0.072* | |
| C17 | 0.6708 (3) | 0.9544 (3) | 0.47755 (14) | 0.0647 (8) | |
| H17 | 0.748321 | 1.028674 | 0.496625 | 0.078* | |
| C18 | 0.6472 (3) | 0.8476 (3) | 0.52292 (14) | 0.0616 (8) | |
| H18 | 0.708703 | 0.847287 | 0.573011 | 0.074* | |
| C19 | 0.5308 (3) | 0.7418 (3) | 0.49240 (14) | 0.0594 (7) | |
| H19 | 0.514376 | 0.670992 | 0.523359 | 0.071* | |
| H1 | −0.278 (3) | 0.416 (4) | −0.3883 (16) | 0.133 (15)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0697 (15) | 0.0891 (15) | 0.0397 (11) | −0.0111 (13) | 0.0222 (11) | −0.0157 (10) |
| N2 | 0.0604 (15) | 0.0689 (15) | 0.0356 (13) | −0.0049 (11) | 0.0167 (12) | 0.0004 (10) |
| N1 | 0.0669 (16) | 0.0712 (16) | 0.0359 (13) | −0.0119 (13) | 0.0236 (12) | −0.0055 (11) |
| N3 | 0.0579 (15) | 0.0626 (15) | 0.0346 (13) | −0.0040 (12) | 0.0137 (12) | −0.0020 (11) |
| C6 | 0.0483 (18) | 0.083 (2) | 0.0389 (17) | 0.0012 (16) | 0.0083 (15) | −0.0036 (14) |
| C1 | 0.063 (2) | 0.0563 (19) | 0.0415 (17) | −0.0068 (15) | 0.0248 (16) | −0.0053 (13) |
| C2 | 0.0477 (19) | 0.071 (2) | 0.0448 (17) | 0.0031 (15) | 0.0160 (15) | −0.0046 (14) |
| C3 | 0.0480 (18) | 0.0675 (19) | 0.0385 (16) | 0.0028 (15) | 0.0091 (14) | −0.0027 (13) |
| C4 | 0.0574 (19) | 0.0574 (18) | 0.0360 (16) | 0.0008 (14) | 0.0187 (15) | −0.0017 (12) |
| C5 | 0.056 (2) | 0.077 (2) | 0.0458 (17) | 0.0045 (15) | 0.0208 (16) | −0.0058 (14) |
| C8 | 0.0572 (19) | 0.0510 (18) | 0.0332 (15) | 0.0044 (14) | 0.0172 (14) | 0.0008 (12) |
| C7 | 0.0610 (19) | 0.072 (2) | 0.0436 (17) | −0.0006 (16) | 0.0216 (15) | −0.0059 (14) |
| C13 | 0.0591 (18) | 0.073 (2) | 0.0391 (17) | −0.0132 (15) | 0.0198 (15) | −0.0047 (13) |
| C12 | 0.0629 (19) | 0.068 (2) | 0.0411 (17) | −0.0106 (16) | 0.0237 (15) | −0.0001 (13) |
| C11 | 0.0574 (19) | 0.0553 (18) | 0.0352 (16) | −0.0046 (14) | 0.0182 (15) | 0.0004 (13) |
| C10 | 0.0584 (19) | 0.0597 (19) | 0.0475 (17) | −0.0085 (14) | 0.0216 (16) | −0.0041 (13) |
| C9 | 0.063 (2) | 0.062 (2) | 0.0435 (17) | −0.0077 (15) | 0.0272 (16) | −0.0019 (13) |
| C14 | 0.0554 (17) | 0.0665 (19) | 0.0426 (17) | −0.0065 (14) | 0.0130 (14) | −0.0040 (13) |
| C15 | 0.0539 (18) | 0.0554 (19) | 0.0398 (16) | 0.0045 (15) | 0.0179 (15) | −0.0044 (13) |
| C16 | 0.066 (2) | 0.065 (2) | 0.0465 (18) | −0.0075 (16) | 0.0251 (16) | −0.0048 (14) |
| C17 | 0.060 (2) | 0.068 (2) | 0.0556 (19) | −0.0099 (15) | 0.0192 (17) | −0.0072 (15) |
| C18 | 0.061 (2) | 0.067 (2) | 0.0398 (16) | 0.0021 (16) | 0.0099 (15) | −0.0047 (15) |
| C19 | 0.069 (2) | 0.0624 (19) | 0.0396 (18) | −0.0046 (17) | 0.0198 (16) | −0.0007 (13) |
Geometric parameters (Å, º)
| O1—C1 | 1.388 (3) | C8—C9 | 1.394 (3) |
| O1—H1 | 0.879 (17) | C7—H7A | 0.9700 |
| N2—C14 | 1.256 (3) | C7—H7B | 0.9700 |
| N2—C11 | 1.409 (3) | C13—C12 | 1.384 (3) |
| N1—C8 | 1.368 (3) | C13—H13 | 0.9300 |
| N1—C7 | 1.439 (3) | C12—C11 | 1.380 (3) |
| N1—H1A | 0.8600 | C12—H12 | 0.9300 |
| N3—C19 | 1.341 (3) | C11—C10 | 1.387 (3) |
| N3—C15 | 1.347 (3) | C10—C9 | 1.377 (3) |
| C6—C1 | 1.374 (3) | C10—H10 | 0.9300 |
| C6—C5 | 1.390 (3) | C9—H9 | 0.9300 |
| C6—H6 | 0.9300 | C14—C15 | 1.460 (3) |
| C1—C2 | 1.376 (3) | C14—H14 | 0.9300 |
| C2—C3 | 1.382 (3) | C15—C16 | 1.385 (3) |
| C2—H2 | 0.9300 | C16—C17 | 1.380 (3) |
| C3—C4 | 1.384 (3) | C16—H16 | 0.9300 |
| C3—H3 | 0.9300 | C17—C18 | 1.376 (3) |
| C4—C5 | 1.378 (3) | C17—H17 | 0.9300 |
| C4—C7 | 1.512 (3) | C18—C19 | 1.369 (3) |
| C5—H5 | 0.9300 | C18—H18 | 0.9300 |
| C8—C13 | 1.391 (3) | C19—H19 | 0.9300 |
| C1—O1—H1 | 112 (2) | C12—C13—C8 | 120.6 (2) |
| C14—N2—C11 | 121.5 (2) | C12—C13—H13 | 119.7 |
| C8—N1—C7 | 123.4 (2) | C8—C13—H13 | 119.7 |
| C8—N1—H1A | 118.3 | C11—C12—C13 | 121.9 (2) |
| C7—N1—H1A | 118.3 | C11—C12—H12 | 119.0 |
| C19—N3—C15 | 117.2 (2) | C13—C12—H12 | 119.0 |
| C1—C6—C5 | 120.0 (2) | C12—C11—C10 | 117.4 (2) |
| C1—C6—H6 | 120.0 | C12—C11—N2 | 126.7 (2) |
| C5—C6—H6 | 120.0 | C10—C11—N2 | 116.0 (2) |
| C6—C1—C2 | 119.9 (2) | C9—C10—C11 | 121.2 (2) |
| C6—C1—O1 | 120.3 (2) | C9—C10—H10 | 119.4 |
| C2—C1—O1 | 119.8 (3) | C11—C10—H10 | 119.4 |
| C1—C2—C3 | 119.6 (2) | C10—C9—C8 | 121.3 (2) |
| C1—C2—H2 | 120.2 | C10—C9—H9 | 119.3 |
| C3—C2—H2 | 120.2 | C8—C9—H9 | 119.3 |
| C2—C3—C4 | 121.3 (2) | N2—C14—C15 | 122.2 (3) |
| C2—C3—H3 | 119.3 | N2—C14—H14 | 118.9 |
| C4—C3—H3 | 119.3 | C15—C14—H14 | 118.9 |
| C5—C4—C3 | 118.2 (2) | N3—C15—C16 | 122.2 (2) |
| C5—C4—C7 | 120.0 (2) | N3—C15—C14 | 115.9 (2) |
| C3—C4—C7 | 121.7 (2) | C16—C15—C14 | 121.9 (2) |
| C4—C5—C6 | 120.8 (2) | C17—C16—C15 | 119.1 (2) |
| C4—C5—H5 | 119.6 | C17—C16—H16 | 120.5 |
| C6—C5—H5 | 119.6 | C15—C16—H16 | 120.5 |
| N1—C8—C13 | 123.3 (2) | C18—C17—C16 | 119.2 (3) |
| N1—C8—C9 | 119.4 (2) | C18—C17—H17 | 120.4 |
| C13—C8—C9 | 117.3 (2) | C16—C17—H17 | 120.4 |
| N1—C7—C4 | 112.3 (2) | C19—C18—C17 | 118.3 (2) |
| N1—C7—H7A | 109.2 | C19—C18—H18 | 120.9 |
| C4—C7—H7A | 109.2 | C17—C18—H18 | 120.9 |
| N1—C7—H7B | 109.2 | N3—C19—C18 | 124.0 (2) |
| C4—C7—H7B | 109.2 | N3—C19—H19 | 118.0 |
| H7A—C7—H7B | 107.9 | C18—C19—H19 | 118.0 |
| C5—C6—C1—C2 | −3.1 (4) | C13—C12—C11—N2 | −178.0 (2) |
| C5—C6—C1—O1 | 176.5 (2) | C14—N2—C11—C12 | 8.6 (4) |
| C6—C1—C2—C3 | 2.6 (4) | C14—N2—C11—C10 | −171.5 (2) |
| O1—C1—C2—C3 | −177.0 (2) | C12—C11—C10—C9 | −2.9 (4) |
| C1—C2—C3—C4 | 0.3 (4) | N2—C11—C10—C9 | 177.2 (2) |
| C2—C3—C4—C5 | −2.6 (4) | C11—C10—C9—C8 | 0.0 (4) |
| C2—C3—C4—C7 | 173.8 (2) | N1—C8—C9—C10 | −174.9 (2) |
| C3—C4—C5—C6 | 2.1 (4) | C13—C8—C9—C10 | 3.5 (4) |
| C7—C4—C5—C6 | −174.3 (2) | C11—N2—C14—C15 | 176.4 (2) |
| C1—C6—C5—C4 | 0.7 (4) | C19—N3—C15—C16 | −0.2 (3) |
| C7—N1—C8—C13 | 3.9 (4) | C19—N3—C15—C14 | 177.8 (2) |
| C7—N1—C8—C9 | −177.7 (2) | N2—C14—C15—N3 | −173.0 (2) |
| C8—N1—C7—C4 | −166.3 (2) | N2—C14—C15—C16 | 5.0 (4) |
| C5—C4—C7—N1 | −137.0 (2) | N3—C15—C16—C17 | 0.4 (4) |
| C3—C4—C7—N1 | 46.7 (3) | C14—C15—C16—C17 | −177.5 (2) |
| N1—C8—C13—C12 | 174.1 (2) | C15—C16—C17—C18 | 0.0 (4) |
| C9—C8—C13—C12 | −4.3 (4) | C16—C17—C18—C19 | −0.7 (4) |
| C8—C13—C12—C11 | 1.5 (4) | C15—N3—C19—C18 | −0.5 (4) |
| C13—C12—C11—C10 | 2.1 (4) | C17—C18—C19—N3 | 1.0 (4) |
Hydrogen-bond geometry (Å, º)
Cg is the centroid of the pyridine ring, N3/C15-C19.
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···N3i | 0.88 (2) | 1.92 (2) | 2.796 (3) | 179 (3) |
| N1—H1A···O1ii | 0.86 | 2.13 | 2.982 (3) | 170 |
| C7—H7A···Cgiii | 0.97 | 2.93 | 3.687 (3) | 136 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y+1/2, −z−1/2; (iii) −x, −y+2, −z.
References
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, Y.-B., Smith, M. D., Layland, R. C. & zur Loye, H.-C. (2000). Chem. Mater. 12, 1156–1161.
- Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.
- Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. [DOI] [PMC free article] [PubMed]
- Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
- Genady, A. R., Fayed, T. A. & Gabel, D. (2008). J. Organomet. Chem. 693, 1065–1072.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521–530.
- Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244–1248.
- Knödler, A., Hübler, K., Sixt, T. & Kaim, W. (2000). Inorg. Chem. Commun. 3, 182–184.
- Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.
- Marjani, K., Mousavi, M. & Namazian, F. (2011). J. Chem. Crystallogr. 41, 1451–1455.
- Nitschke, J. R., Hutin, M. & Bernardinelli, G. (2004). Angew. Chem. Int. Ed. 116, 6892–6895.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Wang, K., Wedeking, K., Zuo, W., Zhang, D. & Sun, W.-H. (2008). J. Organomet. Chem. 693, 1073–1080.
- Wu, C.-M. & Liang, B. (2008). Acta Cryst. C64, o142–o144. [DOI] [PubMed]
- Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta Part A, 67, 1120–1125. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989018003043/su5421sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018003043/su5421Isup2.hkl
CCDC reference: 1542988
Additional supporting information: crystallographic information; 3D view; checkCIF report




