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Abstract

Background—The utility of whole-exome sequencing (WES) for the diagnosis and management
of adult-onset constitutional disorders has not been adequately studied. Genetic diagnostics may
be advantageous in adults with chronic kidney disease (CKD), in whom the cause of kidney failure
often remains unknown.

Objective—To study the diagnostic utility of WES in a selected referral population of adults with
CKD.

Design—Observational cohort.

Setting—A major academic medical center.

Patients—92 adults with CKD of unknown cause or familial nephropathy or hypertension.
Measurements—The diagnostic yield of WES and its potential effect on clinical management.

Results—Whole-exome sequencing provided a diagnosis in 22 of 92 patients (24%), including 9
probands with CKD of unknown cause and encompassing 13 distinct genetic disorders. Among
these, loss-of-function mutations were identified in PARN in 2 probands diagnosed respectively
with tubulointerstitial fibrosis and CKD of unknown cause. PARN mutations have been implicated
in a short telomere syndrome characterized by lung, bone marrow, and liver fibrosis; these findings
extend the phenotype of PARN mutations to renal fibrosis. In addition, review of the American
College of Medical Genetics actionable genes identified a pathogenic BRCAZ mutation in a
proband who was diagnosed with breast cancer on follow-up. The results affected clinical
management in most identified cases, including initiation of targeted surveillance, familial
screening to guide donor selection for transplantation, and changes in therapy.

Limitation—The small sample size and recruitment at a tertiary care academic center limit
generalizability of findings among the broader CKD population.

Conclusion—Whole-exome sequencing identified diagnostic mutations in a substantial number
of adults with CKD of many causes. Further study of the utility of WES in the evaluation and care
of patients with CKD in additional settings is warranted.

Primary Funding Source—New York State Empire Clinical Research Investigator Program,
Renal Research Institute, and National Human Genome Research Institute of the National
Institutes of Health.

Chronic kidney disease (CKD) affects an estimated 14% of Americans (1, 2). These persons
have 10- to 15-fold higher morbidity and mortality rates than the general population (1, 3).
In most patients with CKD, the diagnosis is based on standard office work-up and
sometimes kidney biopsy findings. However, earlystage CKD is often clinically silent, and
subtypes can be difficult to distinguish on the basis of clinical data alone. Thus, in many
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persons, the precise cause of kidney failure remains unknown. Approximately 10% to 25%
of patients with CKD note a family history of nephropathy (4 — 6), suggesting that in many
cases the disease has a hereditary component. Recent advances in genomic technologies,
such as chromosomal microarray and massively parallel (“nextgeneration”) sequencing,
enable genome-wide analysis at a modest cost and precise definition of the molecular cause
of many complex diseases (7-13). Application of these methods has suggested opportunities
for individualized diagnosis and risk stratification, including targeted work-up and
surveillance for associated disease complications (11-13) and sometimes precision therapy
(12-15). However, studies to date have focused mainly on a limited range of disorders in
pediatric cohorts or on cancer in adults (7-17); thus, the clinical utility of these approaches
for a broader spectrum of diseases, particularly among adults, remains unclear.

Applying chromosomal microarray analysis, we recently showed that 7.4% of 419 children
with various forms of CKD had a major known pathogenic genomic imbalance that was not
suspected after clinical assessment (18). These disorders were evenly distributed among
patients clinically diagnosed with congenital and noncongenital forms of CKD, indicating
that genetic analysis has utility across broad clinical categories. In most of these cases, the
genetic findings either reclassified the disease or provided information that could guide
subsequent clinical care, such as evaluation for metabolic or neuropsychiatric disease.
Similarly, next-generation sequencing has been shown to have great utility for diagnosing
genetic forms of nephrotic syndrome or congenital kidney defects in pediatric populations,
albeit mainly in the context of targeted panels (19-21).

Whole-exome sequencing (WES) is a genome-wide testing approach that allows selective
sequencing of the protein-coding regions of the genome, which are enriched for disease-
associated variants (12-15). Because of its genome-wide coverage, WES enables screening
of most genes associated with kidney disease and can therefore be applied across diverse
categories of renal disorders. Moreover, it can potentially identify novel etiologic genes for
nephropathy or detect actionable incidental mutations unrelated to the primary indications
for testing. For these reasons, WES is emerging as a preferred diagnostic tool for hereditary
disorders (12-15, 22, 23). In pediatric cohorts, WES recently identified diagnostic mutations
in up to 11.5% of patients with congenital kidney anomalies and 26% of patients with
steroid-resistant nephrotic syndrome, supporting its diagnostic utility for early-onset CKD
(24, 25). However, the value of this sequencing method for the diagnosis and management of
CKD in adults has not been adequately studied. We did a pilot study to test the utility of
WES in adults referred for evaluation of CKD or hypertension.

Study Design

The results of WES in a convenience sample of patients referred for evaluation of CKD were
reviewed for their potential to inform clinical practice. To facilitate diagnostic interpretation
of WES data, we compiled a list of genes encompassing most common Mendelian forms of
kidney and hypertensive disorders. We next annotated the exomes for diagnostic variants in
nephropathy genes and then analyzed other genes, including =those recommended by the
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American College of Medical Genetics (ACMG), for return of medically actionable
incidental findings (26).

Patient Population and Setting

The study sample was selected from a group of 344 patients seen at outpatient nephrology
clinics between October 2013 and May 2014 at Columbia University Medical Center, a
tertiary care medical center with a nephrology division offering highly specialized care for
glomerular disorders. These 344 patients were referred for evaluation and management of
kidney disease and consented to a general genetic research and biobanking protocol.
Supplement Table 1 (available at Annals.org) presents the characteristics of these 344
patients. From this group, we selected 81 adult patients (aged >18 years) (Supplement Table
2, available at Annals.org) for WES who fulfilled 1 of the following inclusion criteria: a
family history of kidney disease (defined as any family member with urinary abnormalities
or impaired kidney function, as reported by the patient), undiagnosed kidney disease, or
clinical suspicion of a genetic kidney disease (for example, in a proband with young age of
onset and no family history of nephropathy). The PKDI gene is not well-captured by WES
because of gene duplication (27), so patients fulfilling clinical diagnostic criteria for
autosomal dominant polycystic kidney disease were not included in the WES study.

In addition to these 81 patients from Columbia University Medical Center, we also included
11 patients referred for suspected inherited kidney disease or hypertension from outside
institutions. Three patients with familial tubulointerstitial nephropathy and 1 with early-
onset hypertension were referred from 3 local practices in the United States (New York
University and nephrology practices in suburban New York and Delaware). Four were
referred for evaluation of Mendelian hypertension from the Polish Kidney Genetics Network
(POLYGENES, www.polygenes.org), centered in the Department of Genetics at Pozna
University of Medical Sciences and The Center of Medical Genetics GENESIS (Poznan,
Poland). Three other patients were referred from Gaslini Institute (Genova, Italy) for
evaluation of glomerulonephritis with nondiagnostic kidney biopsies. All participants gave
informed consent, and the study was approved by the Columbia University Institutional
Review Board and local ethics committees.

WES and Sequence Interpretation

Staff extracted DNA from whole blood. Telomere length was measured using genomic DNA
from whole blood, as previously described (28, 29). For WES, fragment libraries using 200
ng of genomic DNA were constructed from each sample, following the Agilent standard
library preparation protocol for TruSeq (lllumina). Exome capture was done with the
SureSelectXT Human All Exon V4 (51 Mb) kit (Agilent), and sequencing was done using
the HiSeq 2000 or 2500 (Illumina) at the Columbia Genome Center. On average, 92.83
million independent paired-end reads (18.56-Gb bases) were generated per sample to
provide an average coverage of 110-fold, with 99.17% of target regions being covered at
least 10-fold. The paired-end reads (read size, 101 bp) were mapped to the human reference
genome National Center for Biotechnology Information build 37 using Burrows—Wheeler
Aligner, version 0.5.9. The Genome Analysis Toolkit, version 1.6-13, was used to call
germline single nucleotide variants and insertions or deletions (indels).
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Variants were annotated for predicted effect on protein function (using ANNOVAR and
SnpEff); allele frequency in public databases (EXAC, dbSNP, and the 1000 Genomes
Project); and predicted pathogenicity with in silico algorithms, including PolyPhen and
Combined Annotation Dependent Depletion scores (30— 30). Evidence for disease causality
was assessed using ClinVar and the Human Genome Mutation Database (Qiagen), followed
by manual review of the cited primary literature (33, 36). In addition, we developed a
curated “priority” list of 287 Online Mendelian Inheritance in Man (OMIM; http://
omim.org) genes implicated in Mendelian forms of kidney disorders and hypertension to
facilitate clinical annotation (hereon, we refer to this gene list as nephropathy genes; see
Supplement Table 3, available at Annals.org). A known limitation of exome sequencing is
that some segments of the genome are not amenable to capture (23). Among the 287
nephropathy genes, 29 were identified with at least 1 exon that is not captured by the Agilent
kit, representing potential blind spots in the analysis (Supplement Table 3).

Variant interpretation was done by a panel of nephrologists or molecular geneticists with
domain expertise in inherited kidney diseases (K.K., S.S.C., C.A.,, L.R,, E.G., and A.G.G.),
bioinformaticians (S.L. and D.A.F.), and a clinical molecular geneticist (\.J.), using the
ACMG guidelines for clinical sequence interpretation (37). Detailed classification criteria
for pathogenic and likely pathogenic variants are in Supplement Table 4 (available at
Annals.org). We also reviewed potentially pathogenic mutations in OMIM genes associated
with other heritable disorders and in the ACMG's 59 actionable genes (26). All diagnostic
variants were confirmed by Sanger sequencing. Finally, we verified the distribution of
potentially functional variants in nephropathy genes in each exome. These potentially
functional variants were defined as missense, nonsense, splice site, or indel variants with a
minor allele frequency less than 1% in EXAC (a database of genetic variation in >60 000
persons) and a Combined Annotation Dependent Depletion score greater than 10 (indicating
a variant score in the top 10% of deleteriousness in a large reference data set of variants). We
also verified allele frequencies using an anonymized in-house control data set derived from
9012 persons who had undergone WES for indications other than nephropathy; these control
data included healthy parents of children with a developmental disorder and participants
from genetic studies of amyotrophic lateral sclerosis or seizure disorders.

Role of the Funding Source

Results

he study was funded by the New York State Empire Clinical Research Investigator Program,
the Renal Research Institute, and the National Human Genome Research Institute of the
National Institutes of Health. The funding sources had no role in the design, conduct, and
analysis of the study or in the decision to submit the manuscript for publication.

We performed WES in 92 adults with CKD with a clinical diagnosis compatible with a
Mendelian genetic disease, a familial nephropathy of unclear cause, or unexplained kidney
failure. The characteristics of the 92 participants are described in Table 1 and Supplement
Table 2. Nineteen participants (20%) were of self-declared non-Caucasian ancestry, 53
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(58%) had a family history of nephropathy, and 50 (54%) had a clinical diagnosis of
glomerulopathy (Table 1).

Diagnostic Variants in Known Nephropathy Genes

Using ACMG criteria, we identified 19 patients with a diagnostic mutation in 1 of the known
nephropathy genes (Table 2): 9 had a pathogenic variant and 10 had a likely pathogenic
variant. In 6 of these 19 cases, the genetic data confirmed the clinical diagnosis but were
nonetheless valuable because they allowed discrimination of the mode of disease inheritance
and enabled appropriate screening and counseling for family members. For example, in
patients K009 and K024, WES helped to distinguish X-linked versus autosomal forms of
Alport syndrome, thereby informing family counseling and selection of living related kidney
donors. In the other 13 cases, including 7 patients presenting with CKD of unknown cause,
WES clarified the clinical diagnosis or reclassified the patient's disease entirely, which
significantly affected clinical decision making. For example, we found COL4A3, COL4A4,
or COL4A5 mutations in probands with a clinical diagnosis of familial focal segmental
glomerulosclerosis (K078 and K058) or familial nephropathy of unknown cause (K014 and
K028). These genetic diagnoses had direct consequences for medical management,
including avoidance of immunosuppressive agents, usually considered first-line therapy for
familial focal segmental glomerulosclerosis; auditory and ophthalmologic screening;
screening for mutation carriers among family members; optimal selection of living related
organ donors; and in some cases, referral to an ongoing clinical trial targeting patients with
type IV collagen mutations (ClinicalTrials.gov: NCT02855268). In another case, WES
identified a diagnostic mutation for Dent disease in a patient (KGY1) with undiagnosed
familial CKD who had had 2 nondiagnostic kidney biopsies as a child; implications included
treatment with citrate and thiazide diuretics, prioritization for transplantation, and molecular
diagnosis in a brother with recently diagnosed CKD. We also genetically diagnosed several
rare diseases, including CHARGE (coloboma, heart defects, atresia choanae, growth
retardation, genital abnormalities, and ear abnormalities) syndrome (K030) and renal cysts
and diabetes syndrome (K064), prompting targeted work-up for associated extrarenal
comorbid conditions and providing a unifying explanation for some organ defects.

The genetic diagnostic rate was similar between glomerular and nonglomerular disorders
(19% and 23%, respectively) and between persons of European and non-European ancestry
(20% for both). The diagnostic rate in Columbia University Medical Center patients
recruited during routine outpatient visits was 22%, compared with 9% among those referred
for evaluation of genetic kidney disease from outside institutions. During the annotation
process, we detected an average of 5 potentially functional variants in nephropathy genes per
person, which is consistent with the known distribution of putatively functional variants in
the general population (34). In many cases, these variants were in nephropathy genes that
were not consistent with the clinical presentation and could therefore be eliminated from
consideration; however, others were partially compatible with the clinical diagnosis and
were classified as variants of unknown significance, pending additional corroborating
clinical data. As an example, we list 5 cases where we detected rare, predicted, deleterious
variants that potentially explained some aspects of the clinical presentation but were
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classified as variants of unknown significance because phenotypic evidence was insufficient
to establish causality (Supplement Table 5).

Mutations in PARN in Patients With Tubulointerstitial Nephropathy

We next reviewed all genetically unresolved cases for mutations in OMIM genes. We
identified the following 2 independent loss-of-function (LoF) mutations in PARN: a
nonsense variant, p.Q215*, in a proband with early-onset nonproteinuric nephropathy of
unclear cause, and a splice site variant, c.554+1G>A, in a parent—child pair with
tubulointerstitial nephropathy (Table 3). PARN encodes a poly(A)-specific ribonuclease that
participates in telomere maintenance (38). Heterozygous LoF mutations in 2ARN have
recently been implicated in late-onset idiopathic pulmonary fibrosis; myelodysplastic
syndrome; and, rarely, liver fibrosis. However, to our knowledge they have yet to be
associated with kidney disease (28, 39, 40). The PARN mutations detected in the patients
with CKD were absent in all public databases. In comparison, we detected 2 LoF mutations
in PARN in WES data from 9012 control participants (0.02%) from our institution; these 2
represented a substantial portion of the 43 nonglomerular CKD cases (4.7%). Kidney biopsy
specimens were available in the parent—child pair and were histologically concordant,
revealing chronic tubulointerstitial nephropathy with glomeruli exhibiting minimal and
nonspecific changes. The predominant pathologic abnormalities were seen in the medulla,
including interstitial fibrosis with a disorganized architecture, resembling changes seen in
renal dysplasia (Figure).

We reviewed health records of mutation carriers for evidence of other organ dysfunction. At
enrollment, none of the patients had evidence of extrarenal disease, but follow-up uncovered
a new diagnosis of interstitial lung disease in 1 of the probands 3 years after enrollment
(Table 3). The other proband had new evidence of macrocytic anemia, which in the presence
of a PARN mutation prompted further investigation for possible incipient myelofibrosis. We
also examined telomere length in 2AR/N mutation carriers and, consistent with recent studies
(29), did not detect differences compared with age-matched controls (Supplement Table 6).

hACMG Actionable Mutations

We searched for mutations in ACMG actionable genes and identified a BRCAZ nonsense
mutation (c.T2151A:p.C717%*) in a 68-year-old woman with fibrillary glomerulonephritis but
no diagnostic mutation in kKidney disease genes. Review of the medical records revealed that
the patient had been diagnosed with breast cancer shortly after enrollment into our study.
The BRCAZ variant was confirmed by Sanger sequencing in a clinical laboratory, and the
patient and family were referred for additional cancer screening, genetic counseling, and
cascade testing. Despite the lack of genetic explanation for the patient's nephropathy, the
WES detection of a germline BRCAZ mutation informed the selection and intensity of
immunosuppressive therapy for her renal disease. Moreover, the subsequent cascade testing
of family members resulted in identification of 2 mutation carriers, who opted for
prophylactic mastectomy.
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Discussion

In this pilot study, we tested the utility of WES for diagnosis in adults with CKD. We
identified many known and undiagnosed genetic disorders in 23% of a cohort of patients
with familial or undiagnosed CKD. Diagnostic variants were detected across major clinical
categories and among patients of both European and non-European ancestry. For most
diagnosed cases, WES provided genetic information that subsequently affected clinical
management and enabled family counseling (Table 2). Consistent with recent studies, we
identified autosomal and X-linked forms of Alport syndrome among patients with a clinical
diagnosis of focal segmental glomerulosclerosis, supporting the variable phenotypic
expression of mutations in type 1V collagen genes (41-43). These findings had immediate
implications for surveillance for extrarenal complications, avoidance of immunosuppressive
therapy in cases misdiagnosed as familial focal segmental glomerulosclerosis, and referral to
a new clinical trial for Alport syndrome. Furthermore, we were able to obtain a genetic
diagnosis in 9 probands with CKD of unknown cause, showing that WES has significant
utility for diagnostic work-up in nephrology. In addition to detecting diagnostic variants in
known nephropathy genes, WES identified PARN haploinsufficiency as a new genetic cause
of CKD. PARN s required for maturation of the telomerase RNA component (38).
Recessive mutations in PARN cause dyskeratosis congenita (44), a rare multisystem disorder
presenting as severe bone marrow failure and abnormal cancer, skin, and mucosal pathology;
many other organs, including the kidney, can also be affected (45). PARN haploinsufficiency
produces variably penetrant pulmonary, bone marrow, and liver fibrosis in older adults, but
the reason for interindividual differences in affected organs is unknown (28, 40, 46). The
finding of 2 independent LoF mutations in 3 patients with nephropathy extends the
phenotypes associated with PARN mutations and identifies renal tubulointerstitial fibrosis as
another potential consequence of PARN haploinsufficiency, suggesting new avenues for
investigating mechanisms of kidney injury. Of interest, the kidney biopsy revealed dysplastic
features in the medulla, reminiscent of renal phenotypes associated with mutations in DNA
repair genes in Fanconi anemia (47) and dyskeratosis congenita (44, 45). These findings
further indicate that disorders of DNA maintenance may present predominantly as kidney
dysfunction and fibrosis and have important implications for clinical care among PARN
mutation carriers, including potential monitoring of kidney function and heightened
awareness when dosing potentially nephrotoxic drugs.

Epidemiologic data suggest that hereditary or congenital disorders account for 10% of adult
CKD (4-6), but the precise cause is frequently unknown. Recent investigations indicate that
many late-onset constitutional disorders, such as amyotrophic lateral sclerosis (48) and
pulmonary fibrosis (28, 40), also have a strong genetic basis that can be identified using
these technologies. Our study similarly suggests that WES can provide a specific, molecular-
level diagnosis, supporting its utility as part of the clinical diagnostic work-up. In
comparison with other WES studies indexed in PubMed in the past 5 years, the diagnostic
yield in our population was similar to those reported for pediatric developmental disorders
(7-13). These findings motivate further examination of the utility of genomic technologies
for diagnosis and stratification in the adult CKD population.
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Our study has some limitations. The high diagnostic yield likely results from studying a
cohort enriched for familial or suspected genetic forms of kidney disease, and the modest
sample size limits generalizability to the broader CKD population. Hence, systematic WES
analysis of larger, unselected CKD cohorts will provide a better assessment of its overall
diagnostic yield in nephrology practice. Whole-exome sequencing also does not provide
uniform coverage of all coding segments of the genome and may fail to capture some
diagnostically relevant genomic regions. For example, because of inadequate capture of
duplicated or repetitive segments in PKD1 and MUCI, WES has limited sensitivity for
assessment of polycystic kidney disease and medullary cystic disease. Thus, the participants
with autosomal dominant transmission of tubulointerstitial nephropathy and negative WES
results in this study may have medullary cystic disease due to a MUCI mutation. In addition,
WES currently has limited ability to detect genomic imbalances and does not assess
mutations in noncoding regions of the genome, leaving additional blind spots. Physician
knowledge of these technical limitations will be important as WES is increasingly
incorporated into clinical practice.

Constitutional genetic testing in adults is generally more complicated because family
members are frequently not available to test inheritance of candidate variants (for example,
to ascertain de novo status) and there is no pairwise comparison of diseased versus normal
tissue to prioritize variants, unlike in cancer genomics. Other challenges include correct and
consistent interpretation of genomic findings, integration of data into care in a clinically
relevant time frame, development of test reports that are readily comprehensible to patients
and providers to facilitate informed decisions, and demonstration that clinical sequencing is
cost-effective and improves outcomes. Moreover, genome-wide tests like WES can discover
actionable mutations unrelated to primary indications for testing, such as the BRCAZ2
mutation discovered in our study. The possibility of incidental findings leading to additional
testing and therapy is a well-established challenge in clinical diagnostics, and the same
principles of determining overall costs and benefits will need to be applied to genetic testing.

Large control databases, such as EXAC (34), are of great value for interpretation of WES
data, helping prioritize predicted deleterious variants on the basis of their frequency in the
population. New variant annotation algorithms that consider genomic context to assess
mutation intolerance may also facilitate variant classification in adult singletons,
independent of prior clinical reports (49-51), and help standardize clinical interpretation of
genomes. Hence, many initiatives are currently examining the clinical relevance of genes
and variants for use in genomic medicine (such as ClinGen, www.clinicalgenome.org) and
will provide more evidence about the utility of genetic testing in diverse clinical settings (52,
53). Emerging data suggest that the introduction of genetic testing in the primary care setting
does not improve or adversely affect standards of care and that some of the resulting
increased health care use is clinically appropriate (54).

Altogether, WES offers the advantage of screening most relevant nephropathy genes at once,
providing genetic diagnoses across diverse clinical categories, and enabling the
identification of novel phenotypic extensions, as shown by the findings of PARN mutations
in tubulointerstitial nephropathy. Because of its genome-wide approach, WES also enables
periodic reevaluation of the sequence data for new genetic diagnoses as new disease genes
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are identified. In this study, WES had substantial diagnostic yield and affected clinical
management in a referral population of adults with CKD, inviting more extensive
investigation of the broader clinical utility of genetic testing for the CKD population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. Kidney biopsy findingsin a PARN mutation carrier (K018)
A. Low-power view of the renal cortex shows mild acute tubular injury and mild

tubulointerstitial scarring. Glomeruli appear unremarkable (hematoxylin—eosin stain;
original magnification, x200). B. Low-magnification view of the renal medulla reveals more
pronounced abnormalities. The tubular architecture is broadly disorganized, with a
haphazard arrangement of tubules. The interstitium is notable for a diffuse increase in
cellularity (hematoxylin—eosin stain; original magnification, x100). C. The majority of
tubules are lined by cuboidal to columnar epithelium. Flattened epithelium consistent with
the thin limbs of the loop of Henle are difficult to discern (hematoxylin—eosin stain; original
magnification, x200). D. The interstitium is diffusely hypercellular, and the majority of the
cellularity is composed of mesenchymal cells. Intermixed lymphocytes and plasma cells are
also noted (hematoxylin—eosin stain; original magnification, x200). E. High-magnification
image shows columnar epithelium and apparent mesenchymal cuffing (hematoxylin—eosin
stain; original magnification, x600). F. A cyst within the medulla is lined by cuboidal to
columnar epithelium (hematoxylin—eosin stain; original magnification, x200).
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Table 3

Characteristics of Patients with PARN (NM_002582) Mutations

Characteristic K017

K018

Page 21

K060

Clinical diagnosis CKD of unknown cause,
Tubulointerstitial nephropathy with
dysplastic features on biopsy

CKD of unknown cause,
Tubulointerstitial nephropathy
with dysplastic features on

CKD of unknown cause, no kidney
biopsy available

biopsy
Sex Male (father) Female (daughter) Female
Age at presentation 44y 23y 48y
Kidney outcome ESRD, has undergone kidney ESRD, has undergone kidney ESRD, has undergone kidney

transplantation

transplantation

transplantation

Follow-up clinical findings ~ Work-up for interstitial lung disease None Secondary hyperparathyroidism,
3y after study enrollment normal findings on chest radiography at
age 50 y, macrocytic anemia
€.554+1G>A €.554+1G>A €.C643T: p.Q215*

Sequence variant 1

CKD = chronic kidney disease; ESRD = end-stage renal disease.
F
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Absent in the Short Genetic Variations (Single Nucleotide Polymorphism) and Exome Aggregation Consortium databases.
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