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Abstract

Can machine learning improve human decision making? Bail decisions provide a good test case. 

Millions of times each year, judges make jail-or-release decisions that hinge on a prediction of 

what a defendant would do if released. The concreteness of the prediction task combined with the 

volume of data available makes this a promising machine-learning application. Yet comparing the 

algorithm to judges proves complicated. First, the available data are generated by prior judge 

decisions. We only observe crime outcomes for released defendants, not for those judges detained. 

This makes it hard to evaluate counterfactual decision rules based on algorithmic predictions. 

Second, judges may have a broader set of preferences than the variable the algorithm predicts; for 

instance, judges may care specifically about violent crimes or about racial inequities. We deal with 
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these problems using different econometric strategies, such as quasi-random assignment of cases 

to judges. Even accounting for these concerns, our results suggest potentially large welfare gains: 

one policy simulation shows crime reductions up to 24.7% with no change in jailing rates, or 

jailing rate reductions up to 41.9% with no increase in crime rates. Moreover, all categories of 

crime, including violent crimes, show reductions; and these gains can be achieved while 

simultaneously reducing racial disparities. These results suggest that while machine learning can 

be valuable, realizing this value requires integrating these tools into an economic framework: 

being clear about the link between predictions and decisions; specifying the scope of payoff 

functions; and constructing unbiased decision counterfactuals. JEL Codes: C10 (Econometric and 

statistical methods and methodology), C55 (Large datasets: Modeling and analysis), K40 (Legal 

procedure, the legal system, and illegal behavior)

I. INTRODUCTION

Many important decisions hinge on a prediction: managers assess future productivity for 

hiring; lenders forecast repayment; doctors form diagnostic and prognostic estimates; even 

economics PhD admissions committees assess future success (Athey et al., 2007; Chalfin et 

al., 2016). These predictions can be imperfect since they may rely on limited experience and 

faulty mental models and probabilistic reasoning. Could we use statistically-driven 

predictions to improve decision making in these prediction policy problems (Kleinberg et 

al., 2015)? This question, with old roots in psychology and criminology (Ohlin and Duncan, 

1949, Meehl, 1954, Dawes, Faust, and Meehl, 1989), has renewed relevance today. Not only 

can large volumes of data now be brought to bear on many decisions, we also have new 

computational tools for analyzing these data. In particular, machine learning represents a 

pragmatic breakthrough in making predictions, by finding complex structures and patterns in 

data.1 These developments make building and implementing decision aids an increasingly 

realistic possibility. We study one example, significant in its own right, to both understand 

the promise of using machine learning to improve decision making as well as reveal the 

unique (and often ignored) challenges that arise.

Each year in the United States, the police arrest over 10 million people (FBI, 2016). Soon 

after arrest, a judge decides where defendants will await trial, at home or in jail. By law, this 

decision should be based solely on a prediction: What will the defendant do if released? Will 

they flee or commit a new crime? A judge must trade off these risks against the cost of 

incarceration. This is a consequential decision for defendants since jail spells typically last 

several months (or longer); recent research documents large costs of detention even over the 

long term.2 It is also costly to society: at any point in time the US has over 750,000 people 

in jail, disproportionately drawn from disadvantaged and minority populations (Henrichson, 

1Hastie, Tibshirani, and Friedman (2009) and Murphy (2012) provide excellent textbook overviews that implicitly illustrate how 
modern machine learning builds on older statistical insights of prediction. Varian (2014) provides an introduction aimed at economists, 
while Mullainathan and Spiess (2017) situate machine learning in an econometric framework. Though our focus here is on prediction, 
a very promising different vein from the present paper is to repurpose machine-learning tools to aid with causal inference (see for 
example Belloni, Chernozhukov, and Hansen, 2014 and Athey and Imbens, 2016).
2The average length of stay is about two months in New York City; see New York City DOC (2012). Annualized costs of jailing a 
person are on the order of $30,000, in addition to other harms from lost freedom, impacts on families, increased chances of a finding 
of guilt, and declines in future employment (Abrams and Rohlfs, 2011, Dobbie, Goldin, and Yang, 2016, Gupta, Hansman, and 
Frenchman, 2016, Stevenson, 2016, Leslie and Pope, 2016).
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Renaldi, and Delaney, 2015). Currently the predictions on which these decisions are based 

are, in most jurisdictions, formed by some judge processing available case information in 

their head.

In principle an algorithm could also make these predictions. Just as pixel patterns can be 

used to predict presence of a face, information about the defendant and their case could be 

used to predict flight or public safety risk. We build such an algorithm–specifically, gradient 

boosted decision trees (Friedman 2001) using a large dataset of cases heard in New York 

City from 2008 to 2013. The algorithm uses as inputs only data available to the judges at the 

time of the bail hearing (e.g. current offense, prior criminal history); it does not use race, 

ethnicity or gender. Because New York state law requires judges to only consider flight risk 

when making pretrial release decisions, we initially train our algorithm on this outcome. 

Since we demonstrate below that our results also hold for other crime outcomes, including 

re-arrest, for convenience we refer to our outcome generically as ‘crime.’

The central challenge we face is not so much in building the algorithm, but rather in 

assessing whether its predictions actually improve on judges’ decisions. One of the core 

problems stems from missing data: we do not observe whether jailed defendants would have 

committed crimes had they been released. This problem is aggravated by the fact that judges 

surely rely on many factors that are unmeasured in our data. If judges observe, say, gang 

membership and only release teenagers not in gangs, then released youth may have different 

crime risks than jailed ones. If unaddressed, this could bias any comparison between judge 

and algorithm in favor of the algorithm.

To overcome this problem we rely in part on the fact that it is one-sided: counterfactuals in 

which the algorithm jails additional defendants can be readily evaluated. The problem only 

arises with counterfactuals where the algorithm releases defendants that judges would not. 

We also exploit the fact that in our data, defendants are as-good-as-randomly assigned to 

judges who differ in leniency.3 This allows us to combine the decisions of more lenient 

judges with the algorithm’s predictions and compare the results against the decisions of 

more stringent judges. We develop a simple framework that clarifies what assumptions are 

needed about judges’ preferences and release rules in order to construct these benchmarks. 

In all cases we can make meaningful comparisons without imposing specific preferences on 

how society or judges trade off crime versus jailing rates.

Three types of results together suggest algorithmic predictions can indeed improve judicial 

decisions. First, judges are releasing many defendants the algorithm ex ante identifies as 

very high risk. For example the riskiest 1% of defendants, when released, fail to appear for 

court at a 56.3% rate and are re-arrested at a 62.7% rate. Yet judges release 48.5% of them. 

Second, stricter judges do not jail the riskiest defendants first; instead they appear to draw 

additional detainees from throughout the predicted risk distribution. If additional defendants 

were selected instead according to predicted risk, stricter judges could produce outcomes 

that appear to dominate their current decisions: They could jail 48.2% as many people with 

3For applications of this design in the causal inference literature see Kling (2006), Di Tella and Schargrodsky (2013) Aizer and Doyle 
(2015), Mueller-Smith (2015), and Bhuller et al. (2016), in addition to the papers cited in the previous footnote.
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the same reduction in crime, or for the same detention rate, they could have a 75.8% larger 

crime reduction.4 Third, we calculate bounds on the performance of an algorithmic release 

rule that reranks all cases by predicted risk, including a worst-case bound tantamount to 

assuming all jailed defendants are sure to commit crime. We show how random assignment 

of cases to judges is central to the calculation of these bounds. The algorithmic rule, at the 

same jailing rate as the judges, could reduce crime by no less than 14.4% and up to 24.7%; 

or without any increase in crime, the algorithmic rule could reduce jail rates by no less than 

18.5% and up to 41.9%.5 These results are not unique to New York City; we obtain 

qualitatively similar findings in a national dataset as well.

These results, which focus on crime, could be misleading if the algorithm’s crime reductions 

are coming at the expense of other goals the judge (or society) values. For example one such 

goal is racial equity. Though we do not use race as an explicit input in prediction, other 

variables might be correlated with race. The algorithm could in principle reduce crime but 

aggravate racial disparities. Yet the opposite appears to be true in our data: a properly built 

algorithm can reduce crime and jail populations while simultaneously reducing racial 

disparities. In this case, the algorithm can be a force for racial equity. Similar problems may 

arise if judges weigh different kinds of crimes differently (for example prioritize risk of 

violent crime), or view detention of some defendants (such as those with jobs or families) as 

particularly costly. We present evidence that the algorithm’s release rule does no worse than 

the judges (and typically much better) on each outcome. Though we can never be certain of 

the full breadth of judicial preferences, these findings combined with the law’s injunction to 

focus solely on defendant risk suggest that algorithmic predictions likely can improve on 

judges’ decisions.

Machine learning could also be used to diagnose why judges mispredict. As a behavioral 

diagnostic, we build another algorithm that predicts judges’ release decisions. Both the 

predictable and unpredictable parts of judicial behavior prove revealing. We find for 

example that judges struggle most with high-risk cases: the variability in predicted release 

probabilities is much higher for high- than low-risk cases. In addition the judges’ decisions 

are too noisy. When judge decisions vary from our predictions of their decisions, the result is 

worse outcomes: a release rule based on the predicted judge dominates the actual judges’ 

decisions.6 These deviations from predicted behavior were, presumably, due to unobserved 

factors the judge sees but are not captured in our data. Economists typically focus on how 

these variables reflect private information and so should improve decisions. Psychologists, 

on the other hand, focus on how inconsistency across choices can reflect noise and worsens 

decisions (Kahneman et al., 2016). While we cannot separately quantify these two effects, 

the superior performance of the predicted judge suggests that, on net, the costs of 

inconsistency outweigh the gains from private information in our context. Whether these 

unobserved variables are internal states, such as mood, or specific features of the case that 

4One might worry that these results are due not to the power of the algorithm but to the most lenient judges having some unique 
capacity to screen out particularly bad defendants; we present evidence in Section IV.B. that this is not the case.
5In practice algorithms would be decision aids, not decision makers. Our calculations simply highlight the scope of the potential gains. 
Understanding the determinants of compliance with prediction tools is beyond the scope of this paper, though recent work has begun 
to focus on it (Dietvorst, Simmons, and Masey, 2015, Yeomans et al., 2016, and Logg 2017).
6Dawes (1971) refers to this as ‘judgmental bootstrapping’. These results hold even when we predict judges individually, so this is not 
a ‘wisdom of crowds’ effect.
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are salient and overweighted, such as the defendant’s appearance, the net result is to create 

noise, not signal.7

More generally the bail application provides a template for when and how machine learning 

might be used to improve on human decisions. First, it illustrates the kind of decisions that 

make for an ideal application of machine learning: ones that hinge on the prediction of some 

outcome (Kleinberg et al., 2015). Many applied empirical papers focus on informing 

decisions where the key unknown is a causal relationship; for example, the decision to 

expand college scholarship eligibility depends on the causal effect of the scholarship. The 

causal effect of jail on flight or public safety risk, though, is known. What is unknown is the 

risk itself. The bail decision relies on machine learning’s unique strengths (maximize 

prediction quality) while avoiding its weaknesses (not guaranteeing causal, or even 

consistent, estimates).8

A second general lesson is that assessing whether machine predictions improve on human 

decisions requires confronting a basic selection problem: data on outcomes (labels) can be 

missing in a nonrandom way. This problem is generic: very often the decisions of the human 

to whom we are comparing our algorithm generate the data we have available.9 As we have 

seen, this selective labels problem complicates our ability to compare human judgments and 

machine predictions. Solving this problem requires recognizing that decision makers might 

use unobserved variables in making their decision: one cannot simply use observable 

characteristics to adjust for this selection.

A final lesson is the need to account for the decision maker’s full payoff function: decisions 

that appear bad may simply reflect different goals. In causal inference, biases arise when 

omitted variables correlate with the outcome. But for prediction, biases arise when omitted 

variables correlate with payoffs. Predictions based on only one of the variables that enter the 

payoff function can lead to faulty conclusions. We chose bail explicitly because the potential 

for omitted-payoff biases are specific and narrow in scope. Yet even here concerns arose. We 

worried, for example, that our improved performance on crime was being undermined by 

creating racial inequity. The problem is put into sharp relief by considering a different 

decision that initially seems similar to bail: sentencing. Recidivism, which is one relevant 

input to sentencing someone who has been found guilty, can be predicted. Yet many other 

factors enter this decision—deterrence, retribution, remorse—which are not even measured. 

In many other applications, such biases could loom even larger. For example, colleges 

admitting students, police deciding where to patrol, or firms hiring employees all maximize 

a complex set of preferences (Chalfin et al., 2016). Outperforming the decision maker on the 

single dimension we predict need not imply the decision maker is mispredicting, or that we 

can improve their decisions.

7One strand of research, for example, emphasizes how highly available and salient information is overweighted (Kahneman and 
Tversky, 1974 and Bordolo, Gennaioli, and Shleifer, 2012). Relatedly, a consistent finding in finance is that asset prices respond to 
noise as if it were signal (Shiller, 1981, Black, 1986, and Mendel and Shleifer, 2012).
8It would be inaccurate, though, to suggest causal inference plays no role here. Assessing the full impact of judicial decision aids, for 
example, requires answering causal questions such as how judges respond to them.
9Bushway and Smith (2007) made a similar observation about how the ‘treatment rule implicit in existing data’ (p. 379) can attenuate 
the relationship in the observed data between observable case characteristics and crime risk.
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It is telling that in our application, much of the work happens after the prediction function 

was estimated. Most of our effort went to dealing with selective labels and omitted payoffs, 

towards synthesizing machine-learning techniques with more traditional methods in the 

applied economics toolkit. Even for social science applications such as this, where the key 

decision of concern clearly hinges on a prediction, better algorithms alone are of ambiguous 

value. They only become useful when their role in decision making is made clear, and we 

can construct precise counterfactuals whose welfare gains can be calculated.

These challenges are largely overlooked in the existing literature. Dating back to at least the 

1930s social scientists have tried to predict criminal behavior, although typically without any 

direct attempt to establish performance relative to a human’s decision.10 Some recent papers 

in computer science, though, acknowledge the selective labels problem and seek to address it 

in the bail context using carefully designed methods to impute outcomes for defendants who 

are missing labels (Lakkaraju and Rudin, 2016, and Jung et al. 2017). For example, 

Lakkaraju and Rudin (2016) employ doubly-robust estimation that combines inverse 

propensity-score weighting and logistic regression, while Jung et al. (2017) use a regularized 

logistic regression model. These methods all rely on a ‘selection on observables’ assumption 

to impute outcomes.11 But assuming away the role of unobservables removes a key source 

of potential judicial advantage and as a consequence biases results in favor of the algorithm. 

Existing work has also been less sensitive to omitted-payoff bias, focusing on individual 

outcomes rather than on the full payoffs surrounding a decision; in bail, for example, only 

examining outcomes like FTA.12

These same challenges are relevant for the older, foundational efforts within psychology to 

compare human predictions to statistical rules (e.g. Meehl, 1954, Dawes, 1971, 1979, 

Dawes, Faust and Meehl, 1989, and Grove et al., 2000). They largely ignored selective labels 

and, to a lesser degree, also ignored omitted-payoff biases, and to the extent to which these 

issues were noted they were not resolved.13 While this earlier work proved visionary, given 

these potential biases it is hard to interpret the resulting statistical evidence. If the ultimate 

goal is to meaningfully compare human decisions to machine predictions, it would be unfair 

to ignore these factors. By assuming away humans’ potential for private information or for 

richer payoffs in making the decisions they do, the result is biased towards the conclusion of 

algorithms being better.

10See the reviews in Berk 2012 and Zeng, Ustin and Rudin, 2016. One key study, the Philadelphia bail experiment, randomly assigned 
judges to receive results from a simple risk tool that recommended lower bail than judges normally assigned (Goldkamp and 
Gottfredson, 1984, 1985, and Abrams and Rohlfs, 2011). The tool increased both the release rate and the crime rate among the 
released, which means we cannot tell whether this improves social welfare without a way to weight outcomes.
11Jung et al. (2017) further explore the sensitivity of their estimates to unmeasured confounders, for example using the method of 
Rosenbaum and Rubin (1983), and find the results are robust within the range of values they consider for the confounders. However 
we have no way of knowing the true magnitude of the influence of any confounders, and so cannot be sure whether these lie outside 
the range of values considered in the simulation.
12This does not mean that risk tools might not aid in other decisions such as parole or sentencing; for example Berk (2012), Berk and 
Bleich (2015), Berk et al. (2014), and Laqueur and Copus (2016). It merely means that we cannot conclude that decision making is 
suboptimal on the basis of evidence about predictability alone.
13For example, looking only at those who were hired in a recruiting application. Even in cases such as medical diagnoses, physicians 
may seek to provide comfort to patients or minimize lawsuit risk; see Abaluck et al. (forthcoming) for a careful structural model. An 
algorithm that improves upon a single, narrow dimension of hiring or admissions does not necessarily improve overall welfare.
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II. DATA AND CONTEXT

II.A. Pretrial bail decisions

Shortly after arrest, defendants appear at a bail hearing. In general judges can decide to 

release the defendant outright (such as to release on recognizance, or ROR), set a dollar bail 

that must be posted to go free, or detain the defendant outright.14 As noted above, these 

hearings are not intended to determine if the person is guilty, or what the appropriate 

punishment is for the alleged offense. Judges are asked instead to carry out a narrowly 

defined task: decide where the defendant will spend the pretrial period based on a prediction 

of whether the defendant, if released, would fail to appear in court (‘FTA’) or be re-arrested 

for a new crime.

When judges set money bail, they technically make two predictions - crime risk, and the 

ability to pay different bail amounts.15 Our decision, for simplicity, to treat these as a single 

compound decision could affect our findings in several ways. Judges may be making 

mistakes in predicting either crime risk or ability to pay, which may complicate our ability to 

isolate misprediction of risk. At the same time, forcing the algorithm to make a single 

decision narrows its choice set, which on the surface should limit its performance relative to 

a broader space of available choices. Below we show our results are not sensitive to how we 

handle this.

When making these decisions, judges know the current offenses for which the person was 

arrested and the defendant’s prior criminal record (‘rap sheet’). In some places, pretrial 

services will interview defendants about things that may be relevant for risk, such as 

employment status or living circumstances. Of course the judge also sees the defendants, 

including their demeanor and what they are wearing (which is typically what they wore at 

arrest), and whether family or friends showed up in court.

The context for most of our analysis is New York City, which has the advantages of 

providing large numbers of observations and was able to provide data that identifies which 

cases were heard by the same judges. Yet the pretrial system in New York is somewhat 

different from other places. First, New York is one of a handful of states that asks judges to 

only consider flight risk, not public safety risk.16 So we focus our models for New York 

initially on FTA, although we also explore below what happens when we consider other 

outcomes. Second, in New York many arrestees never have a pretrial release hearing because 

either the police give them a desk appearance ticket, or the case is dismissed or otherwise 

disposed of in bond court. So we drop these cases from our analysis. Third, judges in New 

York are given a release recommendation based on a six-item checklist developed by a local 

nonprofit, so our analysis technically compares the performance of our algorithm against the 

14Besides ROR, the ‘outright release’ decision can also involve release on an unsecured bond (no collateral required). The bail 
requirement also varies, from requiring the defendant to put down cash equal to some percentage (such as 10%) of the bond’s value, to 
full cash or property bonds that require putting down the full amount. Some jurisdictions also allow private bail bondsmen to help 
people post bond in exchange for a fee. Defendants can also sometimes be released with conditions, such as electronic monitoring.
15One reason judges may not select arbitrarily low bail amounts for low-risk defendants is the possibility that bail creates an incentive 
for people to show up in court.
16See Phillips (2012, p. 25, 53). Another way New York City is different is that private bail bondsmen and supervised release 
programs are relatively less common (Phillips, 2012, p. 33, 41).
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combined performance of the judges plus whatever signal they take from this existing 

checklist tool.17 To determine how important these local features are we also replicate our 

analysis in a national dataset as well, discussed in Online Appendix A.

II.B. Data

We have data on all arrests made in New York City between November 1, 2008 and 

November 1, 2013. The original data file includes information about 1,460,462 cases. These 

data include much of the information available to the judge at the time of the bail hearing, 

such as current offense, rap sheet, and prior FTAs.18 The dataset also includes the outcome 

of each case, including whether the defendant was released, failed to appear in court (FTA), 

or was re-arrested prior to resolution of the case.19 The only measure of defendant 

demographics we use to train the algorithm is age.20

Of the initial sample, 758,027 were subject to a pretrial release decision and so are relevant 

for our analysis.21 Since our goal is accurate out-of-sample prediction, we divide the data 

into a training data set that the algorithm is fitted on and we then use the remaining data, a 

‘test’ or ‘hold out’ set, to evaluate the algorithm. This prevents the algorithm from appearing 

to do well simply because it is being evaluated on data that it has already seen. As an extra 

layer of protection, to ensure that our results are not an artifact of unhelpful ‘human data 

mining,’ as shown in Figure I we follow Tan, Lee, and Pang (2014) and also form a ‘pure 

hold-out’ of 203,338 cases. This final hold-out set was constructed by randomly sampling 

some judges and taking all of their cases, selecting a random selection of cases from the 

remaining judges, and also selecting the last 6 months of the data period. We have not 

touched this dataset until production of this final draft of our manuscript; below we show 

that our main results replicate in this new test set. This leaves us with a main working 

dataset of 554,689 cases, which we randomly partition into 40% training, 40% imputation 

and 20% test data sets. Unless otherwise noted, the predictive algorithms used to generate 

the exhibits are trained on the 221,876 observation training set, and then evaluated on the 

110,938 observation hold-out set. For now we focus on the training and test sets, and later in 

the paper we return to the role of the remaining 40% imputation set. Figure I provides a 

schematic representation of these basic elements.

Table I presents descriptive statistics for our analysis sample. As is true in the criminal 

justice systems of many American cities, males (83.2%) and minorities (48.8% African-

American, 33.3% Hispanic) are overrepresented. A total of 36.2% of our sample was 

17The six items on the tool developed by the NYC Criminal Justice Agency, Inc. (CJA) capture whether the defendant has a phone, a 
NYC-area address, an activity that occupies them full-time (such as school or a job), any prior bench warrants, or open criminal cases, 
and whether the defendant expects someone to come to court to support them; see NYC Criminal Justice Agency, Inc. (2016, p. 14). 
Questions about jobs or school are included because they are believed to predict FTA risk, not because judges necessarily weight these 
factors for their own sake. We return to this below.
18Unlike the judge, we only have information on the most serious charge filed against the defendant, not all charges.
19Our measure of release combines information from two variables: release status at arraignment; and whether the defendant was 
listed as having posted bail by the time of their first postarraignment hearing. This second variable helps capture release status of 
people who could not post bail at arraignment but did post once they had reached the jail. But this will miss the release of people who 
posted bail at the jail and then failed to appear at their first court hearing.
20Previous research demonstrates a strong age patterning to criminal behavior, and courts have generally found consideration of age to 
be legally acceptable.
21We exclude 272,381 desk appearance tickets, as well as the 295,314 cases disposed of at arraignment, the 131,731 cases that were 
adjourned in contemplation of dismissal, and then also eliminate some duplicate cases as well.
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arrested for some sort of violent crime, 17.1% for property crimes, 25.5% for drug crimes, 

and the rest a mix of various offenses like driving under the influence, weapons, and 

prostitution. Overall 73.6% of defendants were released prior to adjudication, which 

includes everyone released on recognizance (63.2% of all defendants), plus about a third of 

those offered bail (35.5%). Those we call ‘detained by the judge’ includes the two-thirds of 

those offered bail who cannot make bail, plus the 1.3% of defendants who are remanded 

(denied bail). We initially do not distinguish between the chance to post bail versus being 

assigned high bail, though we return to this below.

Among released defendants 15.2% fail to appear (FTA) at a subsequent court hearing prior 

to adjudication of their case, as indicated by court records. In addition 25.8% are re-arrested 

prior to adjudication; a small share of these arrests may be related to arrest warrants issued 

in response to a FTA.22 Among the released, 3.7% are arrested for a violent crime 

specifically, and 1.9% for murder, rape, and robbery. We also show these outcomes for the 

full sample, where we use the value 0 for the jailed defendants. Tiny differences may appear 

in later Tables because some numbers below come from the 20% test set subsample.

Table I also makes clear that judges are paying some attention to defendant characteristics in 

deciding who to release, since the average values differ by release status. Exactly how good 

judges are in making these decisions relative to an algorithm’s predictions is the focus of the 

rest of our paper.

III. EMPIRICAL STRATEGY

Our empirical analysis essentially consists of two steps: train an algorithm, and then evaluate 

its performance. The first step will look quite similar to standard machine-learning practice: 

train an algorithm to produce a prediction function that relates defendant characteristics to 

an outcome such as failure to appear or re-arrest. In typical engineering applications like 

vision or language, the second evaluation step is straightforward: simply measure how well 

the fitted function predicts out of sample. However we are interested instead in what those 

predictions tell us about the quality of current human (judge) decisions, and whether using 

the algorithmic predictions can improve those decisions.

III.A. Forming the Prediction Function

We will take the outcome of interest Y to be an indicator for failure to appear, or FTA (or, 

when noted, an index of whether the defendant either FTA’s or is re-arrested), which we 

designate ‘crime.’ The input variables, X, consist of characteristics of the defendant’s 

current case, their prior criminal record, and age (but not other demographic features like 

race, ethnicity or gender). A key challenge is that we only observe Y for released 

defendants, which affects both training and evaluation of the algorithm.23

22The share of arrests in our dataset that are for bail jumping or failing to respond to an appearance ticket is 0.4%; this may somewhat 
understate the share of arrests related to a prior FTA since our data file, as noted above, only captures the most serious charge per 
arrest.
23When training, we do not account for the possibility that the distribution of observables (X) or ‘unobservables’ may differ between 
the released and jailed. Relatedly, we do not use a loss function that matches the eventual decision rule, such as placing a larger weight 
on marginal rather than infra-marginal defendants. Training on the released set with an imperfect loss function could lead to a worse 
and possibly biased predictor, tilting us towards the conclusion that the algorithm cannot improve upon the judge. However, despite 
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We form predictions using gradient boosted decision trees (Friedman, 2001) to fit a function 

m(X) that outputs a predicted probability P (Y = 1|X) (though our results are similar with 

other algorithms). In a decision tree, the data is divided through a sequence of binary splits. 

For example, the first split might be whether the person has ever been arrested. In the next 

step we can split each of the two nodes created by that first split by different variables, 

allowing for a high degree of interactivity in our prediction function. At each final (‘leaf’) 

node, there is a value which is the prediction for every data point in that space. The gradient 

boosted trees algorithm is essentially an average of multiple decision trees that are built 

sequentially on the training data, with each subsequent iteration up-weighting the 

observations that have been predicted most poorly by the sequence of trees up to that point. 

The complexity of a gradient boosted tree model depends on the depth of each tree, the 

number of trees averaged together, and the weighting scheme for each subsequent tree. We 

select these parameters using five-fold cross-validation (see Figure I). Once the optimal 

model parameters are selected, we estimate the final model using the full training set.

A regression of the algorithm’s predicted values against a linear additive function of the 

baseline covariates yields an Adjusted R-squared of 0.51, which provides some initial 

indication that there is nonlinear structure in the data that machine-learning tools help 

identify. We show below that this additional nonlinear structure captures useful signal.24

III.B. Evaluating the Prediction Function

Standard practice in machine learning would be to compare predicted probabilities m(X) to 

outcomes Y in the test data. A common metric for measuring prediction accuracy would be 

something like the area under the receiver operating characteristic curve (AUC), which in 

our case equals 0.707.25 Measures such as these, though, do not tell us whether the 

algorithm’s predictions can improve on decision quality. For example, an algorithm that 

correctly identifies within the released set some defendants as having 0 risk and others as 

having 10% risk may do little to change decisions if society’s preference is to release even 

everyone with a 10% risk.

Evaluating whether m(X) can be used to improve judicial decisions raises its own 

challenges, which we illustrate using a simple framework. We take the prediction function as 

given, which in practical terms is what we would be doing when evaluating performance in a 

true holdout set. The framework must also specify the true underlying data-generating 

process. In our data, we have a binary Y variable and a multidimensional X about 

defendants. In the modeled data generating process, we assume Pr(Y = 1) = y, the 

defendant’s probability of committing a crime. Though the underlying data is 

multidimensional, we can model it as having only a few dimensions. Specifically, suppose in 

these issues, we find that an algorithm trained in this fashion can still produce improvements over the judges’ decisions. In our view, 
the bigger potential for errors – and where we focus our energy below – are not errors in prediction so much as errors in evaluating the 
predictions.
24See Online Appendix Table A.1; Online Appendix Table A.2 shows similar projections of predicted risk of an index of either FTA 
or re-arrest. These tables also provide some intuition about what variables are important for predicting risk in the NYC data.
25The ROC curve reports the combination of false positives and true positives achievable by the model. Random guessing produces an 
AUC of 0.5 while perfect prediction produces an AUC of 1. AUC also has an intuitive interpretation: it equals the probability that a 
randomly chosen data point with Y = 1 is ranked more highly than a randomly chosen data point with Y = 0.
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addition to X, judges observe (but we do not) a multidimensional Z. We could now define 

two unidimensional variables x(X) ≡ [Y |X] and z(X, Z) ≡ [Y |X, Z] −E[Y |X].

This motivates a model in which defendants are characterized by an observed x and an 

unobserved z (seen by the judge). In addition, we assume there are unobserved w (that 

captures something about the defendant or even the judge’s mental state) that affects the 

judge’s decision but does not have any information about y. This construction also motivates 

the assumption that:

E y X, Z = E y x, z = x + z

This assumption reflects the idea that while w might affect decisions, it does not predict risk. 

It also places some narrow restrictions such as that x and z are distributed so their sum is 

between 0 and 1, and assumes that the observed x is a single variable that (on average) 

equals risk. Finally, each case is heard by a judge j who makes a release decision R = 0, 1. 

We will assume that y; x; z and w are jointly distributed and all individuals are i.i.d. draws 

from this fixed distribution. Below we describe how R is determined. Additionally we 

assume there is a pool of judges who draw cases from the same distribution - in effect, 

random assignment of cases to judges.

We model judicial payoffs on a case by case basis, though for our purposes all that matters is 

that judges have an aggregate payoff function that is increasing in the release rate and 

decreasing in the crime rate. Each judge j has a payoff function πj that depends on a 

defendant’s crime propensity and the release decision:

πi y, R = − a jyR

Crime Cost

− b j 1 − R

Incarceration Cost

where aj represents the weight the judge places on crimes committed and bj the weight they 

place on incarcerating someone. Since crime is a binary outcome we can write the payoff 

function as linear in probability of crime.

We define ρ(x, z, w) to be a generic release rule (written as ρ for ease), and the expected 

payoff of this rule as ∏j(ρ) = E[πj(y; ρ)] where the expectation is taken over a randomly 

drawn y; x; w; z. Judge j then chooses an optimal release rule ρj that maximizes this 

expected payoff. Their rule depends on their (possibly erroneous) assessment of risk, which 

we write as hj(x; z; w). Given this assessment, their release rule will be:

ρ j x, z, w = 1 if and only if h j x, z, w < κ j ≡
b j
a j

Defendants are released if their risk is below the judge’s threshold κ j which is determined 

by how they weigh crimes committed (aj) relative to incarceration costs (bj).
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The basic question we address is whether a given algorithm’s predictions m(x) can improve 

upon judicial predictions. In particular, we would like to evaluate whether there is a release 

rule d for judge j that combines their judgement hj and m to produce a higher payoff for 

judge j, i.e. if ∏j(ρd) >∏j(ρj). Note that the difference between these two is:

Π j ρd − Π j ρ j = − a j RdE y ρd = 1 − R jE y ρ j = 1

Δ Crime

− b j R j − Rd

Δ Release

where Rρ denotes the release rate of any release rule and we write R j as shorthand for Rρ3
. 

One challenge, to which we return below, is whether we know the preference parameters (aj, 

bj). If these were known, the effect of the second term can be calculated since the release 

rates are calculable. To abstract from this, for now, suppose we are considering an 

algorithmic release rule which makes the second term zero, i.e. where Rd = R j.

The remaining first term poses a more serious measurement problem. Since it cancels for 

cases where the judge and algorithm agree (i.e. if ρj = ρd), the difference is determined by 

the cases where they disagree; at Rd = R j it is proportional to:

−E y ρd = 0, ρ j = 1

Measured

+ E y ρd = 1, ρ j = 0

Unmeasured

We can only measure the crime changes due to defendants released by the judge and jailed 

by the algorithm; but we cannot measure the changes due to the defendants jailed by the 

judge and released by the algorithm. Two points are worth noting here.

First, procedures in the literature typically use the observable data to resolve the lack of 

labels with, for example, propensity scores, imputation or Bayesian procedures. Even 

abstracting from estimation issues, at best these procedures amount to assuming crime rates 

of the jailed, E[y|ρj = 0; x], are equal to the crime rates of the released with similar x: E[y|ρj 

= 1, x]. The challenge, of course, is that

E y ρ j = 1, x − E y ρ j = 0, x

Imputation Error at x
= E x + z ρ j = 1, x − E x + z ρ j = 0, x = E x ρ j = 1, x − E x ρ j = 0, x

+ E z ρ j = 1, x − E x ρ j = 0, x = 0 + E z ρ j = 1, x − E z ρ j = 0, x

Selective Release at x

If judges select at all on unobservables, there is no reason to believe that outcomes of the 

released with similar x serve as a good proxy of what the jailed would do if released. By 

ignoring unobserved factors, these imputation procedures have the potential to be very 

misleading. Consider a stylized example. Suppose that for young defendants, judges see 

gang tattoos and we do not, and that judges know this type of tattoo is highly predictive of 

crime risk so they never release anyone with a gang tattoo. The imputer would attribute to all 

young people the crime rate of those without gang tattoos. This could seriously understate 

the increase in crime that would result from a risk tool that released all young people. We 
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refer to this as the selective labels problem - even for the exact same x, the defendants who 

have labels (i.e. the defendants judges released) need not be the same as the defendants who 

do not have labels.

Second, this problem is one-sided. We have no trouble calculating the other counterfactual, 

the effect of jailing defendants whom the judge releases (or what one might call contracting 
the released set). This evaluation problem is of course not unique to the bail context. It 

occurs in a variety of machine-learning applications whenever we are trying to compare the 

performance of an algorithm to human decisions using data generated by the human decision 

maker: for example using an algorithm to predict who should receive some medical test 

using data generated by previous doctor testing decisions. Both our solutions below to this 

problem rely on its one-sided nature.26

IV. JUDGE DECISIONS AND MACHINE PREDICTIONS

IV.A. How risky are the riskiest people judges release?

To understand how we might exploit the one-sidedness of the selective labels problem, we 

begin by looking at the distribution of predictable risk among those defendants judges in fact 

release. (As a reminder, since judges in NYC are asked to predict only FTA risk, this is the 

outcome we predict in our models unless otherwise noted, although for convenience we refer 

to our outcome generically as ‘crime.’) The left panel of Figure II bins defendants in our test 

set into 1,000 equal-sized groups based on the predicted risk values from our algorithm, 

m(Xi) and plots the observed judge release rates against predicted risk.

We see that at the low end of the predicted risk distribution, where most defendants are 

concentrated, judges release at a rate of over 90%. As predicted risk increases the judge 

release rate declines, which implies that the predictions of the judges and the algorithm are 

correlated. But we also see that the algorithm and the judges disagree, particularly at the 

high end of the risk distribution. If the predictions of the judges and the algorithm were 

identical, we would expect to see a step function: There would be some predicted-risk 

threshold where the release rate would be 0% above and 100% below. But that is not what 

we see. The curve relating judge release rates to the algorithm’s predicted crime risk flattens 

out as predicted risk increases. The riskiest 1% of defendants have a predicted risk of 62.6% 

yet are released at a 48.5% rate.27

These release rates suggest a natural way to modify judicial decisions: jail those the judge 

releases but whom the algorithm predicts to be high risk. We define the release rule ρQC:

Release if and only if ρ j = 1 and m x < κ j

26Lakkaraju et al. (2017), using the insights below about the selective labels problem, consider the algorithmic aspects of the problem 
and apply it to other datasets, synthetic and real.
27In principle a different reason why we might not see a clean division of defendants released versus detained around some risk 
threshold is if the different judges hearing cases in our dataset each used a different risk threshold. But this could only explain the 
pattern we see in the figure if some judges basically released almost everyone and other judges detained almost everyone, since we see 
releases across the entire risk distribution. In practice we do not see this much variation across judges in release rates, as noted below.
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which contracts the release set by removing high risk defendants. We refer to this as quasi-
contraction, in contrast to a more complete contraction procedure described below.

To understand whether this release rule can improve on judge’s payoffs, we calculate

Π j ρQC − Π j ρ j = P ρQC ≠ ρ j E yQC ≠ ρ j − κ j

So the algorithm can improve upon decisions if it jails additional defendants (ρj = 1 & ρQC = 

0) whose crime rates exceed the cost of incarceration (E[y] > κj).

The left panel of Figure II hints that there may be such defendants. But, of course the 

algorithm’s predictions are just predictions. In principle these defendants could actually be 

low risk, and the judges might realize this even if the algorithm does not. That is, perhaps 

the judges are able to identify defendants who look high risk with respect to the 

characteristics available to the algorithm, x, but are actually low risk with respect to features 

only the judges see, z.

Yet the right panel of Figure II shows that the people the algorithm predicts are risky are 

indeed risky. This figure relates observed crime rates to predicted risk, E[y|m(x)], among 

released defendants. This plot shows the data are clearly centered around the 45 degree line 

over almost all of the risk distribution. While this does not rule out the possibility that those 

defendants the judges detained versus released are different with respect to their 

unobservables (a point to which we return below), it does suggest that the defendants the 

judges released do not seem to have unusual unobservables that cause their observed 

outcomes to systematically diverge from what the algorithm had predicted. It also confirms 

that the defendants judges released who were predicted to be high risk are in fact high risk. 

For example, using just information the judge had at the time of the bail hearings, the 

defendants predicted to be riskiest by the machine-learning algorithm—the riskiest 1%—go 

on to have an observed crime rate of Y = 56.3.

As an aside, we can also explore the value added of machine learning relative to more 

familiar and simpler econometric methods for forming predictions. Table II compares the 

predicted risk distribution of the machine-learning algorithm to that produced by a logistic 

regression; specifically, we compare the cases flagged as risky by these two procedures.28 

At the 1st percentile of the risk distribution (row 1), we see substantial disagreement in who 

is flagged as risky—only 30.6% of the cases flagged as top percentile in the predicted risk 

distribution by our machine-learning algorithm are also flagged as top percentile by the 

logistic regression (column 1). These defendants identified as high risk by both procedures 

also have the highest realized crime rates (60.8% in column 3). Those flagged only by the 

machine-learning algorithm are nearly as risky (54.4% in column 2), while those flagged 

only by the logit are far less risky (40% in column 3). As a result, algorithm-flagged 

28This logistic regression uses the same set of covariates as are given to the machine-learning algorithm, using a standard linear 
additive functional form. Interestingly, estimating a model that adds all two-way interactions between the predictors causes the logistic 
regression model to overfit the training dataset and predict poorly out of sample, even in a pared-down model with just five or ten 
covariates. Many of these interactions seem to be picking up statistical noise in the training set, although the machine-learning 
algorithm is able to find the interactivity that reflects real signal.
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defendants (column 4) are riskier as a whole than logit-flagged ones (column 5). This pattern 

repeats in the other rows but begins to attenuate the further we move down the predicted risk 

distribution (rows 2 through 4). By the time we reach the 25th percentile of the distribution 

(row 4) the two procedures agree on 72.9% of the cases. As a whole, these results suggest 

that even in these data, which contain relatively few variables (compared to sample size), the 

machine-learning algorithm finds significant signal in combinations of variables that might 

otherwise be missed. These gains are most notable at the tail of the distribution and 

(somewhat predictably) attenuate as we move towards the center. This intuition suggests that 

were we to look at outcomes that have relatively lower prevalence (such as violent crimes, as 

we do in Section V.A.1.) the difference in results between the two prediction procedures 

would grow even starker.

The key challenge with quasi-contraction is interpretational. We have established that the 

algorithm can ex ante identify defendants with a (56.3%) risk. By itself, this tells us that 

social gains are possible so long as society’s risk threshold for detention is below 56.3% – in 

this case, high risk defendants who should be jailed are being released. But it does not tell us 

that judges, by their own preferences, are mistaken: we do not know the risk threshold κj 

that they have. Without additional analysis, we cannot rule out the possibility that judges 

place such a high cost on jailing defendants that even this level of risk does not merit 

detention in their eyes.

IV.B. Using Differential Leniency

We overcome the challenge of not knowing κj by using the fact that judges have different 

release rates: crime rate differences between judges of different leniency provide 

benchmarks or bounds for how society currently trades off crime risk and detention costs. 

Forming such benchmarks requires some assumptions about the underlying data-generating 

process and how judges do, and do not, differ from one another.

The first assumption we will make is that judges draw from the same distribution of 

defendants. This assumption can be implemented in the NYC data by taking advantage of 

the fact that we have (anonymous) judge identifiers, together with the fact that conditional 

on borough, court house, year, month, and day of week, average defendant characteristics do 

not appear to be systematically related to judge leniency rates within these cells.29 For this 

analysis we restrict our attention to the 577 cells that contain at least five judges (out of 

1,628 total cells) in order to do comparisons across within-cell judge-leniency quintiles. 

These cells account for 56.5% of our total sample, with an average of 909 cases and 12.9 

judges per cell. Online Appendix Table A.3 shows this sample is similar on average to the 

full sample. Online Appendix Table A.4 also shows that the stricter judges tend to be the 

ones who see fewer cases. This also implies a balance test must account for within-cell 

randomization and cannot simply compare mean defendant characteristics across judge 

leniency quintiles.

29While neither defendants nor judges are randomly assigned to arraignment hearings, as an empirical matter it appears that on 
average the caseload within (say) a given Brooklyn courthouse in February 2009 in one Monday looks like another February 2009 
Monday’s caseload.
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We carry out a permutation test that focuses on the projection of our outcome Y (in this case 

FTA) onto the baseline characteristics, which essentially creates an index of baseline 

defendant characteristics weighted in proportion to the strength of their relationship with the 

outcome. Separately for each borough, year, month and day of week cell, we regress this 

predicted value against a set of indicators for within-cell judge-leniency quintile, and 

calculate the F-test statistic for the null hypothesis that the judge leniency indicators are 

jointly zero. We then randomly permute the judge-leniency quintiles across cases M=1,000 

times within each cell to form a distribution of F-test statistics calculated under the null 

hypothesis of no relationship between judge leniency and defendant characteristics. If 

defendant characteristics were systematically related to judge leniency, we would expect to 

see a concentration of our F-test statistics with low p-values. Yet Figure III shows that the 

histogram of p-values across the 577 cells in our analysis sample does not show unusual 

mass at low p-values. (See Online Appendix B for more details).

The other thing we need for this design to work are differences in judge leniency within 

cells. As in past research, we see this in our data as well. The most lenient quintile judges 

release 82.9% of defendants. Relative to the most lenient judge quintile, less lenient quintiles 

have average release rates that are 6.6, 9.6, 13.5 and 22.3 percentage points lower, 

respectively.

Quasi-random assignment to judges together with differing leniency allow us to answer a 

straightforward question: if we begin with the most lenient judge’s caseload and detain 

additional defendants according to predicted risk, what crime and release rates are produced 

and how do these compare to what results from the decisions of more stringent judges? We 

discuss this below and will illustrate it in Figure V.

However we are also interested in answering a second question: Can we build a decision aid 

for judges that improves their payoffs ∏j? Answering this question requires making an 

additional assumption in our framework regarding judges’ ‘technologies.’ Each judge’s 

release rule depends on two factors: a preference κj between crimes and incarceration; and a 

‘technology’ hj for identifying riskiness of individuals. Since we will seek to use judges as 

benchmarks for each other, it is worth being precise about this distinction. In what follows, 

for simplicity, our framework focuses on the case of two judges, j = 1, 2 where judge 2 is 

more stringent than judge 1. Judge j, if asked to implement an arbitrary preference κ, could 

form the release rule:

ρ j, κ x, z, w = 1 if and only if h j x, z, w < κ

Note that because any pair of judges have different technologies, there is no reason that ρ1,κ 

= ρ2,κ. We will assume that, while judges can have very different release rules, their ability 

to select on unobservables is the same. Specifically, when judge j (for some κ) releases a 

fraction l of all people with observed x, we can define their average unobservable quality to 

be z j x, l . Our assumption about similar capacity to select on unobservables can then be 

written as:
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∀l, x : z1 x, l = z2 x, l

Put in words, at different levels of leniency, in each x-cell, both judges would release people 

who on average have the same unobservables.

Of course, since we only observe each judge at a given level of leniency this cannot be tested 

directly. If we define R j x  as judge j’s lenience for individuals with observed x, we can 

empirically look at a weaker form of this assumption:

z1 x, R1 x = z2 x, R2 x

To test this, we train an algorithm on the released set of the most lenient quintile and then 

use that to impute crime rates to defendants released by the less lenient quintile judges. This 

in effect lets us test y1 x, R1 x = y2 x, R2 x  which, given that x is the same, tests the 

difference in z. If the most lenient judges are better able to identify defendants with high-risk 

z than are the less lenient judges, the imputed values would be below the actual crime 

outcomes within the caseloads of the less lenient judges. Yet what we see is that within each 

of the stricter quintiles, the imputed and actual values are well calibrated across the full 

range of the risk distribution (as shown in the bottom four panels of Figure IV) - indeed not 

very different from plotting the predicted values calculated using the full training set against 

observed outcomes within the full training set (shown in the top panel of Figure IV). These 

results show no evidence that more lenient judges select differently on unobservables z 
within each x cell compared to the more stringent judges.30 Of course, these results only tell 

us that imputed values are calibrated up to a point: they hold within the range of release rates 

we observe. For example, if in a particular x cell, every judge jails at least 10% of 

defendants, then those 10% could have arbitrary crime rates, far off from the imputed value, 

and we would never observe them.

With these assumptions in place, we can now form a meaningful test. Recall that judge 1 

releases more people than judge 2: R1 > R2. We can therefore contract judge 1’s release set to 

produce a rule ρC:

Release if and only if ρ1 = 1 and m x < k

for some constant k. Because this rule releases only individuals released by judge 1 its crime 

performance is measurable:

E y ρC = 1 = E y ρ1 = 1, m x < k

30In principle, another reason for this finding could be that lenient judges are better at screening, so at a given release rate have lower 
z, but release more individuals so must go further up the z distribution.
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Relative to her own choices, this rule changes judge 2’s payoff by:

Π2 ρC = Π2 ρ2 = a2 E y ρC = 1 − E y ρ2 = 1 − b2 R2 − RC

As before, even without knowing the preference parameters, we can choose the constant k so 

that either we release the same number of defendants as judge 2 R2 − RC  or we achieve the 

same crime rate as judge 2 (E[Y1|ρC = 1] = E[Y1|ρ2 = 1])). If we can achieve lower crime or 

higher release rates by doing this, then we will have improved outcomes given judge 2’s 

preferences irrespective of what her preferences are.

We can test this contraction procedure in our data. Starting with the released set of the most 

lenient judges, we can choose additional defendants to detain according to predicted risk. 

For each amount of additional incarceration, this allows us to calculate the crime rate that we 

observe for each of these (smaller) released sets. Importantly, because case characteristics 

are on average similar across judges, these numbers can be compared to the outcomes 

produced by the stricter judges. These results are presented graphically in Figure V. The 

solid curve calculates the crime that would have resulted if additional defendants had been 

detained in order of the algorithm’s predicted risk. Each of the points denotes the different 

judge leniency quintiles. Since any additional detention reduces crime for purely mechanical 

reasons (incapacitation), even randomly selecting defendants would reduce crime (the 

dashed line in the figure). The judge detention decisions are better than random, though one 

cannot tell whether they are doing much or only modestly better without a counterfactual.

When comparing each of the stricter judge quintiles to the algorithm, two points are 

particularly salient: (i) how much does crime fall when the algorithm increases jailing rates 

by the same amount; and (ii) what jailing increase does the algorithm need to achieve the 

same crime reduction as the judge?

The results presented in Table III show contraction produces significant gains over what 

judges manage. The second quintile of judges reduce crime by 9.9% relative to the most 

lenient quintile judges by increasing the detention rate by 6.6 percentage points. Our 

algorithm’s contraction curve shows that the same crime reduction could have been 

accomplished by increasing the detention rate by only 2.8 percentage points, or equivalently 

by increasing the detention rate by 6.6 percentage points we could have reduced crime by 

20.1%. Put differently, relative to the observed judge outcomes we could have reduced the 

increase in jail population by only 42.1% as much, or increased the size of the crime drop by 

103.0%. The magnitudes of these effects diminish somewhat as we move to the other 

leniency quintiles. Were we to average across all four of these quintiles we could jail only 

48.2% as many people, or we could get crime reductions that are 75.8% larger.

This contraction rule could also form the basis for an implementable decision aid, though 

currently ρC improves judge 2’s payoffs by combining the algorithm with judge 1’s 

decisions, rather than with judge 2’s decisions. Under the assumptions we have made, 

though, ρC can also be implemented as a true decision aid: the algorithm combined with 

judge 2. By construction, there exist a set of x for which ρC jails everyone, call this XC. For 

Kleinberg et al. Page 18

Q J Econ. Author manuscript; available in PMC 2018 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the remaining x, ρC releases at a rate equal to judge 1, so a release rate of R1 x . A decision 

aid for judge 2 would therefore have that judge jail everyone with x in XC, and then have 

them apply a leniency rate of R1 x  for each x ∉ XC. By construction, the crime rate for x ∈ 
XC is 0, which also matches the crime rate of ρC in these cells. For x ∉ XC, this produces a 

crime rate equal to x + z2 x, R1 x . By our assumption, however, this equals 

x + z1 x, R1 x = E y ρC, x . The key reason we can turn ρC into an implementable decision 

aid is that we are assuming judges have similar technologies for selecting on unobservables, 

an assumption for which we provided supporting evidence above in Figure IV.

IV.C. Reranking

We have restricted our attention so far to two release rules that jail additional defendants 

relative to the judge. Both were carefully constructed to avoid the selective labels problem 

but neither captures the obvious release rule: release defendants solely based on the 

algorithm’s predicted risk; specifically, for some k, define the release rule

ρm = 1 if and only if m x < k .

Evaluating the crime effects of this rule again raises the selective labels problem:

E y ρm = 1 = P ρ j = 1 E y ρ j = 1, ρm = 1
Measured

+ P ρ j = 0 ρm = 1 E y ρ j = 0, ρm = 1
Unmeasured

where j here denotes the judge a defendant was assigned to. To bound the extent of the 

selective labels problem, we would need to place a bound on the second term, the crime rate 

of the jailed. Since the algorithm’s release rule only depends on x, we can write this second 

term as E E y x, ρ j = 0 Rρm
x . The central challenge of selective labels is how we calculate 

for each x the value E[y|x, ρj = 0]. Recall that:

E y ρ j = 0, x = E y ρ j = 1, x + E z ρ j = 1, x − E z ρ j = 0, x

Selective Release at x

At one extreme, we could assume unobservables played no role so that the second term is 

zero: we would use the outcomes of the released as a proxy for the jailed. At the other 

extreme, notice that the unobservables could be arbitrarily large so that E[y|ρj = 0, x] = 1: 

everyone whom the judge jails is sure to commit a crime. This second extreme illustrates 

why, when we take seriously the possibility of judges using unobservable factors wisely, 

evaluating reranking is impossible without additional structure.

Two observations specific to bail provide structure that allows a tighter bound. The first is 

the quasi-random assignment of judges. Within each x cell, we have a variety of release rates 

by judge. Second, Figure IV show that the model is well calibrated even for the most lenient 

judges, suggesting unobservables play little role up to the release rate of the most lenient 
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judges. So if, in a given x cell, the most lenient judge releases 80% of cases, we can assume 

up to 80% of defendants can be proxied for with E[y|x, ρj = 1]. Of course, the remaining 

20% could have any crime rate.

In empirically evaluating any release rule, we use a bound derived from these observations. 

For those defendants for whom we have labels we use those labels.31 For the remaining 

defendants, up to the release rate of the most lenient judge in that x bin, Rl x , we impute the 

label E[y|x, ρj = 1]. For the remainder we impute the label min{1, αE[y|x, ρj = 1]}, where α, 

the extent of the bound varies from 1 to ∞. Our imputed values come from fitting a separate 

set of gradient-boosted trees on the imputation set (the random 40% partition of our working 

dataset), which yields predictions of each defendant’s crime rate m(Xi). Results are similar if 

we use a logit imputer.

Because we would like a crime rate that can be meaningfully compared across release rates, 

we use the ratio of crimes committed by released defendants to the total number of 

defendants heard by the judge (not just the number released). In the Online Appendix, 

Figure A.2 graphs the crime rate (y-axis) that results at every possible target release rate (x-

axis) when α = 1, the selection on observables assumption. To simplify the reranking 

analysis we initially assume that society’s preferences are reflected by the average choices 

of all the judges.

We find large potential gains if we assume no effect of unobservables: judges release 73.6% 

of defendants for a crime rate equal to 11.3% in the test set. At the judge’s release rate, the 

algorithm could reduce crime by 24.7%. Alternatively, at the judge’s crime rate, it can 

reduce the detention rate from 26.4% to 15.3%, for a decline of 41.9%. Translated into 

absolute numbers, these impacts would be large, given that the US has well over 700,000 

people in jail at any point in time. Such large gains are possible because at current release 

rates the risk of the marginal defendant is still relatively low, as shown in the bottom panel 

of Online Appendix Figure A.2. With much larger reductions in detention, the risk of the 

marginal defendant begins to increase rapidly.

These potential gains are not just a matter of the algorithm beating a single judge who serves 

an outsized caseload. We find the algorithm dominates each judge in our dataset that sees a 

large enough caseload to let us construct a meaningful comparison.32

We are primarily interested in bounding these gains. Table IV shows how these results vary 

with α. In particular, at each risk level y we assume up to the fraction Rl y , the release rate 

of the most lenient judge in that bin, have average crime rate y. For the remainder, we 

assume that their true crime equals min 1, αy . The last column of the table shows results for 

the most extreme possible assumption: the most lenient quintile of judges make perfect 

detention decisions (that is, α = ∞), so that literally everyone the lenient judges detained 

31Results are similar if we use imputed values also for those defendants the judges released.
32Online Appendix Figure A.3 shows the relative gains of the algorithm with respect to reducing crime (holding release rate constant) 
or reducing the jail population (holding crime constant) for the 25 judges with the largest caseloads, rank ordered by caseload size. We 
focus on this group so we have enough cases per judge to evaluate their individual performance; together they account for 47.2% of all 
cases in the test set. While there is some variation across judges, the algorithm dominates each judge.
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would have committed a crime if released.33 We see that even at α = ∞, the worst case, the 

drop in crime from the algorithm’s release rule holding jail rate constant equals 58.3% of the 

gains we see in our main policy simulation. The reduction in the jail rate, holding crime 

constant, equals 44.2% of the total gains reported above. Even using a worst case bound, the 

algorithm would produce significant gains.

The results do not appear to be unique to New York City. In Online Appendix A we present 

the results of analyzing a national dataset of felony defendants, which unfortunately does not 

include judge identifiers and so does not let us carry out the contraction analysis. But we can 

calculate the other analyses presented above, and find qualitatively similar results.

V. ARE JUDGES REALLY MAKING MISTAKES?

V.A. Omitted-Payoff Bias

These policy simulations suggest large potential gains to be had if we use the algorithm’s 

predictions to make release decisions. But could judges really be making such large 

prediction errors? Several factors could be confounding our analysis. In particular, perhaps 

judges have preferences or constraints that are different from those given to the algorithm.

One potential concern is that when making release decisions, judges might have additional 

objectives beyond the outcome the algorithm is predicting. Recall we defined π (y, R) as the 

judge’s payoff in each case which depends both on the person’s crime propensity and 

whether they were released. Suppose the judge’s true payoffs were actually π∼ = π y, R + vR
where v is a (possibly unobserved) feature of the defendant. The payoff to any release rule is 

in actuality:

Π∼ ρ = Π ρ E vRρ

and the difference between two rules becomes:

Π∼ ρ1 − Π∼ ρ2
True Payoffs

= Π ρ1 − Π ρ2
Evaluated Payoffs

+ E vR
ρ1 − E vR

ρ2

Omitted‐Payoff Bias

When comparing two release rules we have so far focused only on their difference in payoffs 

that come from y (crime, in our case). We have neglected this second term. It is possible that 

one release rule dominates another when we focus on the first term but actually produces 

lower total payoff because of the second term. We call this concern omitted-payoff bias. To 

build intuitions about the nature of this bias, notice that for a release rule ρ, we are primarily 

worried when E[vRρ] ≠ E[v]E[Rρ]. That is, we are concerned when the rule releases 

33To maintain the judge’s release rate, the algorithm effectively swaps released defendants for jailed defendants. In quasi-contraction 
we saw high-risk released defendants to jail can be identified. The question is whether it has properly identified low-risk jailed ones. 
One intuition for these bounds is that as α increases the jailed defendants become riskier: only up to release rate R1 y  in each cell do 

defendants have risk y. Under the worst-case bound (α = ∞), for example, additional defendants are assumed to have y = 1, meaning 
it must look in other y bins for jailed defendants to release.
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selectively as a function of v. Since algorithmic release rules ρ are constructed to correlate 

with y, we are particularly worried about v variables that might inadvertently be correlated 

with E[y|x].

1. Omitted-Payoff Bias: Other Outcomes—An obvious version of this concern stems 

from the fact that, as New York state law directs judges, we have so far taken y to equal 

flight risk. Yet judicial payoffs may include costs from other sorts of crime, such as risk of 

re-arrest or risk of committing a violent murder. These other crime risks v could create 

omitted-payoff bias as long as y and v are not perfectly correlated: low flight risk individuals 

we release could be high risk for other crimes if v and Rρd
 are positively correlated. 

Complicating matters, to minimize omitted-payoff bias, the outcome variable should weight 

different crimes as judges would, but these weights are unknown to us. To gauge the 

problem, we examine a variety of crime outcomes individually in Table V.

Panel A of Table V shows that those defendants who are at highest risk for FTA are also at 

greatly elevated risk for every other crime outcome as well. The first row shows that the 

riskiest 1% of released defendants, in terms of predicted FTA risk, not only fail to appear at 

a rate of 56.4%, as already shown, but are also re-arrested at a 62.7% rate. They are also re-

arrested for violent crimes specifically at a 6.1% rate, and re-arrested for the most serious 

possible violent crimes (murder, rape or robbery) at a 4.8% rate. The remaining rows show 

that identifying the riskiest 1% with respect to their risk of re-arrest (or re-arrest for violent 

or serious violent crimes in particular) leads to groups with greatly elevated rates for every 

other outcome as well.

We also repeat both our contraction analysis and our re-ranking analysis for each one of 

these measures of crime as a distinct outcome. The results of our re-ranking policy with α = 

1 and the algorithm releasing at the same rate as judges are in Panel B of Table V. With so 

many variables, the effects of the contraction analysis are harder to summarize in a single 

Table and so we show the figures in Online Appendix Figure A.4. As we might have 

anticipated from Panel A, different crime risks are correlated enough that simply releasing 

according to FTA risk also reduces other risks. We also see that, had we trained specifically 

on these other outcomes, the gains would have been even larger. For example, a reranking 

policy based on an algorithm explicitly trained to predict risk of the most serious violent 

crimes could reduce the rate of such crimes by 57.3% (from 1.4% to 0.6%) while still also 

doing better than the judge on FTA rates. As a whole these analyses suggest no omitted-

payoff bias from other crimes, as they show that these other crimes v and the release rule 

Rρm
 are negatively, not positively correlated.

2. Omitted-Payoffs Bias: Racial Fairness—Another additional objective judges might 

have is racial equity. Even though we do not make race or ethnicity available to the machine-

learning algorithm, it is possible the algorithm winds up using these factors inadvertently - if 

other predictors are correlated with race or ethnicity. This is perhaps the most important 

concern that has been raised by the possibility of using data-driven predictions to inform 

criminal justice decisions.34

Kleinberg et al. Page 22

Q J Econ. Author manuscript; available in PMC 2018 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our contraction analysis relies on a dominance argument. We jail additional defendants until 

we achieve the same crime or detention rate as the next quintile of judges; if doing so 

produces a lower detention or crime rate we argue that judges can be made better off. But 

what if we achieved the same crime rate or same total detention rate by detaining far more 

blacks? Judges who cared about racial equity would not be made better off by this outcome. 

To account for this possibility, we calculate the effect of contraction on the black detention 

rate. The numerical results are displayed in Table VI (and graphed in Online Appendix 

Figure A.5). We see that across each leniency quintile, judges at the margin jail blacks at an 

above average rate (first versus second column) to achieve lower rates of crime as we move 

towards stricter quintiles (third column). In the sixth column we ask what the drop in crime 

would be were we to jail defendants until we jailed either as many total or black defendants 

as the judge, whichever comes first. Even with this constraint, the algorithm reduces crime 

relative to judges, at a magnitude similar to what we saw when it was unconstrained (in 

Table III). Alternatively we can ask what happens to the black jailing rate when we match 

the judge’s overall crime rate. We see that to achieve the same crime rate the algorithm only 

jails 0.037 additional blacks–less than half as many blacks as judges jail (0.079). Similarly 

large gains for blacks are seen in all the other quintiles.

Our results are qualitatively similar when we analyze racial equity in our reranking exercise 

with α = 1 in Table VII; because this exercise is simpler we can show effects on Hispanics 

as well as blacks. The first row shows the racial composition of the defendant pool as a 

whole. The second row shows the outcome of current judge decisions: a crime rate (the ratio 

of crimes to total defendants) of 11.3%, with a detention rate to minorities of 28.6%. The 

fourth row shows that when we construct an algorithmic release rule to match the judge’s 

overall detention rate, the 24.7% decline in crime comes with a detention rate to minorities 

that is very similar to that of the judges (29.0%). The remaining rows of Table VII show 

what happens when we explicitly constrain the algorithm that seeks to match the judge’s 

overall detention rate to also not increase the detention rate for blacks and Hispanics 

specifically as well relative to judge decisions, or to not exceed the base rate (share of total 

defendant pool). We do this by ranking defendants by predicted risk separately by race and 

ethnic group and then detain from each group in descending order of risk until we hit the 

constraint for the jailing rate for that group. As with contraction, this constraint results in a 

nearly identical crime reduction to what we achieve without the constraint.

Table VII also shows what happens when the algorithmic release rule (even the one built 

without any consideration of racial equity) sets a release rate threshold designed to achieve 

the same crime rate as what the judges currently achieve. The algorithm can achieve the 

same crime rate as the judges but by jailing 40.8% fewer minorities, including 38.8% fewer 

blacks and 44.6% fewer Hispanics. As a whole, these results suggest our gains are not 

coming from the hidden costs of increasing racial inequity. If anything we see that the 

algorithm can reduce racial inequity.

34See for example the 2014 speech given by then-Attorney General Eric Holder (Holder 2014), as well as Harcourt (2010) and Starr 
(2014).
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3. Other Omitted-Payoff Biases—Judges could also care about defendant employment 

or family circumstances. If these (or any) variables v only enter the utility function indirectly 

– because judges use them to predict y – it would not bias our results. Our concern is instead 

if they affect payoffs directly, above and beyond their effect on risk. We cannot directly 

examine this in the NYC data because there are no measures of employment or family 

status.

Our best option for examining this hypothesis comes from a separate dataset that does 

include information about employment and family status of defendants, but has the 

disadvantage of being somewhat dated with a relatively modest sample size. This national 

dataset, assembled by Toborg (1981, 1997) captured information on a sample of 3,488 

pretrial defendants between 1976 and 1978 drawn from eight jurisdictions. (More details 

about the dataset and our analysis methods, which are similar to those we use in the NYC 

data, are in Online Appendix C.) Since judges in most jurisdictions are asked to focus on 

safety as well as flight risk, our outcome is an index equal to one if the defendant was either 

re-arrested or FTA’d.35

At the same release rate as the average judge, the algorithm’s release rule yields a crime rate 

that is 9.8% lower than that of the judges. This gain is somewhat smaller than in our New 

York data, presumably because the sample size here is much smaller. Interestingly, the 

algorithm’s predicted risk (of FTA or re-arrest) is negatively related to marriage and 

employment rates. This provides one initial indication that the algorithm’s gains in terms of 

reducing crime or detention are not coming at the expense of jailing more married or 

employed defendants.

We can also more directly examine this question by comparing who is jailed by the judges 

versus the algorithm (see Online Appendix Table A.5). Of the defendants in this dataset, 

23.4% were married and 48.2% were employed at the time of their hearing.

Judges are jailing a relatively lower share of married defendants (19.4%) or employed 

defendants (28.2%). An algorithm trained to predict crime and construct a release rule that 

matches the release rate of the judges (ignoring consideration of these other factors) yields a 

jailed population that has a somewhat higher share of defendants who are married (22.3% 

versus 19.4%) or employed (41.8% versus 28.2%) relative to the judges. But as in the case 

of racial equity, it is possible to explicitly constrain the algorithm to ensure no increase in 

the share of the jail population that is married or employed with very little impact on the 

algorithm’s performance in reducing crime. These constraints do not affect the conclusion: 

they lead to almost no loss in terms of the potential gain from reduced crime. While this 

dataset has some important limitations, these results are not consistent with the hypothesis 

that our results are driven by omitted-payoff bias from defendants’ marital or employment 

status.

35Re-arrests also raise the possibility of ‘replacement’ effects: if crime is committed in groups or if someone else would step in to fill 
an opportunity to commit a crime a jailed defendant would have committed (Donohue 2009). If this occurs, our results for reduced 
arrests overstate reduced crime. To the extent to which replacement is an issue for other interventions, we can still make meaningful 
comparisons between our tool and other crime-control strategies.
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Omitted-payoff bias poses a serious challenge since we rarely know the full breadth of 

decision makers’ preferences. We chose an example with a narrow, specific preference 

dictated by the law. We also ruled out some of the most obvious, important confounds – race 

and other crimes. Yet even here one can postulate other, harder-to-account-for preferences, 

such as case employment and marital status. When evaluating whether machine predictions 

improve human decisions, omitted-payoff bias appears as important as selective labels.

V.B. Other Potential Sources of Confounding

In this section we consider other potential sources of confounding as well. (More details and 

results are provided in Online Appendix D.)

Besides omitting preferences that drive judicial decisions, we might also have omitted a 

particularly important constraint that binds judge’s decisions: jail capacity. This could 

prevent the judge (but not the algorithm) from putting high-risk people in jail during times 

when the local jail is filled up. Online Appendix Table A.7 shows that even after accounting 

for this concern, we continue to see large potential social-welfare gains from releasing 

defendants using machine rather than judge predictions.

A different potential concern is that our analysis overstates the potential gains of the 

algorithm relative to the judges because the algorithm is unstable - that is, changing over 

time in ways that attenuate the potential gains of the algorithm relative to the judge 

decisions. Yet in practice we find few signs our algorithm is particularly unstable.

A final potential concern is that our algorithm performs well only because after much trial 

and error we have stumbled across the one model specification that dominates the judges - 

that is, our results are due to some form of inappropriate human data mining. As noted 

above, one way we guard against this is by forming a true hold-out set of 203,338 cases that 

remained in a ‘lock box’ until this final draft of the paper. We obtain very similar results in 

this ‘lock box’ as in the ‘preliminary’ hold-out set.

VI. UNDERSTANDING JUDGE MISPREDICTION

The previous results suggests that judges are mispredicting. We now attempt to understand 

why they are mis-predicting. This exercise sheds light on what judges are getting wrong, and 

more generally highlights the potential of machine-learning tools to help test theories of 

human decision making and behavior, not just solve policy problems.

VI.A. Release vs. bail amount

For starters there is a question of what exactly judges are mispredicting. So far in our 

analysis we have made the simplifying assumption that judges simply release or jail, when 

in fact they set a bail amount as well. It is logically possible that in the results we presented 

above, the judge actually intended to jail high-risk people but simply mispredicted what bail 

amount they would be able to make and assigned them bail amounts that were ‘too low.’ Put 

differently, perhaps judges are mispredicting ‘ability to pay’ rather than risk?36
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To examine this possibility we can examine the degree of predictable risk we find among 

defendants the judges release outright - that is, people the judges assign to release on 

recognizance (ROR). For this group there is no possibility of mis-predicting ability to pay. 

Even among those ROR’d, we see high levels of predictable risk: the crime rate for the 

riskiest 1% of defendants ROR’d by the judge is similar to what we see among the full 

released set y = 59.2% versus y = 56.3% .

We can also redo our contraction analysis but now restricting the algorithm to select 

marginal defendants to detain only from among the set of people the most lenient quintile 

judges ROR’d. We again see very large gains of the algorithm relative to the judges (see 

Online Appendix Figure A.6). This result also helps rule out a more subtle potential 

problem: our contraction analysis could be biased if higher bail amounts deter misbehavior 

and if judge leniency were systematically correlated with bail amounts.37

VI.B. Misranking by observables

Why are judges mispredicting crime risk? One reason appears to be that they misuse the 

defendant and case characteristics observable in our data (X). To show this we return to our 

contraction exercise, where we look across the decisions of judges in different leniency 

quintiles to compare how the judges versus our algorithm select additional defendants to 

detain as we reduce leniency (release rates).

Looking across the caseloads of judges with different levels of leniency (release rates) we 

can uncover the implicit rank ordering of defendants. In particular, it allows us to quantify 

the risk of the marginal defendants detained. Suppose for instance that we have two judges 

who differ in their release rates, equal to say 90% and 80%, and that defendants are 

randomly assigned to judges. Because we can calculate the algorithm’s predicted risk for 

each defendant in each judge’s caseload, we can compare the distributions of predicted risk 

among the two judge’s caseloads to determine where in the distribution the additional 

defendants jailed by the stricter judge come from. That is, if R1 = 0.9 and R2 = 0.8 are the 

release rates for the lenient and strict judges, respectively, then at each value of the 

algorithm’s predicted risk we can observe E[R1|m(x)] and E[R2|m(x)] and calculate E[R1|

m(x)] − E[R2|m(x)].

Figure VI illustrates the results of this exercise. We sort defendants by predicted risk and bin 

them into 20 equal-sized groups. The dark segment at the top of each bin shows what share 

of defendants in that bin is detained by the most lenient quintile judges. The medium-shaded 

segments on the left shows that the algorithm would prioritize for detention people in the 

highest predicted risk bins if the goal were to lower the release rate from the most lenient 

quintile’s rate down to the second-most-lenient quintile’s rate (top panel), or third-most-

36Bail amounts for those assigned cash bail by decile of predicted risk are in Online Appendix Table A.9. Mostly we see large 
difference in the share of defendants released on recognizance rather than assigned cash bail.
37Suppose more lenient judges assigned higher cash bail amounts among those released. If higher bail deters misbehavior (because 
bail is collateral), the algorithm’s contraction of the lenient quintile’s released set could show less crime than what we see in the next-
most-lenient quintile’s released set (at the same release rate) because defendants within the lenient quintile’s released set are deterred 
by their higher bail amounts. So showing that the algorithm beats the stricter judges even when constrained to jail cases ROR’d by the 
lenient quintile rules this out. In addition the distribution of cash amounts at almost every quantile of the bail distribution is very 
similar across leniency quintiles; see Online Appendix Table A.10.
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lenient quintile’s rate (second panel), etc. The medium shading on the right shows from 

which risk bins the judges actually select marginal defendants to detain. It is worth noting 

that there are no predicted-risk bins where there are more defendants released by a stricter 

judge than by a more lenient judge.

The key finding from Figure VI is that as judges become stricter, they jail low risk 

individuals before high risk ones: marginal defendants are drawn from throughout the 

predicted risk distribution. The extent of misranking is sizable. All the additional jailing of 

the second quintile could be had by jailing everyone in the top 11.98 percentile of risk; yet 

only 33.2% of additional defendants come from this riskiest tail.38 The third quintile of 

stringency could be achieved by jailing everyone in the top 14.10% of risk, and only 29.8% 

are drawn from there. For the fourth and fifth quintiles, the analogous numbers are the 18.56 

and 28.45 percentiles; and 31.8% and 39.6%. A primary source of error is that all quintiles 

of judges misuse the signal available in defendant characteristics observable in our data: 

when prioritizing defendants for detention, many low risk defendants are ranked above high 

risk ones.

VI.C. Predicting Judicial Behavior

To better understand where and how judges are mistaken, it will be helpful to form a 

prediction of the judge’s choices, Ĵ. Let Ĵj(x) = E[ρj(x, z, w)|x] be the expected release 

probability for each individual based solely on the data available to judge j at the time of 

choice. Note that this predictive model of the judge never sees the outcome of whether the 

defendant committed crime, only who the judge released.

1. Which Cases are Hard?—We begin by examining where in the risk distribution 

judges are having the most trouble. While ex ante the answer is not obvious, looking at other 

domains can provide us with some initial intuition about what we might have expected. For 

example in education, studies find that principals do a good job identifying which teachers 

are in the tails of the performance distribution - the very high performers and the very low 

performers - but have a hard time distinguishing among teachers in the middle of the 

distribution (Jacob and Lefgren, 2008). Yet, our results for judge bail decisions run counter 

to this intuition.

We examine this question by investigating where in the predicted-risk distribution judges 

have the most uncertainty. What we observe is just a binary indicator of whether the judges 

released a given defendant i, which cannot convey much about judge uncertainy. However 

Ĵ(Xi), since it measures the probability of release, does quantify this uncertainty.

We find that judges struggle not so much with the middle of the distribution, but instead with 

one tail: the highest-risk cases. When we sort defendants into quintiles based on predicted 

crime risk, m(Xi), we see a much greater dispersion in predicted jailing probabilities Ĵ(Xi) 

among the highest-risk cases compared to the low-risk cases (Online Appendix Figure A.7). 

That is, judges treat many of these high-risk cases as if they are low risk. We have also 

38Since the second quintile jails 6.6 percentage points additional defendants, this means only an extra 2.19 percentage points from the 
top 12.0% of the risk distribution.
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examined the characteristics that define these tails. Judges are most likely to release high-

risk people if their current charge is minor, such as a misdemeanor, and are more likely to 

detain low-risk people if their current charge is more serious (Online Appendix Table A.11). 

Put differently judges seem to be (among other things) overweighting the importance of the 

current charge.

2. Noisy Predictions—Putting aside for the moment the evaluation problem, let us first 

consider how Ĵ compares to the judge herself. To do this let us form a release rule

ρ
J j

= 1 if and only if J j x > k

where k is set to equalize its release rate to judge j’s. The difference in crime rates between 

the judge and E yρ
J j

− E yρ j  which we can write as:

E y ρ
J j

− ρ j = E x ρ
J j

− ρ j + E z x − z j x

We see it depends on two factors: (i) whether they release from some high-risk bins; and (ii) 

whether judges select well on unobservables, i.e. on whether the judge selects better or 

worse unobservables than the average in each x bin (which is what Ĵ achieves). It is clear 

that if hj(x, z, w) = x + z then, conditionally on x, judges release the lower risk defendants; 

and hence ρj will outperform Ĵ. At the same time if human judgment is also influenced by 

w, unobservables not correlated with y, that can induce some high-risk bins to be released 

and possibly even selection on unobservables to be poor, allowing Ĵ to do better than j.

In practice, evaluating Ĵ suffers from the same issues as evaluating any m(x) rule and we 

will use contraction as above. We will do this in the same way we compared in Section IV.B. 

the judge to the algorithm. As before, we begin with the set of cases released by the most 

lenient quintile judges. We then jail additional defendants as we predict the judges would - 

jailing first those defendants with the highest predicted probability of judges jailing them. In 

other words, we begin by jailing those defendants who are released but whom we predicted 

have the highest probability of being jailed by the judges. (The difference with our previous 

comparison to the judges is that we had earlier jailed defendants by the algorithm’s 

predicted crime risk.)

We find that the predicted judge does better than the judges themselves. In Table VIII we 

quantify the crime reduction for the same increase in jailing, and we measure what jailing 

increase leads to the same crime reduction (the results are also plotted in Online Appendix 

Figure A.8). The predicted judge does significantly better. The second quintile of judges 

reduce crime by 9.9% by increasing the detention rate by 6.6 percentage points. The 

predicted judge would have achieved the same crime reduction by increasing the detention 

rate by only 4.7 percentage points (28.8% less than the judge); or alternatively, by increasing 

the detention rate by 6.6 percentage points we could have reduced crime by 13.4% (35.5% 
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more than the judge). These are large gains by comparison: they represent more than half the 

gain achieved by using the algorithm trained on crime directly to release defendants. These 

results could in principle be due to a ‘wisdom of the crowd’ effect: Ĵ is not the predicted 

version of a single judge, but rather the prediction of many judges. Yet we find similar 

results using an algorithm trained on just a single judge’s caseload.39

Our results taken together suggests one reason why judge release decisions can be improved 

upon: Their actual decisions are noisy relative to a mean Ĵ that contains much more signal. 

In particular, this ‘noise’ appears to be due to unobservable variables, which unduly 

influence these decisions. Our data cannot tell us what these sources of ‘noise’ are but the 

behavioral science literature suggests that highly salient interpersonal information (such as 

the degree of eye contact that is made) can be overweighted, and that less salient but more 

informative data (like past behaviors) can be underweighted.

3. Decomposing the Sources of Judicial Error—A simple decomposition helps 

calibrate the extent of each source of judicial error. In particular, we focus on the crime gap 

between the judges’ and algorithm’s decisions: E[Y ρj] E[Y ρd]. For simplicity, empirically 

we calculate this difference in the context of our reranking policy simulation with α = 1. As 

in the previous section we can decompose this difference as (E[Y ρj]− E[Y ρĴ])+(E[Y ρĴ]− 

E[Y ρd]), the first term reflecting the inconsistency we have documented. Examples of this 

inconsistency include judges making exceptions to their usual decision rules based on 

irrelevant case characteristics or their mood at the time (w). We calculate this difference and 

display it in the Online Appendix, in Table A.12. This difference explains 25.9% of the gap 

in results between (ρj) and (ρd). It is worth noting that this is smaller than the gains we saw 

in Table VIII – it is possible that Ĵ is more useful for ranking marginal defendants than for a 

full reranking.

The predicted judge release rule ρĴ has two components. First, it groups people together as 

judges would: it treats (up to the need to tiebreak) all defendants within a Ĵ(x) cell 

identically. Second, it rank orders these cells as judges would: based on release rates E[Rj|Ĵ 
(x)]. But these are distinct errors. If judges had a simple linear model, but used the wrong 

sign on one of the binary variables, their groupings could be correct, but they would be 

misranking on one dimension. Our second decomposition differentiates between these two 

errors. We form a release rule that groups defendants as judges would, by Ĵ (x), but which 

then ranks them by E[Y|Ĵ (x)] (or more precisely E[m(x)|Ĵ(x)]). We see that this release 

rule is able to achieve 36.4% of the total performance gain of (ρd) versus (ρj), or put 

differently adds another 10.5% of the overall ρd gain relative to what is achieved by our 

standard predicted judge rule, Ĵ(x).

The remaining judge error is due to judges having the wrong underlying structure for which 

defendants are similar to one another with respect to risk. This could arise if for example 

there are key case characteristics that judges completely ignore, or interactions between 

39We restrict ourselves to judges that heard at least 5,000 cases in our study sample, to ensure that we have enough data to construct a 
meaningful algorithm. We can then use any one of these individual predicted judges to contract down the released set of the most 
lenient-quintile judges’ caseload; the results are shown in Online Appendix Figure A.9. Lakkaraju et al. (2015) propose a general 
Bayesian method for analyzing decisions by groups of evaluators.
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variables that judges do not consider.40 Our decomposition is only approximate, since our 

model for the judge’s decisions Ĵ(x) is not perfect.41 But it is telling that fully 63.6% of the 

gap in performance between (ρj) and (ρd) is left unexplained by the other components of our 

decomposition.

VII. CONCLUSION

The bail example highlights the value of solving social science problems of the type:

Data Prediction Decision

Machine-learning applications typically focus solely on the Data → Prediction link. The 

objective is to search through different candidate prediction functions and identify the one 

with the greatest prediction accuracy - a ‘bake off.’ Algorithm performance tends to be 

quantified on predictive value. The bail example, though, illustrates why understanding the 

Prediction → Decision link is at least as important. Looking past prediction quality to 

decision quality is what makes clear the problems of selective labels and omitted-payoff 

biases. Good predictors do not necessarily improve decisions. There is significant distance 

between constructing a prediction algorithm and knowing that a decision aid based on it can 

improve outcomes.

It is instructive to compare the state of the art for introducing data-driven decision aids with 

how new drug therapies are brought to market. Before any new drug can be sold the Food 

and Drug Administration (FDA) requires several stages of testing. Phase 0 and Phase 1 trials 

demonstrate basic safety of the drug, while Phase 2 trials compare at medium scale and for 

easily measured outcomes the effects of the new drug to either placebo or current best 

practice. If a drug passes, it is subject to a larger scale Phase 3 trial that quantifies key 

clinical outcomes. Current machine-learning practice of establishing predictive validity is 

analogous to passing a Phase 0 or 1 trial. As with drugs, going directly from a Phase 0 or 1 

trial to market risks doing social harm.

We view our results, with their focus on payoffs and counterfactual evaluation of the 

decision aids, as the equivalent of a Phase 2 trial. They show promising impacts. At the same 

time, they leave several open questions that would require the analogue of a Phase 3 trial. 

Such a trial would begin with an explicit discussion of the key objectives for any new 

decision aid, reducing risk of omitted-payoff bias. The trial itself would quantify how judges 

interact with the decision aid. Sometimes judges largely ignore these tools, as in New York 

City, perhaps because the six-item checklist risk tool they use has limited predictive 

accuracy (NYC CJA 2016). But in other cases where algorithms may be more accurate they 

do appear to be used, as in the Philadelphia bail experiment (Goldkamp and Gottfredson, 

1984, 1985) and more recently when parole boards get machine-learning-based tools (Berk, 

2017). The design of decision aids requires some way to ensure judges override when they 

40We have also explicitly compared the release and jailed sets between judges and Ĵ. We show how these sets differ for each of our 
observed variables in Online Appendix Table A.13.
41We know defendants in different Ĵ (x) cells are viewed differently by judges, but judges could view defendants in similar Ĵ (x) cells 
differently.
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have signal rather than when they are simply adding noise (the ‘override problem’). Finally, 

a large-scale trial is the only way to quantify general equilibrium effects. For example in our 

application both defendant and judges’ behavior could change if all cases were filtered 

through a predictive model (for example if judges change their willingness to dispose of 

cases at the bail hearing).

Prediction policy problems are not only socially important, they are also scientifically 

interesting. Predictive algorithms can serve as a behavioral diagnostic, helping to understand 

the nature of human error. Though the data we have were somewhat limited in this regard, 

algorithms applied to richer data might produce novel behavioral insights. Progress on these 

problems will require a synthesis of multiple perspectives, both the techniques of machine 

learning as well as behavioral science and economics. Experimental tools have been 

invaluable for understanding and improving human decisions. If our findings are any 

indication, predictive tools could prove similarly effective.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure I. Partition of New York City Data (2008–13) into Data Sets Used for Prediction and 
Evaluation
Notes: We show here the partitioning and analysis strategy for our dataset from New York 

City covering arrests from November 1, 2008 through November 1, 2013. The original 

sample size is 1,460,462. For our analysis we drop cases that were not subject to a pretrial 

release hearing, which leaves us with a total of 758,027 observations. We selected the final 

hold-out set of 203,338 by taking all cases arraigned in the last six months of our dataset (all 

cases arraigned after May 1, 2013), randomly selecting all cases heard by judges among the 

25 judges with the largest caseloads until reaching 10% of total observations, which winds 

up selecting 7 judges, and randomly selecting 10% of all observations (these samples can be 

overlapping). In this draft we evaluate all of our results by randomly selecting a test set of 

20% of the remaining 556,842 observations in our working sample. The remaining data is 

evenly divided between a training set that is used to form the algorithmic crime predictions 

used in all our analysis; and an imputation set used to impute crime risk (when needed) for 

jailed defendants. To account for potential human data-mining, this lock box set was 

untouched until the revision stage (this draft): in Table A.8 we replicate key findings on this 

previously untouched sample.
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Figure II. How Machine Predictions of Crime Risk Relate to Judge Release Decisions and Actual 
Crime Rates
Notes: The figure shows the results of an algorithm built using 221,876 observations in our 

NYC training set, applied to the 110,938 observations in our test set (see Figure 1). Both 

panels show the algorithm’s predicted crime risk (defined here as predicted risk for failure to 

appear, or FTA) on the x-axis: each point represents one of 1,000 percentile bins. The left 

panel shows the release rate on the y-axis; the right panel shows the realized crime risk on 

the y-axis.
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Figure III. Testing Quasi-Random Assignment of Defendants Across Leniency Quintiles 
Distribution of p-values for Balance Tests in Contraction Sample
Notes: The figure shows the distribution of p-values for balance checks in our contraction 

sample summarized in Table A.3. We construct 577 borough, year, month and day of week 

‘cells’ in the New York City data where we have at least five judges. We then define judge 

leniency quintiles within each cell. We regress each defendant’s predicted FTA (based on 

baseline characteristic) against dummies for leniency quintile and form anF-statistic for the 

test of the null that these dummies all equal zero; these are compared to a distribution of F-

statistics produced by permuting the leniency quintile dummies randomly within each cell. 

The figure graphs the resulting p-value distribution. See Online Appendix A for more 

details.
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Figure IV. Do Judges of Different Leniency Screen Differently on Unobservables? Evaluated 
Predictors Formed Using Most Lenient Quintile on Other Quintiles
Notes: This figure tests whether the most lenient quintile judges in our NYC dataset are 

better at using ‘unobservables’ in making release / detain decisions than are the less lenient 

quintile judges. The top panel reproduces the calibration curve from Figure 2, plotting the 

algorithm’s predicted crime risk (defined here as predicted risk for failure to appear, or FTA) 

against observed crime rates within the test set. For the remaining panels, we train an 

algorithm using just the set of defendants released by the most lenient quintile judges, and 

then use that algorithm to generate predicted crime risk to compare to observed crime rates 

for the set of defendants released by the less lenient quintiles of judges.
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Figure V. Does Jailing Additional Defendants by Predicted Risk Improve on Judges? 
Contraction of the Most Lenient Judges’ Released Set
Notes: This figure looks at performance when additional defendants are jailed according to a 

predictive model of crime risk (defined here as predicted risk for failure to appear, or FTA), 

comparing crime rates and release rates to the actual decisions made by stricter judges. The 

rightmost point in the graph represents the release rate of the most lenient quintile of judges, 

with the crime rate that results. The solid line shows the crime reductions that we realize if 

we released defendants according to the predicted crime risk. By comparison, the light 

dashed line shows the decline in crime (as a percentage of the lenient quintile’s crime rate, 

shown on the y-axis) that results from randomly selecting additional defendants to detain 

from within the lenient quintile’s released cases, with the change in release rate relative to 

the lenient quintile shown on the x-axis. The four points on the graph show the crime rate / 

release rate outcomes that are observed for the actual decisions made by the second through 

fifth most lenient quintile judges, who see similar caseloads on average to those of the most 

lenient quintile judges.
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Figure VI. Who do Stricter Judges Jail and Who Would the Algorithm Jail? Comparing 
Predicted Risk Distributions Across Leniency Quintiles
Notes: This figure shows where each of the quintiles of stricter judges in NYC select their 

marginal defendants (relative to the most lenient quintile), compared to how the algorithm 

would select marginal detainees. Within each panel, we divide the sample up into 20 bins by 

predicted crime risk (shown on the x-axis). The black segment at the top of each bar shows 

the share of each bin the most lenient quintile judges jail. In the top right-hand panel, we 

show which defendants the second-most-lenient quintile judges implicitly select to jail to get 

from the most lenient judge’s release rate down to their own lower release rate (blue), and 

who they continue to release (white). The left-hand top panel shows whom the algorithm 

would select instead. Each of the remaining rows shows the same comparison between the 

judge and algorithm decisions for the other less lenient judge quintiles.
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Table I

Summary Statistics for New York City Data, 2008–13

Full Sample Judge Releases Judge Detains p-value

Sample Size 554,689 408,283 146,406

Release Rate 0.7361 1.0000 0.00

Outcomes

Failure to Appear (FTA) 0.1112 0.1521

Arrest (NCA) 0.1900 0.2581

Violent Crime (NVCA) 0.0274 0.0372

Murder, Rape, Robbery (NMRR) 0.0138 0.0187

Defendant Characteristics

Age 31.98 31.32 33.84 <.0001

Male 0.8315 0.8086 0.8955 <.0001

White 0.1273 0.1407 0.0897 <.0001

African American 0.4884 0.4578 0.5737 <.0001

Hispanic 0.3327 0.3383 0.3172 <.0001

Arrest County

Brooklyn 0.2901 0.2889 0.2937 .0006

Bronx 0.2221 0.2172 0.2356 <.0001

Manhattan 0.2507 0.2398 0.2813 <.0001

Queens 0.1927 0.2067 0.1535 <.0001

Staten Island 0.0440 0.0471 0.0356 <.0001

Arrest Charge

Violent Crime

 Violent Felony 0.1478 0.1193 0.2272 <.0001

  Murder, Rape, Robbery 0.0581 0.0391 0.1110 <.0001

  Aggravated Assault 0.0853 0.0867 0.0812 <.0001

 Simple Assault 0.2144 0.2434 0.1335 <.0001

Property Crime

 Burglary 0.0206 0.0125 0.0433 <.0001

 Larceny 0.0738 0.0659 0.0959 <.0001

 MV Theft 0.0067 0.0060 0.0087 <.0001

 Arson 0.0006 0.0003 0.0014 <.0001

 Fraud 0.0696 0.0763 0.0507 <.0001

Other Crime

 Weapons 0.0515 0.0502 0.0552 <.0001

 Sex Offenses 0.0089 0.0086 0.0096 .0009

Prostitution 0.0139 0.0161 0.0078 <.0001

 DUI 0.0475 0.0615 0.0084 <.0001

 Other 0.1375 0.1433 0.1216 <.0001

 Gun Charge 0.0335 0.0213 0.0674 <.0001

Drug Crime

Q J Econ. Author manuscript; available in PMC 2018 May 11.
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Full Sample Judge Releases Judge Detains p-value

 Drug Felony 0.1411 0.1175 0.2067 <.0001

 Drug Misdemeanor 0.1142 0.1156 0.1105 <.0001

Defendant Priors

 FTAs 2.093 1.305 4.288 <.0001

Felony Arrests 3.177 2.119 6.127 <.0001

 Felony Convictions 0.6157 0.3879 1.251 <.0001

 Misdemeanor Arrests 5.119 3.349 10.06 <.0001

 Misdemeanor Convictions 3.122 1.562 7.473 <.0001

 Violent Felony Arrests 1.017 0.7084 1.879 <.0001

 Violent Felony Convictions 0.1521 0.1007 0.2955 <.0001

 Drug Arrests 3.205 2.144 6.163 <.0001

 Felony Drug Convictions 0.2741 0.1778 0.5429 <.0001

 Misdemeanor Drug Convictions 1.049 0.5408 2.465 <.0001

 Gun Arrests 0.2194 0.1678 0.3632 <.0001

 Gun Convictions 0.0462 0.0362 0.0741 <.0001

Notes: This table shows descriptive statistics overall and by judge release decision for the 554,689 cases that serve as our New York City analysis 
dataset shown in Figure I. For each variable, we perform a test of the equality of means between released and detained defendants. Released 
defendants are defined as those who are released outright by judges, as well as those assigned cash bail who are released because they make bail. 
Detained defendants are those who are assigned cash bail and cannot make bail, together with those who are remanded (no offered bail). Failure to 
appear is defined as not showing up at a required court hearing prior to adjudication of the defendant’s case, as measured from court records. Re-
arrest is defined as being arrested again prior to adjudication of the case; this could include some defendants who are arrested as a result of a failure 
to appear. The p-value for this test are in the last column.
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Table III

Does Jailing Additional Defendants by Predicted Risk Improve on Judges? Contraction of the Most Lenient 

Judges’ Released Set

Judges Algorithm

Relative to Most Lenient Quintile To Achieve Judge’s

Δ Crime Δ Jail

Δ Jail Δ Crime Δ Jail Δ Crime

Second Quintile 0.066 −0.099 0.028 −0.201

Third Quintile 0.096 −0.137 0.042 −0.269

Fourth Quintile 0.135 −0.206 0.068 −0.349

Fifth Quintile 0.223 −0.307 0.112 −0.498

Notes: This table reports the results of contrasting the cases detained by the second through fifth most lenient quintile judges compared with the 
most lenient quintile judges, and to a release rule that detains additional defendants in descending order of predicted risk from an algorithm trained 
on failure to appear. The first column shows from where in the predicted risk distribution each less lenient quintile’s judges could have drawn their 
marginal detainees to get from the most lenient quintile’s release rate down to their own release rate if judges were detaining in descending order of 
risk. The second column shows what share of their marginal detainees actually come from that part of the risk distribution. The fifth column shows 
the increase in the jail rate that would be required to reach each quintile’s reduction in crime rate if we jailed in descending order of the algorithm’s 
predicted risk, while the final column shows the reduction in crime that could be achieved if we increased the jail rate by as much as the judge 
quintile shown in that row.
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Table VIII

Comparing Judges to the Predicted Judge using Contraction

Judges Predicted Judge (Ĵ)

Relative to Most Lenient Quintile To Achieve Judge’s

Δ Crime Δ Jail

Δ Jail Δ Crime Δ Jail Δ Crime

Second Quintile 0.066 −0.099 0.047 −0.134

Third Quintile 0.096 −0.137 0.068 −0.188

Fourth Quintile 0.135 −0.206 0.106 −0.254

Fifth Quintile 0.223 −0.307 0.166 −0.399

Notes: This table replicates the comparison of the algorithmic release rule to the decisions of less lenient quintile judges, but now using an 
algorithmic release rule based on a model that predicts the release decisions of the judges (our ‘predicted judge’ model). The first and second 
columns show the difference in jail rates and crime rates between the 2nd through 5th most lenient quintile judges compared to the most lenient 
quintile. The third column shows the increase in the jail population that would be required to meet the judges’ drop in crime if we jailed people in 
descending order of our prediction that the judges release a case. The fourth column shows the decline in crime that could be achieved if we 
increased the jail rate the same as the judges do, but detain people in ascending order of the judge predicted release probabilities.
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