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Abstract
Working memory (WM) skills are closely associated with learning progress in key areas 
such as reading and mathematics across childhood. As yet, however, little is known 
about how the brain systems underpinning WM develop over this critical developmental 
period. The current study investigated whether and how structural brain correlates of 
components of the working memory system change over development. Verbal and 
visuospatial short-term and working memory were assessed in 153 children between 
5.58 and 15.92 years, and latent components of the working memory system were 
derived. Fractional anisotropy and cortical thickness maps were derived from T1-
weighted and diffusion-weighted MRI and processed using eigenanatomy decomposi-
tion. There was a greater involvement of the corpus callosum and posterior temporal 
white matter in younger children for performance associated with the executive part of 
the working memory system. For older children, this was more closely linked with the 
thickness of the occipitotemporal cortex. These findings suggest that increasing spe-
cialization leads to shifts in the contribution of neural substrates over childhood, mov-
ing from an early dependence on a distributed system supported by long-range 
connections to later reliance on specialized local circuitry. Our findings demonstrate 
that despite the component factor structure being stable across childhood, the under-
lying brain systems supporting working memory change. Taking the age of the child 
into account, and not just their overall score, is likely to be critical for understanding 
the nature of the limitations on their working memory capacity.

RESEARCH HIGHLIGHTS

•	 Multiple measures of verbal and visuospatial short-term and work-
ing memory enabling assessment of latent constructs of working 
memory, instead of using task-specific scores.

•	 A large sample of children between 5.58 and 15.92 years who com-
pleted working memory assessments (n = 153), with a large subset 
who also completed T1-weighted MRI (n = 122, age = 5.58–15.92y) 
and diffusion-weighted MRI (n = 112, age = 5.58–15.92y).

•	 First study to investigate changes in the association between brain struc-
tures and working memory capacity across childhood and adolescence.

1  | INTRODUCTION

Working memory is a limited capacity system for retaining and process-
ing information over brief periods of time. It is closely linked with the 
acquisition of complex cognitive skills (Cowan, 2013) such as reading 
(Cain, Oakhill, & Bryant, 2004), mathematics (Dumontheil & Klingberg, 
2011), and other academic subjects (Clair-Thompson & Gathercole, 
2006; Gathercole, Pickering, Knight, & Stegmann, 2003). Deficits in 
working memory have been identified across a range of neurodevel-
opmental disorders, including attention deficit hyperactivity disorder 
(Holmes et al., 2014; Martinussen, Hayden, Hogg-Johnson, & Tannock, 
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2005), dyslexia (Smith-Spark & Fisk, 2007), dyscalculia (Rotzer et al., 
2009; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013), and language 
disorders (Archibald & Gathercole, 2006; Gathercole & Baddeley, 
1989; Montgomery, 2000; Weismer, Evans, & Hesketh, 1999).

Working memory develops gradually through early and mid-
dle childhood (Gathercole, Pickering, Ambridge, & Wearing, 2004; 
Huizinga, Dolan, & van der Molen, 2006; Siegel & Ryan, 1988). It is 
assumed that this development reflects the maturation of the brain 
system supporting this skill in adulthood (Tamnes et al., 2013). 
However, understanding the mechanism of working memory devel-
opment in childhood necessitates a neuropsychological account that 
incorporates developmental change. Currently, we have no detailed 
understanding of how age-related changes in brain organization sup-
port specific developmental improvements in working memory. The 
purpose of this study is to take steps towards redressing this.

1.1 | Working memory and its development

There are many theoretical accounts of working memory. The influen-
tial multicomponent model of working memory advanced by Baddeley 
and Hitch (Baddeley & Hitch, 1974) consists of three subcompo-
nents: two domain-specific stores and a central executive. The stores 
are specialized for the retention of material in either phonological 
(Baddeley, 1987) or visuospatial format (Baddeley & Lieberman, 1980; 
Logie, 1986). The central executive is a system responsible for a range 
of regulatory functions, including attention, the control of action, and 
problem solving (Baddeley, 1996).

There have been many refinements of the original model 
(Baddeley, 2000, 2003, 2012; Burgess & Hitch, 1996), and several 
new accounts. Some of these focus on specific mechanisms within 
working memory. For instance, Engle and colleagues propose inhibi-
tory processes that protect activated memory traces from disruption 
(Engle, 2002; Kane, Conway, Hambrick, & Engle, 2007). Other mod-
els integrate short-term memory with long-term memory, suggesting 
that working memory represents long-term memory in an activated 
state (Cowan, 1988, 1999; Oberauer, 2002), and activation is guided 
by an attentional mechanism. Other theorists have extended the 
scope of WM to encompass other processes that include updating 
(Ecker, Lewandowsky, Oberauer, & Chee, 2010; Schmiedek, Lövdén, 
& Lindenberger, 2014; Shelton, Elliott, Matthews, Hill, & Gouvier, 
2010), set shifting and relational binding (Oberauer, Lewandowsky, 
Farrell, Jarrold, & Greaves, 2012; von Bastian & Oberauer, 2013), and 
fluid intelligence (Engle, Tuholski, Laughlin, & Conway, 1999). In short, 
there exists a rich literature in which the specific cognitive mecha-
nisms underlying working memory in adulthood, and its relationship 
with other cognitive processes, are keenly debated.

Considerable progress in understanding the cognitive processes of 
WM has been provided by the analysis of latent factors underlying the 
wide range of measures of WM that have been developed. Using this 
individual differences approach, the three-factor structure has been 
robustly reproduced across multiple studies and age groups (Alloway, 
Gathercole, Willis, & Adams, 2004; Kane et al., 2004; Bayliss, Jarrold, 
Gunn, & Baddeley, 2003; Hornung, Brunner, Reuter, & Martin, 2011), 

although studies that have drawn on a wider range of assessments 
indicate that refinements may be needed in the concept of atten-
tional control within the system (Gray et al., 2017). In general, these 
analyses have favoured the distinction between domain-specific stor-
age for verbal and visuo-spatial material linked with an executive or 
attentional component. These components are already detectable in 
children from about 5 years of age (Alloway et al., 2004) and their con-
figuration remains broadly stable throughout childhood (Gathercole 
et al., 2004). Working memory performance, however, improves 
substantially over childhood (Gathercole et al., 2004; Huizinga et al., 
2006; Siegel & Ryan, 1988), with linear increases until adolescence, 
when adult levels are reached (Gathercole et al., 2004; Luciana, 
Conklin, Hooper, & Yarger, 2005). It has been widely recognized that 
the cognitive mechanisms contributing to improvements across differ-
ent periods may themselves change (Gathercole et al., 2004; Huizinga 
et al., 2006; Siegel & Ryan, 1988). Developmental improvements in 
WM may, for example, be driven by increases in storage capacity 
(Cowan, Ricker, Clark, Hinrichs, & Glass, 2014) and / or attention 
(Barrouillet, Gavens, Vergauwe, Gaillard, & Camos, 2009; Tam, Jarrold, 
Baddeley, & Sabatos-DeVito, 2010). They may also be the conse-
quences of changes in rehearsal strategies (Gathercole, Adams, & 
Hitch, 1994; Hitch, Halliday, Schaafstal, & Heffernan, 1991), although 
it is now understood that limitations in the sensitivity of memory span 
in pre-school children may obscure the clear signatures of phonologi-
cally based rehearsal in older children and adults (Jarrold, 2016; Wang, 
Logie, & Jarrold, 2016).

1.2 | Neural correlates of working memory

The developmental period associated with increases in working mem-
ory is accompanied by pronounced changes in brain structure. These 
include decreasing cortical thickness (Sowell, 2004) and increasing 
myelination of white matter tracts (Dean et al., 2014). Further, func-
tional neuroimaging studies suggest that improvements in working 
memory are accompanied by some reorganization in brain networks 
(Houde, Rossi, Lubin, & Joliot, 2010). In adults, a specialized network 
including bilateral parietal, cingulate, and prefrontal areas has been 
found to show increased blood oxygenation during working memory 
tasks (Owen, McMillan, Laird, & Bullmore, 2005; Wager & Smith, 
2003). Children show activation in a similar set of regions (Thomason 
et al., 2009) and also in additional non-specific areas outside of the 
core processing network observed in adults (Ciesielski, Lesnik, Savoy, 
Grant, & Ahlfors, 2006; Vogan, Morgan, Powell, Smith, & Taylor, 
2016).

Findings from the more limited research on structural neural cor-
relates of working memory broadly concur with this pattern of change. 
Frontal and parietal grey matter volume (Mahone, Martin, Kates, Hay, 
& Horska, 2009; Rossi et al., 2013), and temporal and parietal con-
nections of the corpus callosum (Treble et al., 2013), are significant 
predictors of a participant’s working memory capacity. However, these 
studies either investigate narrow age ranges or statistically correct for 
the effect of age. As a result, little is known about how structural brain 
changes support the development of particular cognitive skills such as 
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working memory. Furthermore, the majority of previous studies have 
used performance on individual tasks to measure working memory 
ability (see Poldrack & Yarkoni, 2016, for a detailed discussion). This 
approach has two key limitations. First, it is widely accepted that mul-
tiple underlying components underpin performance (Alloway et al., 
2004; Clair-Thompson & Gathercole, 2006; Conway, Cowan, Bunting, 
Therriault, & Minkoff, 2002; Oberauer, Süß, Schulze, Wilhelm, & 
Wittmann, 2000). Second, scores on individual tests also reflect task-
specific components that may be unrelated to WM demands such as 
proficiency in the stimulus domain from which the stimuli are drawn 
(Dark & Benbow, 1994). The purpose of the current study was to 
redress these two gaps in the literature by (i) exploring how struc-
tural brain correlates of working memory, in terms of both grey and 
white matter, differ over developmental time; and (ii) using multiple 
behavioural assessments alongside factor analysis, to differentiate 
the neural correlates of robustly determined cognitive components of 
WM.

2  | METHODS

Our analysis approach used data reduction techniques to reduce raw 
behavioural and neuroimaging measures to underlying statistical com-
ponents. We then explored how the underlying cognitive factors of 
the working memory system were associated with structural brain 
components and the extent to which these relationships were moder-
ated by developmental stage (i.e., age). A schematic summary of this 
approach can be seen in Figure 1. The computer code used for data 
processing and statistical analysis is available online (https://github.
com/joebathelt/WorkingMemory_and_BrainStructure_Code).

2.1 | Participants

The data for the current study were taken from two large-scale studies 
at the MRC Cognition and Brain Sciences. Both studies employed the 
same working memory assessments and structural scanning protocols. 

These two studies had different recruitment criteria but when com-
bined, provide a large sample of children with working memory scores 
whose distributional properties closely approximated the standardiza-
tion sample. The first study was the Centre for Attention, Learning, 
and Memory (CALM) research clinic (n = 111, 78 boys, Age [years]: 
mean = 9.54, std = 2.109, range = 5.58–15.92). At the clinic, children 
were recruited on the basis of ongoing problems in attention, learning 
and memory reported by professionals working in schools or specialist 
children’s community services. Exclusion criteria for referrals were a 
known history of brain injury, significant or severe known problems 
in vision or hearing that were uncorrected and having a native lan-
guage other than English. This study was approved by the local NHS 
research ethics committee (Reference: 13/EE/0157). Written parental 
consent was obtained and children provided verbal assent. Children 
attending the clinic completed a cognitive test battery administered 
over approximately 3 hours. Here, we report data from the working 
memory measures in this battery.

The second study investigated the neural, cognitive, and environ-
mental markers of risk and resilience in children, and recruited a broad 
community sample (n = 42, 24 boys, Age [years]: mean = 9.95, std 
= 1.528, range = 7.17–12.42). Children attending mainstream school 
in the UK with normal or corrected-to-normal vision or hearing and 
no history of brain injury were recruited via local schools and through 
advertisements in public places (childcare and community centres, 
libraries). Participating families were invited to the MRC Cognition and 
Brain Sciences Unit for a 2-hour assessment that included the working 
memory battery reported here. Participants received monetary com-
pensation for taking part in the study. This study was approved by the 
Psychology Research Ethics Committee at the University of Cambridge 
(Reference: Pre.2015.11). Parents provided written informed consent.

The final sample for behavioural analysis consisted of 153 children 
between 5.58 and 15.92 years (96 boys, Age [years]: mean = 9.65, std = 
1.975, range = 5–15, see Figure 2). Thirty-one children were excluded 
from cortical thickness analysis because the T1-weighted data were 
not usable due to participant movement (n = 122, 67 boys, Age [years]: 
mean = 9.57, std = 2.143, range = 5–15). Forty-one children were 

F IGURE  1 Overview of processing steps from raw to latent data. Raw behavioural data were decomposed with principal component analysis 
(PCA) to derive factor scores that corresponded to a verbal, visuospatial, and executive factor. Dimensionality reduction was also applied to 
cortical thickness maps and FA maps derived from T1-weighted and diffusion-weighted MRI data to obtain eigenanatomy components

https://github.com/joebathelt/WorkingMemory_and_BrainStructure_Code
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excluded from the analysis of diffusion-weighted data due to head 
movement above 3 mm in the DWI sequence (n = 112, 67 boys, Age 
[years]: mean = 9.64, std = 1.911, range = 5–15). Residual movement 
estimates were included as a nuisance variable in regression models. 
As these measures did not influence the results, they were omitted 
from the reported models.

2.2 | Working memory assessment

The Digit Recall, Backward Digit Recall, Dot Matrix, and Mr X task 
of the Automatic Working Memory Assessment (AWMA) (Alloway, 
2007; Alloway, Gathercole, Kirkwood, & Elliott, 2008) were adminis-
tered individually. In Digit Recall, children repeat sequences of single-
digit numbers presented in an audio format. In Backward Digit Recall, 
children repeat the sequence in backwards order. These tasks were 
selected to engage verbal short-term and working memory, respec-
tively. For the Dot Matrix task, the child was shown the position of a 
red dot for 2 seconds in a series of four by four matrices and had to 
recall this position by tapping the squares on the computer screen. In 
the Mr X task, the child was shown two Mr X figures and had to iden-
tify whether they were holding the ball in the same or different hands. 
One Mr X was rotated in each trial. The child then had to recall the 
location of the ball in Mr X’s hand by pointing to one of eight compass 
points. These tasks were aimed at tapping short-term and working 
visuospatial memory.

Standardized scores established that the sample performed at 
expected levels for their age, that is, mean of 100 and a standard devi-
ation of 15 (Digit Recall: mean = 96.39; std = 16.32; Backward Digit 
Recall: mean = 94.61, std = 12.671; Dot Matrix: mean = 98.29, std = 
15.595; Mr X: mean = 99.32, std = 15.69).

In order to reconstruct the latent variable structure of working 
memory from the assessment data, principal component analysis 
was applied. This was carried out using the ‘principal’ function of the 
psych package v1.5.1 (http://personality-project.org/r) in R v3.1.3  
(R Development Core Team, 2008). Varimax rotation was used to cre-
ate orthogonal factors (Kaiser, 1958). A three-factor solution provided 
the best fit with theoretical predictions and explained a large propor-
tion of variance in the assessment scores (92% of the variance in the 
raw scores). An additional benefit of using the three-factor solution 

is that our findings can be readily interpreted alongside, and usefully 
integrated with, the large behavioural literature on typical and atypical 
working memory development. Mahalanobis distance was computed 
to detect outliers in the assessment data, but no data point exceeded 
the standard cut-off at 3 degrees of freedom.

2.3 | MRI data acquisition

Magnetic resonance imaging data were acquired at the MRC Cognition 
and Brain Sciences Unit, Cambridge UK. All scans were obtained 
on the Siemens 3 T Tim Trio system (Siemens Healthcare, Erlangen, 
Germany), using a 32-channel quadrature head coil. The imaging pro-
tocol consisted of two sequences: T1-weighted MRI and a diffusion-
weighted sequence.

T1-weighted volume scans were acquired using a whole brain cov-
erage 3D Magnetization Prepared Rapid Acquisition Gradient Echo 
(MP-RAGE) sequence acquired using 1 mm isometric image resolution. 
Echo time was 2.98 ms, and repetition time was 2250 ms.

Diffusion scans were acquired using echo-planar diffusion-
weighted images with an isotropic set of 60 non-collinear direc-
tions, using a weighting factor of b = 1000s*mm−2, interleaved with 
a T2-weighted (b = 0) volume. Whole brain coverage was obtained 
with 60 contiguous axial slices and isometric image resolution of 2 
mm. Echo time was 90 ms and repetition time was 8400 ms.

2.4 | Processing of diffusion-weighted data

Diffusion imaging makes it possible to quantify the rate of water dif-
fusion in the brain. In the parallel bundles of white matter, diffusion is 
stronger along the fibre orientation but is attenuated in the perpen-
dicular direction. This can be summarized by the metric of fractional 
anisotropy (FA), which is a scalar value between 0 and 1 describing the 
degree of anisotropy of the diffusion at every voxel. Developmental 
studies show steady increases in FA between childhood and adult-
hood (Imperati et al., 2011; Muftuler et al., 2012; Westlye et al., 2009), 
which is likely to reflect increased myelination (Dean et al., 2014).

A number of processing steps are necessary to derive FA maps from 
diffusion-weighted volumes. In the current study, diffusion-weighted 
MRI scans were converted from the native DICOM to compressed 

F IGURE  2 Overview of sample included 
in the behavioural and neuroimaging 
analysis

http://personality-project.org/r
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NIfTI-1 format using the dcm2nii tool (http://www.mccauslandcenter.
sc.edu/mricro/mricron/dcm2nii.html). Subsequently, the images were 
submitted to the DiPy v0.8.0 implementation (Garyfallidis et al., 2014) 
of a non-local means de-noising algorithm (Coupe et al., 2008) to 
boost the signal-to-noise ratio. Next, a brain mask of the b0 image was 
created using the brain extraction tool (BET) of the FMRIB Software 
Library (FSL) v5.0.8. Motion and eddy current correction were applied 
to the masked images using FSL routines. The corrected images were 
re-sliced to 1 mm resolution with trilinear interpolation using in-house 
software based on NiBabel v2.0.0 functions (http://nipy.org/nibabel/). 
Finally, fractional anisotropy maps were created based on a diffusion 
tensor model fitted through the FSL dtifit algorithm (Behrens et al., 
2003; Johansen-Berg et al., 2004).

For comparison across participants, we created a study-
specific FA-template based on all available images using Advanced 
Normalization Tools (ANTs) algorithms (Avants et al., 2014; Lawson, 
Duda, Avants, Wu, & Farah, 2013), which showed the highest accu-
racy in software comparisons (Klein et al., 2009; Murphy et al., 2011; 
Tustison et al., 2014). Individual images were transformed to template 
space using non-linear registration with symmetric diffeomorphic nor-
malization as implemented in ANTs (Avants, Epstein, Grossman, & Gee, 
2008). Next, the images were eroded twice with a 3 mm sphere using 
FSL maths to remove brain edge artefacts.

2.5 | Processing of T1-weighted data

Another measure of brain development that can be derived from neu-
roimaging data is cortical thickness (Giedd & Rapoport, 2010; Gogtay 
et al., 2004). Cortical thickness is defined as the distance between the 
outer edge of cortical grey matter and subcortical white matter (Fischl 
& Dale, 2000). To obtain thickness measures from anatomical MRI 
data, T1-weighted volumes were initially co-registered with MNI152 
space using rigid co-registration to obtain good initial between-
subject alignment and optimal field of view. Next, all images were 
visually inspected and images with pronounced motion artefact were 
removed from further analysis (n = 31, 20.25% of the acquired data). 
The remaining data were submitted to the automatic ANTs cortical 
thickness pipeline (antsCorticalThickness). Details about the process-
ing pipeline and thickness estimation are described in Tustison et al. 
(2014) and Das, Avants, Grossman, and Gee (2009). Tissue priors were 
taken from the OASIS-TRT-20 template (http://www.mindboggle.
info/data.html#mindboggle-software-data). Subsequently, images in 
template space were smoothed using a 10 mm full width at half maxi-
mum (FWHM) Gaussian kernel and resampled to 2 mm resolution. A 
thickness mask was created by averaging all images and binarizing the 
resulting mean image at a threshold of 0.1.

2.6 | Eigenanatomy decomposition

Traditional univariate approaches such as voxel-based morphometry 
(VBM) fit a statistical model for every voxel in a brain image. The large 
number of voxels in a typical imaging protocol necessitates correction 
for a very large number of comparisons (T1-volumes in the current 

study contained over 1 million voxels), and this results in a substan-
tial loss of statistical power. However, effects are typically spread 
over areas that are larger than 1 voxel. Multivariate approaches are 
better suited to reduce the dimensionality of the data to the infor-
mation contained in the data themselves before statistical compari-
sons are applied. Eigenanatomy decomposition is a novel method for 
data-driven dimensionality reduction of neuroimaging data that adds 
sparseness and smoothness constraints for better anatomical inter-
pretability in comparison to standard spatial principal component anal-
ysis (Kandel, Wang, Gee, & Avants, 2015). Cortical thickness masks 
and FA images were processed using the ANTsR v0.3.2 implemen-
tation of the eigenanatomy decomposition algorithm (Kandel et al., 
2015). Parameters for eigenanatomy decomposition were adopted 
from published work, that is, decomposition into 32 components with 
a sparseness of 1/32 with 20 iterations, an L1 penalty with gradient 
step size 0.5, a smoothing kernel of 1 voxel, and a minimum cluster 
size of 1000 voxels for each eigenvector. For statistical analysis, the 
mean value of each brain morphology measure (FA, cortical thickness) 
within each eigenanatomy component was calculated. See Figure 3 
for an illustration of the resulting parcellation.

2.7 | Statistical analysis

Our aim was to examine whether and how brain morphology is asso-
ciated with the components of the working memory system, and the 
extent to which this relationship is moderated by age. The relation-
ship between these factors was tested in the following set of regres-
sion models: (a) age predicting working memory performance, (b) age 
predicting brain morphology measures, (c) brain morphology predict-
ing working memory; and ultimately (d) the interaction between brain 
morphology and age predicting working memory (see Figure 4 for 
an overview of these models). Gender and an intercept term were 
included as additional regressors in each model. Models for cortical 
thickness contained intracranial volume as an additional regressor of 
no interest. Assessment of Cook’s distance (Cook, 1977) indicated no 
particularly influential data points in the regression models. Therefore, 
all available data points were retained in the analysis. Regression 
analysis was carried out using the ‘stats’ package v3.1.2 in Rbase. 
Bonferroni correction was applied to account for multiple compari-
sons and the adjusted p-values are reported as pcorrected.

3  | RESULTS

3.1 | Factor analysis of behavioural data

Principal component analysis (PCA) was applied to the raw scores of 
the working memory battery to derive the latent variable structure 
of working memory. Assessment of Mahalanobis distance did not 
indicate outliers in the cognitive scores (Maximum distance D2(4) = 
15.542, critical value = 18.47). Correlations between raw scores were 
moderate to high (range: 0.39 to 0.63). The three-factor PCA solution 
explained 92% of the variance in the raw scores. Factor loadings are 
shown in Table 1.

http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html
http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html
http://nipy.org/nibabel/
http://www.mindboggle.info/data.html#mindboggle-software-data
http://www.mindboggle.info/data.html#mindboggle-software-data


6 of 13  |     ﻿BATHELT  et a l.

3.2 | Working memory performance improves 
with age

Linear regression indicated that age was significantly associated with 
increases in working memory scores (Effects of age including gender 
as a nuisance regressor: Verbal factor: F(2, 150) = 4.538, p = .012, R2 
= 0.057, R2

Adjusted = 0.044, βAge = 0.010, tAge(150) = 2.99, p = .003; 
Executive factor: F(2, 150) = 6.506, p = .002, R2 = 0.079, R2

Adjusted = 
0.068, βAge = 0.003, tAge(150) = 3.09, p = .002; Spatial factor: F(2, 150) 
= 16, p < .001, R2 = 0.176, R2

Adjusted = 0.165, βAge = 0.018, tAge(150) 
= 5.66, p < .001; see Figure 5a). Comparison with alternative quad-
ratic and cubic models using the Akaike Information Criterion (AIC) 
as a measure of parsimony (Akaike, 1974) suggested that a linear 
model provided the best account for the relationship between age 
and factor scores in the current data (Verbal factor: AIClinear = 433.12, 
AICquadratic = 432.21, AICcubic = 427.54; Executive factor: AIClinear = 
428.46, AICquadratic = 429.52, AICcubic = 431.51; Spatial factor: AIClinear 
= 408.91, AICquadratic = 409.94, AICcubic = 411.61).

3.3 | FA increases with age

In order to assess the relationship between each measure of brain 
morphology and participant age, a linear regression analysis was 

carried out (FA: yFA = βAgeXAge + βGenderXGender + βIntercept + ε; Cortical 
thickness: yThickness = βAgeXAge + βGenderXGender + βICVXICV + βIntercept + ε). 
For FA, the results indicated a significant effect of age in 30 of the 
32 components after Bonferroni correction for multiple comparisons. 
The effect was marginal for the remaining two components after 

F IGURE  4 Relationships between age, brain morphology, and 
working memory factors explored in the current analysis. The 
relationship between age and working memory factors (verbal, 
executive, spatial), age and brain morphology measures (FA, cortical 
thickness), and the interaction effect between age and brain 
morphology on working memory factors was investigated. All models 
further contained gender as a regressor of no interest as well as an 
intercept term and error term. The interaction model also contains 
terms for age and brain morphology separately. Models for cortical 
thickness analysis also contained intracranial volume as a regressor of 
no interest

F IGURE  3 Overview of the eigenanatomy decomposition for FA images (top) and cortical thickness maps (bottom). The 32 components 
indicated by eigenatomy decomposition are shown on top of the study-specific FA and cortical thickness template. Cortical thickness images 
were down-sampled and smoothed. Labels indicate the components that were found to show interactions with working memory scores and age
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correction for multiple comparisons (p < .051). The slopes were posi-
tive for all components (βAge: mean = 0.22, SD = 0.03, Range = 0.16–
0.29, based on z-scores; see Figure 5b), indicating that FA increased 
with age for all eigenanatomy components. For cortical thickness, the 
results indicated no significant relationship with age (βAge: mean = 
0.05, SE = 0.01, Range = −0.08–0.18, based on z-scores).

3.4 | FA predicts differences in executive scores

Next, the relationship between brain morphology and factor scores 
was assessed (FA: yFactor = βFAXFA + βGenderXGender + βIntercept + ε; 
Cortical thickness: yFactor = βThicknessXThickness + βICVXICV + βGenderXGender 
+ βIntercept + ε). There was no significant effect of FA in any eigenana-
tomy component for the verbal and visuospatial storage factor after 
correction for multiple comparisons. There were significant effects 
of FA in 16 eigenanatomy components for the executive factor (see 
Table 2). For cortical thickness, the results indicated no significant 
effect of cortical thickness within any of the 32 eigenanatomy com-
ponents on scores for any of the working memory factors (corrected-p 
> .05). In summary, FA predicted working memory capacity associ-
ated with the executive factor, while cortical thickness was not signifi-
cantly associated with any working memory constructs.

Finally, the extent to which the relationship between brain mor-
phology and components of the working memory system is moder-
ated by age was investigated. The regression model for this analysis 

controlled the linear contributions of age, gender, and FA within the 
eigenanatomy component, and also contained a term for the interac-
tion between FA and age which was the main focus of this analysis 
(yFactor = βAgeXAge + βFAXFA + d(XAge × XFA) + βGenderXGender + βIntercept + 
ε). The results indicated a significant effect of the interaction between 
age and FA on the executive factor in two eigenanatomy components 
(Corpus callosum component: β = −0.337, t(5) = −3.35, p = .001, pcor-

rected = .036; Occipitotemporal white matter component: β = −0.368, 
t(5) = −3.32, p = .001, pcorrected = .039; see Figure 6).

For cortical thickness, intracranial volume was included as an addi-
tional regressor of no interest (yFactor = βAgeXAge + βThicknessXThickness + 
d(XAge × XThickness) + βGenderXGender + βICVXICV + βIntercept + ε). The results of 
the regression analysis indicated a significant interaction between age 
and cortical thickness for one eigenanatomy component (left temporal 
thickness component: β = 0.56, t(5) = −0.91, p = .002, pcorrected = .049).

4  | DISCUSSION

The aim of the current study was to explore how structural brain 
correlates of working memory capacity differ with age. The neural 
structures associated with the executive component of the working 
memory system were shown not to be invariant across age, but to 
interact with it. Specifically, the corpus callosum and bilateral poste-
rior temporal white matter, and cortical thickness in the left occipi-
totemporal cortex made differential contributions to the executive 
component of working memory according to age.

Performance on four tasks was used to assess the latent structure 
of working memory. Distinct factors were identified for verbal and 
visuo-spatial storage with an additional factor contributing to tasks 
with a higher executive demand load regardless of domain (see also 
Alloway et al., 2004; Bayliss et al., 2003; Kane et al., 2007). Factor 
scores were linearly related to age for all factors, replicating previous 
studies that indicate linear increases in short-term and working mem-
ory capacity throughout childhood and adolescence (Conklin, Luciana, 
Hooper, & Yarger, 2007; Gathercole et al., 2004; Swanson, 1999).

4.1 | White matter organization but not cortical 
thickness show differences with age

Next, the aspects of neurophysiology that show the greatest degrees 
of age-related differences were investigated. Of particular interest 
was the anatomy of white matter. White matter changes are thought 
to be a key process in postnatal brain development, which continues 
throughout childhood and adolescence into early adulthood (Barnea-
Goraly, 2005; Muftuler et al., 2012; Qiu, Tan, Zhou, & Khong, 2008; 
Tau & Peterson, 2010). In particular, the myelination of axons is 
thought to be a critical mechanism of brain development in this age 
range (Miller et al., 2012). Differences in microstructural properties, 
namely FA, as measured by diffusion MRI are directly related to myeli-
nation and have been linked to cognitive development (Clayden et al., 
2012; Mabbott, Noseworthy, Bouffet, Laughlin, & Rockel, 2006). In 
the current study, FA was also significantly related to age.

TABLE  1 Loading of factors based on principal component 
analysis using varimax rotations of the raw working memory scores. 
The three-factor solution explained 93% of the variance. The factor 
loadings suggested a verbal and spatial storage factor, and an 
executive factor

Verbal 
Factor

Executive 
Factor

Visuo-spatial 
Factor

Digit Recall 0.95 0.15 0.18

Backward Digit Recall 0.55 0.50 0.47

Dot Matrix 0.22 0.27 0.93

Mr. X 0.17 0.94 0.26

Proportion explained 0.35 0.33 0.32

Cumulative proportion 0.35 0.68 1.00

F IGURE  5  (a) Relationship between age and verbal, executive, 
and visuospatial factor scores. Linear regression analysis indicated 
significantly higher scores in older participants for all factors. (b) 
Relationship between age and FA within eigenanatomy components. 
Higher FA was significantly related to age in 30 out of 32 
eigencomponents (shown)
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TABLE  2 FA within eigenanatomy components that showed significant linear relationships with executive function scores. The coordinates 
refer to the position of the ROI centroid in MNI152 space

Volume x y z β tstat p pcorrected

Comp 2 46439 90.71 83.23 84.62 0.47 3.09 0.003 0.01

Comp 3 41374 89.78 101.47 59.97 0.48 2.77 0.007 0.03

Comp 4 46585 91.01 107.09 85.48 0.49 2.74 0.007 0.031

Comp 6 32929 106.63 119.04 96.72 0.45 2.64 0.009 0.041

Comp 7 33840 78.00 92.32 57.81 0.48 2.68 0.009 0.035

Comp 8 23804 74.90 152.59 82.53 0.46 2.88 0.005 0.03

Comp 9 24972 125.41 106.25 65.33 0.51 3.15 0.002 0.008

Comp 10 36812 97.46 75.41 92.97 0.5 3.24 0.002 0.007

Comp 13 27930 98.03 82.84 99.30 0.49 2.91 0.004 0.019

Comp 16 20309 76.13 101.56 101.69 0.41 2.71 0.008 0.04

Comp 20 20608 110.17 112.02 100.88 0.46 2.79 0.006 0.033

Comp 22 18040 86.64 98.73 71.46 0.49 2.9 0.005 0.017

Comp 24 21049 64.55 115.31 75.93 0.51 2.73 0.007 0.033

Comp 25 15867 94.10 104.76 67.27 0.53 3.11 0.002 0.01

Comp 27 19398 66.55 116.81 99.49 0.51 2.99 0.003 0.02

Comp 28 13506 54.45 102.02 102.15 0.46 2.65 0.009 0.036
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In contrast, cortical thickness was not related to age. This was unex-
pected as multiple studies have reported decreasing cortical thickness 
with age (Sowell, 2004; Tamnes et al., 2009; Tamnes et al., 2010; 
Wierenga, Langen, Oranje, & Durston, 2014). However, these studies 
included participants from early childhood to adulthood (Tamnes et al., 
2009, Sowell et al., 2006, Wierenga et al., 2014), or mapped changes 
longitudinally over a shorter period (Shaw et al., 2006; Sowell, 2004). 
Our narrower age range could account for the absence of age-related 
differences in cortical thickness in the current study. Even so, our data 
indicate that FA is a more sensitive indicator of brain development in 
the 6- to 16-year age range, and that neural differences across this age 
span are largely mediated by the maturation of structural connections 
and integration within brain systems.

4.2 | Brain morphology and age interact 
in the development of the executive component of 
working memory

Many studies indicate that neural correlates of cognitive development 
show a shift from using general brain systems in younger children to 
an adult-like recruitment of specialized networks of regions in older 
participants (Johnson, 2011). This developmental tendency has been 
demonstrated for the processing of both faces (Kadosh, Johnson, 
Henson, Dick, & Blakemore, 2013; Kadosh, Kadosh, Dick, & Johnson, 
2010) and language (Weiss-Croft & Baldeweg, 2015). Functional neu-
roimaging studies indicate that this developmental progression may 
also apply to working memory. Children show higher blood oxygen-
ation in additional regions beyond the core working memory areas 
found in adults (Ciesielski et al., 2006; Crone, Wendelken, Donohue, 
van Leijenhorst, & Bunge, 2006; Scherf, Sweeney, & Luna, 2006; 
Vogan et al., 2016). However, differences in the contribution of brain 
structure with development have not been investigated so far.

The current study indicates that younger children’s working mem-
ory capacity is more closely associated with the microstructural integ-
rity of white matter components than is the capacity of older children 
and adolescents. In contrast, higher focal cortical thickness in areas 
associated with working memory is associated with lower levels of 
performance in older but not in younger children. In short, the exec-
utive aspects of working memory are supported by different brain 
systems across this age range. The greater importance of large white 
matter connections in younger children suggests that younger chil-
dren are relying on a more distributed system. In contrast, the greater 
importance of cortical thickness in the left posterior temporal lobe 
demonstrates the importance of this local processing in later stages of 
working memory development.

There exists a relatively large literature discussing the potential 
functional role of the particular structures that were implicated in our 
findings. To summarize briefly: it has been hypothesized that inter-
hemispheric connections of the corpus callosum provide inhibition 
between functionally homologous areas in the left and right hemi-
sphere (Gazzaniga, 2000). Differences in corpus callosum anatomy such 
as reduced volume or reduced microstructural integrity are related to 
lower lateralization of function in typical participants and patient groups 
(Hinkley et al., 2016; Just, Cherkassky, Keller, Kana, & Minshew, 2007; 
Persson et al., 2006). In turn, lower lateralization is associated with 
lower performance on cognitive tasks, including executive function 
tasks (Hinkley et al., 2012; Just et al., 2007; Nagel, Herting, Maxwell, 
Bruno, & Fair, 2013). Similarly, posterior temporal white matter may 
provide connections for integration between specialized regions of 
temporal lobe for verbal and visuospatial working memory with the 
posterior parietal executive attention network. Posterior temporal 
white matter has also been shown to relate to working memory perfor-
mance in typical adults (Burzynska et al., 2011; Golestani et al., 2014) 
and in lesion studies (Finke, Bublak, & Zihl, 2006; Palacios et al., 2012).

F IGURE  6  Interaction effect of age and measures of brain morphology (FA, cortical thickness) on executive factor scores. Age was split into 
three groups for better visualization of the results, but was treated as a continuous variable in the main analysis. Glass brain maps represent the 
topography of the components in MNI space. Regression analysis indicated significant interactions in two FA components (anterior and posterior 
corpus callosum, medial corpus callosum and bilateral posterior temporal white matter). FA in these components was more predictive of 
executive scores in younger children. For cortical thickness, one component in the left occipitotemporal cortex showed a significant interaction 
effect with age. In this component higher cortical thickness was more predictive of lower executive function scores in older children. One data 
point with extreme cortical thickness values has been removed for this illustration. Removing this data point did not influence the results of the 
main analysis, but made this figure more difficult to interpret
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With structural data alone, we are left to speculate as to the 
functional role of these connections and their changing contribution 
to working memory capacity across development. But our findings 
make a more fundamental point – despite the factor structure of 
working memory being stable across childhood (Alloway et al., 2004; 
Gathercole et al., 2004; Luciana et al., 2005), the neural systems asso-
ciated with it change. Impairments of working memory are a consis-
tent feature of numerous neurodevelopmental disorders (Archibald & 
Gathercole, 2006; Gathercole & Baddeley, 1989; Holmes et al., 2014; 
Martinussen et al., 2005; Montgomery, 2000; Rotzer et al., 2009; 
Smith-Spark & Fisk, 2007; Szucs et al., 2013; Weismer et al., 1999), 
in addition to being an important constraint on learning within the 
typically developing population (Cain et al., 2004; Clair-Thompson 
& Gathercole, 2006; Cowan, 2013; Dumontheil & Klingberg, 2011; 
Gathercole, Tiffany, Briscoe, & Thorn, 2005; Gathercole et al., 2003). 
Understanding the nature of these impairments, and providing a plau-
sible neuropsychological account for them, will require a developmen-
tally informed model of brain–behaviour relationships. Differences in 
capacity will likely be underpinned by a different combination of neu-
ral systems, depending upon the age of the child.

5  | CONCLUSION

The current study investigated whether the relationship between indi-
vidual differences in brain structure and working memory performance 
varies with age. There was clear evidence of differences in the neural 
underpinnings of the executive component of working memory, with a 
shift from a higher contribution of callosal and temporal white matter 
in younger children to a greater dependence on left temporal cortex 
in older children. The current study can be characterized as a devel-
opmental progression from an early distributed system supported by 
long-range connections to later reliance on specialized local circuitry.
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