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Abstract

Can machine learning improve human decision making? Bail decisions provide a good test case.
Millions of times each year, judges make jail-or-release decisions that hinge on a prediction of
what a defendant would do if released. The concreteness of the prediction task combined with the
volume of data available makes this a promising machine-learning application. Yet comparing the
algorithm to judges proves complicated. First, the available data are generated by prior judge
decisions. We only observe crime outcomes for released defendants, not for those judges detained.
This makes it hard to evaluate counterfactual decision rules based on algorithmic predictions.
Second, judges may have a broader set of preferences than the variable the algorithm predicts; for
instance, judges may care specifically about violent crimes or about racial inequities. We deal with
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these problems using different econometric strategies, such as quasi-random assignment of cases
to judges. Even accounting for these concerns, our results suggest potentially large welfare gains:
one policy simulation shows crime reductions up to 24.7% with no change in jailing rates, or
jailing rate reductions up to 41.9% with no increase in crime rates. Moreover, all categories of
crime, including violent crimes, show reductions; and these gains can be achieved while
simultaneously reducing racial disparities. These results suggest that while machine learning can
be valuable, realizing this value requires integrating these tools into an economic framework:
being clear about the link between predictions and decisions; specifying the scope of payoff
functions; and constructing unbiased decision counterfactuals. JEL Codes: C10 (Econometric and
statistical methods and methodology), C55 (Large datasets: Modeling and analysis), K40 (Legal
procedure, the legal system, and illegal behavior)

l. INTRODUCTION

Many important decisions hinge on a prediction: managers assess future productivity for
hiring; lenders forecast repayment; doctors form diagnostic and prognostic estimates; even
economics PhD admissions committees assess future success (Athey et al., 2007; Chalfin et
al., 2016). These predictions can be imperfect since they may rely on limited experience and
faulty mental models and probabilistic reasoning. Could we use statistically-driven
predictions to improve decision making in these prediction policy problems (Kleinberg et
al., 2015)? This question, with old roots in psychology and criminology (Ohlin and Duncan,
1949, Meehl, 1954, Dawes, Faust, and Meehl, 1989), has renewed relevance today. Not only
can large volumes of data now be brought to bear on many decisions, we also have new
computational tools for analyzing these data. In particular, machine learning represents a
pragmatic breakthrough in making predictions, by finding complex structures and patterns in
data.! These developments make building and implementing decision aids an increasingly
realistic possibility. We study one example, significant in its own right, to both understand
the promise of using machine learning to improve decision making as well as reveal the
unique (and often ignored) challenges that arise.

Each year in the United States, the police arrest over 10 million people (FBI, 2016). Soon
after arrest, a judge decides where defendants will await trial, at home or in jail. By law, this
decision should be based solely on a prediction: What will the defendant do if released? Will
they flee or commit a new crime? A judge must trade off these risks against the cost of
incarceration. This is a consequential decision for defendants since jail spells typically last
several months (or longer); recent research documents large costs of detention even over the
long term.2 It is also costly to society: at any point in time the US has over 750,000 people
in jail, disproportionately drawn from disadvantaged and minority populations (Henrichson,

Hastie, Tibshirani, and Friedman (2009) and Murphy (2012) provide excellent textbook overviews that implicitly illustrate how
modern machine learning builds on older statistical insights of prediction. Varian (2014) provides an introduction aimed at economists,
while Mullainathan and Spiess (2017) situate machine learning in an econometric framework. Though our focus here is on prediction,
a very promising different vein from the present paper is to repurpose machine-learning tools to aid with causal inference (see for
example Belloni, Chernozhukov, and Hansen, 2014 and Athey and Imbens, 2016).

2The average length of stay is about two months in New York City; see New York City DOC (2012). Annualized costs of jailing a
person are on the order of $30,000, in addition to other harms from lost freedom, impacts on families, increased chances of a finding
of guilt, and declines in future employment (Abrams and Rohlfs, 2011, Dobbie, Goldin, and Yang, 2016, Gupta, Hansman, and
Frenchman, 2016, Stevenson, 2016, Leslie and Pope, 2016).
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Renaldi, and Delaney, 2015). Currently the predictions on which these decisions are based
are, in most jurisdictions, formed by some judge processing available case information in
their head.

In principle an algorithm could also make these predictions. Just as pixel patterns can be
used to predict presence of a face, information about the defendant and their case could be
used to predict flight or public safety risk. We build such an algorithm-specifically, gradient
boosted decision trees (Friedman 2001) using a large dataset of cases heard in New York
City from 2008 to 2013. The algorithm uses as inputs only data available to the judges at the
time of the bail hearing (e.g. current offense, prior criminal history); it does not use race,
ethnicity or gender. Because New York state law requires judges to only consider flight risk
when making pretrial release decisions, we initially train our algorithm on this outcome.
Since we demonstrate below that our results also hold for other crime outcomes, including
re-arrest, for convenience we refer to our outcome generically as ‘crime.’

The central challenge we face is not so much in building the algorithm, but rather in
assessing whether its predictions actually improve on judges’ decisions. One of the core
problems stems from missing data: we do not observe whether jailed defendants would have
committed crimes had they been released. This problem is aggravated by the fact that judges
surely rely on many factors that are unmeasured in our data. If judges observe, say, gang
membership and only release teenagers not in gangs, then released youth may have different
crime risks than jailed ones. If unaddressed, this could bias any comparison between judge
and algorithm in favor of the algorithm.

To overcome this problem we rely in part on the fact that it is one-sided: counterfactuals in
which the algorithm jails additional defendants can be readily evaluated. The problem only
arises with counterfactuals where the algorithm releases defendants that judges would not.
We also exploit the fact that in our data, defendants are as-good-as-randomly assigned to
judges who differ in leniency.3 This allows us to combine the decisions of more lenient
judges with the algorithm’s predictions and compare the results against the decisions of
more stringent judges. We develop a simple framework that clarifies what assumptions are
needed about judges’ preferences and release rules in order to construct these benchmarks.
In all cases we can make meaningful comparisons without imposing specific preferences on
how society or judges trade off crime versus jailing rates.

Three types of results together suggest algorithmic predictions can indeed improve judicial
decisions. First, judges are releasing many defendants the algorithm ex ante identifies as
very high risk. For example the riskiest 1% of defendants, when released, fail to appear for
court at a 56.3% rate and are re-arrested at a 62.7% rate. Yet judges release 48.5% of them.
Second, stricter judges do not jail the riskiest defendants first; instead they appear to draw
additional detainees from throughout the predicted risk distribution. If additional defendants
were selected instead according to predicted risk, stricter judges could produce outcomes
that appear to dominate their current decisions: They could jail 48.2% as many people with

3For applications of this design in the causal inference literature see Kling (2006), Di Tella and Schargrodsky (2013) Aizer and Doyle
(2015), Mueller-Smith (2015), and Bhuller et al. (2016), in addition to the papers cited in the previous footnote.
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the same reduction in crime, or for the same detention rate, they could have a 75.8% larger
crime reduction.# Third, we calculate bounds on the performance of an algorithmic release
rule that reranks all cases by predicted risk, including a worst-case bound tantamount to
assuming all jailed defendants are sure to commit crime. We show how random assignment
of cases to judges is central to the calculation of these bounds. The algorithmic rule, at the
same jailing rate as the judges, could reduce crime by no less than 14.4% and up to 24.7%;
or without any increase in crime, the algorithmic rule could reduce jail rates by no less than
18.5% and up to 41.9%.° These results are not unigue to New York City; we obtain
qualitatively similar findings in a national dataset as well.

These results, which focus on crime, could be misleading if the algorithm’s crime reductions
are coming at the expense of other goals the judge (or society) values. For example one such
goal is racial equity. Though we do not use race as an explicit input in prediction, other
variables might be correlated with race. The algorithm could in principle reduce crime but
aggravate racial disparities. Yet the opposite appears to be true in our data: a properly built
algorithm can reduce crime and jail populations while simultaneously reducing racial
disparities. In this case, the algorithm can be a force for racial equity. Similar problems may
arise if judges weigh different kinds of crimes differently (for example prioritize risk of
violent crime), or view detention of some defendants (such as those with jobs or families) as
particularly costly. We present evidence that the algorithm’s release rule does no worse than
the judges (and typically much better) on each outcome. Though we can never be certain of
the full breadth of judicial preferences, these findings combined with the law’s injunction to
focus solely on defendant risk suggest that algorithmic predictions likely can improve on
judges’ decisions.

Machine learning could also be used to diagnose why judges mispredict. As a behavioral
diagnostic, we build another algorithm that predicts judges’ release decisions. Both the
predictable and unpredictable parts of judicial behavior prove revealing. We find for
example that judges struggle most with high-risk cases: the variability in predicted release
probabilities is much higher for high- than low-risk cases. In addition the judges’ decisions
are too noisy. When judge decisions vary from our predictions of their decisions, the result is
worse outcomes: a release rule based on the predicted judge dominates the actual judges’
decisions.® These deviations from predicted behavior were, presumably, due to unobserved
factors the judge sees but are not captured in our data. Economists typically focus on how
these variables reflect private information and so should improve decisions. Psychologists,
on the other hand, focus on how inconsistency across choices can reflect noise and worsens
decisions (Kahneman et al., 2016). While we cannot separately quantify these two effects,
the superior performance of the predicted judge suggests that, on net, the costs of
inconsistency outweigh the gains from private information in our context. Whether these
unobserved variables are internal states, such as mood, or specific features of the case that

40ne might worry that these results are due not to the power of the algorithm but to the most lenient judges having some unique
capacity to screen out particularly bad defendants; we present evidence in Section IV.B. that this is not the case.

In practice algorithms would be decision aids, not decision makers. Our calculations simply highlight the scope of the potential gains.
Understanding the determinants of compliance with prediction tools is beyond the scope of this paper, though recent work has begun
to focus on it (Dietvorst, Simmons, and Masey, 2015, Yeomans et al., 2016, and Logg 2017).

Dawes (1971) refers to this as ‘judgmental bootstrapping’. These results hold even when we predict judges individually, so this is not
a ‘wisdom of crowds’ effect.

@ J Econ. Author manuscript; available in PMC 2018 May 11.
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are salient and overweighted, such as the defendant’s appearance, the net result is to create
noise, not signal.”

More generally the bail application provides a template for when and how machine learning
might be used to improve on human decisions. First, it illustrates the kind of decisions that
make for an ideal application of machine learning: ones that hinge on the prediction of some
outcome (Kleinberg et al., 2015). Many applied empirical papers focus on informing
decisions where the key unknown is a causal relationship; for example, the decision to
expand college scholarship eligibility depends on the causal effect of the scholarship. The
causal effect of jail on flight or public safety risk, though, is known. What is unknown is the
risk itself. The bail decision relies on machine learning’s unique strengths (maximize
prediction quality) while avoiding its weaknesses (not guaranteeing causal, or even
consistent, estimates).8

A second general lesson is that assessing whether machine predictions improve on human
decisions requires confronting a basic selection problem: data on outcomes (labels) can be
missing in a nonrandom way. This problem is generic: very often the decisions of the human
to whom we are comparing our algorithm generate the data we have available.® As we have
seen, this selective labels problem complicates our ability to compare human judgments and
machine predictions. Solving this problem requires recognizing that decision makers might
use unobserved variables in making their decision: one cannot simply use observable
characteristics to adjust for this selection.

A final lesson is the need to account for the decision maker’s full payoff function: decisions
that appear bad may simply reflect different goals. In causal inference, biases arise when
omitted variables correlate with the outcome. But for prediction, biases arise when omitted
variables correlate with payoffs. Predictions based on only one of the variables that enter the
payoff function can lead to faulty conclusions. We chose bail explicitly because the potential
for omitted-payoffhbiases are specific and narrow in scope. Yet even here concerns arose. We
worried, for example, that our improved performance on crime was being undermined by
creating racial inequity. The problem is put into sharp relief by considering a different
decision that initially seems similar to bail: sentencing. Recidivism, which is one relevant
input to sentencing someone who has been found guilty, can be predicted. Yet many other
factors enter this decision—deterrence, retribution, remorse—which are not even measured.
In many other applications, such biases could loom even larger. For example, colleges
admitting students, police deciding where to patrol, or firms hiring employees all maximize
a complex set of preferences (Chalfin et al., 2016). Outperforming the decision maker on the
single dimension we predict need not imply the decision maker is mispredicting, or that we
can improve their decisions.

70ne strand of research, for example, emphasizes how highly available and salient information is overweighted (Kahneman and
Tversky, 1974 and Bordolo, Gennaioli, and Shleifer, 2012). Relatedly, a consistent finding in finance is that asset prices respond to
noise as if it were signal (Shiller, 1981, Black, 1986, and Mendel and Shleifer, 2012).

It would be inaccurate, though, to suggest causal inference plays no role here. Assessing the full impact of judicial decision aids, for
example, requires answering causal questions such as how judges respond to them.

Bushway and Smith (2007) made a similar observation about how the ‘treatment rule implicit in existing data’ (p. 379) can attenuate
the relationship in the observed data between observable case characteristics and crime risk.

@ J Econ. Author manuscript; available in PMC 2018 May 11.
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It is telling that in our application, much of the work happens after the prediction function
was estimated. Most of our effort went to dealing with selective labels and omitted payoffs,
towards synthesizing machine-learning techniques with more traditional methods in the
applied economics toolkit. Even for social science applications such as this, where the key
decision of concern clearly hinges on a prediction, better algorithms alone are of ambiguous
value. They only become useful when their role in decision making is made clear, and we
can construct precise counterfactuals whose welfare gains can be calculated.

These challenges are largely overlooked in the existing literature. Dating back to at least the
1930s social scientists have tried to predict criminal behavior, although typically without any
direct attempt to establish performance relative to a human’s decision.10 Some recent papers
in computer science, though, acknowledge the selective labels problem and seek to address it
in the bail context using carefully designed methods to impute outcomes for defendants who
are missing labels (Lakkaraju and Rudin, 2016, and Jung et al. 2017). For example,
Lakkaraju and Rudin (2016) employ doubly-robust estimation that combines inverse
propensity-score weighting and logistic regression, while Jung et al. (2017) use a regularized
logistic regression model. These methods all rely on a ‘selection on observables’ assumption
to impute outcomes.1! But assuming away the role of unobservables removes a key source
of potential judicial advantage and as a consequence biases results in favor of the algorithm.
Existing work has also been less sensitive to omitted-payoff bias, focusing on individual
outcomes rather than on the full payoffs surrounding a decision; in bail, for example, only
examining outcomes like FTA.12

These same challenges are relevant for the older, foundational efforts within psychology to
compare human predictions to statistical rules (e.g. Meehl, 1954, Dawes, 1971, 1979,
Dawes, Faust and Meehl, 1989, and Grove et al., 2000). They largely ignored selective labels
and, to a lesser degree, also ignored omitted-payoff biases, and to the extent to which these
issues were noted they were not resolved.13 While this earlier work proved visionary, given
these potential biases it is hard to interpret the resulting statistical evidence. If the ultimate
goal is to meaningfully compare human decisions to machine predictions, it would be unfair
to ignore these factors. By assuming away humans’ potential for private information or for
richer payoffs in making the decisions they do, the result is biased towards the conclusion of
algorithms being better.

10see the reviews in Berk 2012 and Zeng, Ustin and Rudin, 2016. One key study, the Philadelphia bail experiment, randomly assigned
judges to receive results from a simple risk tool that recommended lower bail than judges normally assigned (Goldkamp and
Gottfredson, 1984, 1985, and Abrams and Rohlfs, 2011). The tool increased both the release rate and the crime rate among the
released, which means we cannot tell whether this improves social welfare without a way to weight outcomes.

1Jung et al. (2017) further explore the sensitivity of their estimates to unmeasured confounders, for example using the method of
Rosenbaum and Rubin (1983), and find the results are robust within the range of values they consider for the confounders. However
we have no way of knowing the true magnitude of the influence of any confounders, and so cannot be sure whether these lie outside
the range of values considered in the simulation.

This does not mean that risk tools might not aid in other decisions such as parole or sentencing; for example Berk (2012), Berk and
Bleich (2015), Berk et al. (2014), and Laqueur and Copus (2016). It merely means that we cannot conclude that decision making is
suboptimal on the basis of evidence about predictability alone.

For example, looking only at those who were hired in a recruiting application. Even in cases such as medical diagnoses, physicians
may seek to provide comfort to patients or minimize lawsuit risk; see Abaluck et al. (forthcoming) for a careful structural model. An
algorithm that improves upon a single, narrow dimension of hiring or admissions does not necessarily improve overall welfare.

@ J Econ. Author manuscript; available in PMC 2018 May 11.
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II. DATA AND CONTEXT

IILA. Pretrial bail decisions

Shortly after arrest, defendants appear at a bail hearing. In general judges can decide to
release the defendant outright (such as to release on recognizance, or ROR), set a dollar bail
that must be posted to go free, or detain the defendant outright.14 As noted above, these
hearings are not intended to determine if the person is guilty, or what the appropriate
punishment is for the alleged offense. Judges are asked instead to carry out a narrowly
defined task: decide where the defendant will spend the pretrial period based on a prediction
of whether the defendant, if released, would fail to appear in court (“FTA’) or be re-arrested
for a new crime.

When judges set money bail, they technically make two predictions - crime risk, and the
ability to pay different bail amounts.1® Our decision, for simplicity, to treat these as a single
compound decision could affect our findings in several ways. Judges may be making
mistakes in predicting either crime risk or ability to pay, which may complicate our ability to
isolate misprediction of risk. At the same time, forcing the algorithm to make a single
decision narrows its choice set, which on the surface should limit its performance relative to
a broader space of available choices. Below we show our results are not sensitive to how we
handle this.

When making these decisions, judges know the current offenses for which the person was
arrested and the defendant’s prior criminal record (‘rap sheet”). In some places, pretrial
services will interview defendants about things that may be relevant for risk, such as
employment status or living circumstances. Of course the judge also sees the defendants,
including their demeanor and what they are wearing (which is typically what they wore at
arrest), and whether family or friends showed up in court.

The context for most of our analysis is New York City, which has the advantages of
providing large numbers of observations and was able to provide data that identifies which
cases were heard by the same judges. Yet the pretrial system in New York is somewhat
different from other places. First, New York is one of a handful of states that asks judges to
only consider flight risk, not public safety risk.18 So we focus our models for New York
initially on FTA, although we also explore below what happens when we consider other
outcomes. Second, in New York many arrestees never have a pretrial release hearing because
either the police give them a desk appearance ticket, or the case is dismissed or otherwise
disposed of in bond court. So we drop these cases from our analysis. Third, judges in New
York are given a release recommendation based on a six-item checklist developed by a local
nonprofit, so our analysis technically compares the performance of our algorithm against the

14Besides ROR, the ‘outright release’ decision can also involve release on an unsecured bond (no collateral required). The bail
requirement also varies, from requiring the defendant to put down cash equal to some percentage (such as 10%) of the bond’s value, to
full cash or property bonds that require putting down the full amount. Some jurisdictions also allow private bail bondsmen to help
Eeople post bond in exchange for a fee. Defendants can also sometimes be released with conditions, such as electronic monitoring.
S0ne reason judges may not select arbitrarily low bail amounts for low-risk defendants is the possibility that bail creates an incentive
for people to show up in court.
16gee Phillips (2012, p. 25, 53). Another way New York City is different is that private bail bondsmen and supervised release
programs are relatively less common (Phillips, 2012, p. 33, 41).

@ J Econ. Author manuscript; available in PMC 2018 May 11.
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combined performance of the judges plus whatever signal they take from this existing
checklist tool.17 To determine how important these local features are we also replicate our
analysis in a national dataset as well, discussed in Online Appendix A.

I1.B. Data

We have data on all arrests made in New York City between November 1, 2008 and
November 1, 2013. The original data file includes information about 1,460,462 cases. These
data include much of the information available to the judge at the time of the bail hearing,
such as current offense, rap sheet, and prior FTAs.18 The dataset also includes the outcome
of each case, including whether the defendant was released, failed to appear in court (FTA),
or was re-arrested prior to resolution of the case.19 The only measure of defendant
demographics we use to train the algorithm is age.20

Of the initial sample, 758,027 were subject to a pretrial release decision and so are relevant
for our analysis.21 Since our goal is accurate out-of-sample prediction, we divide the data
into a training data set that the algorithm is fitted on and we then use the remaining data, a
‘test’” or ‘hold out’ set, to evaluate the algorithm. This prevents the algorithm from appearing
to do well simply because it is being evaluated on data that it has already seen. As an extra
layer of protection, to ensure that our results are not an artifact of unhelpful ‘human data
mining,” as shown in Figure | we follow Tan, Lee, and Pang (2014) and also form a ‘pure
hold-out’ of 203,338 cases. This final hold-out set was constructed by randomly sampling
some judges and taking all of their cases, selecting a random selection of cases from the
remaining judges, and also selecting the last 6 months of the data period. We have not
touched this dataset until production of this final draft of our manuscript; below we show
that our main results replicate in this new test set. This leaves us with a main working
dataset of 554,689 cases, which we randomly partition into 40% training, 40% imputation
and 20% test data sets. Unless otherwise noted, the predictive algorithms used to generate
the exhibits are trained on the 221,876 observation training set, and then evaluated on the
110,938 observation hold-out set. For now we focus on the training and test sets, and later in
the paper we return to the role of the remaining 40% imputation set. Figure | provides a
schematic representation of these basic elements.

Table | presents descriptive statistics for our analysis sample. As is true in the criminal
justice systems of many American cities, males (83.2%) and minorities (48.8% African-
American, 33.3% Hispanic) are overrepresented. A total of 36.2% of our sample was

17The six items on the tool developed by the NYC Criminal Justice Agency, Inc. (CJA) capture whether the defendant has a phone, a
NY C-area address, an activity that occupies them full-time (such as school or a job), any prior bench warrants, or open criminal cases,
and whether the defendant expects someone to come to court to support them; see NYC Criminal Justice Agency, Inc. (2016, p. 14).
Questions about jobs or school are included because they are believed to predict FTA risk, not because judges necessarily weight these
factors for their own sake. We return to this below.

Unlike the judge, we only have information on the most serious charge filed against the defendant, not all charges.

Our measure of release combines information from two variables: release status at arraignment; and whether the defendant was
listed as having posted bail by the time of their first postarraignment hearing. This second variable helps capture release status of
people who could not post bail at arraignment but did post once they had reached the jail. But this will miss the release of people who

osted bail at the jail and then failed to appear at their first court hearing.

Previous research demonstrates a strong age patterning to criminal behavior, and courts have generally found consideration of age to
be legally acceptable.

I\we exclude 272,381 desk appearance tickets, as well as the 295,314 cases disposed of at arraignment, the 131,731 cases that were
adjourned in contemplation of dismissal, and then also eliminate some duplicate cases as well.

@ J Econ. Author manuscript; available in PMC 2018 May 11.
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arrested for some sort of violent crime, 17.1% for property crimes, 25.5% for drug crimes,
and the rest a mix of various offenses like driving under the influence, weapons, and
prostitution. Overall 73.6% of defendants were released prior to adjudication, which
includes everyone released on recognizance (63.2% of all defendants), plus about a third of
those offered bail (35.5%). Those we call ‘detained by the judge’ includes the two-thirds of
those offered bail who cannot make bail, plus the 1.3% of defendants who are remanded
(denied bail). We initially do not distinguish between the chance to post bail versus being
assigned high bail, though we return to this below.

Among released defendants 15.2% fail to appear (FTA) at a subsequent court hearing prior
to adjudication of their case, as indicated by court records. In addition 25.8% are re-arrested
prior to adjudication; a small share of these arrests may be related to arrest warrants issued
in response to a FTA.22 Among the released, 3.7% are arrested for a violent crime
specifically, and 1.9% for murder, rape, and robbery. We also show these outcomes for the
full sample, where we use the value 0 for the jailed defendants. Tiny differences may appear
in later Tables because some numbers below come from the 20% test set subsample.

Table I also makes clear that judges are paying some attention to defendant characteristics in
deciding who to release, since the average values differ by release status. Exactly how good
judges are in making these decisions relative to an algorithm’s predictions is the focus of the
rest of our paper.

lll. EMPIRICAL STRATEGY

Our empirical analysis essentially consists of two steps: train an algorithm, and then evaluate
its performance. The first step will look quite similar to standard machine-learning practice:
train an algorithm to produce a prediction function that relates defendant characteristics to
an outcome such as failure to appear or re-arrest. In typical engineering applications like
vision or language, the second evaluation step is straightforward: simply measure how well
the fitted function predicts out of sample. However we are interested instead in what those
predictions tell us about the quality of current human (judge) decisions, and whether using
the algorithmic predictions can improve those decisions.

llI.LA. Forming the Prediction Function

We will take the outcome of interest Y'to be an indicator for failure to appear, or FTA (or,
when noted, an index of whether the defendant either FTA’s or is re-arrested), which we
designate ‘crime.” The input variables, .X; consist of characteristics of the defendant’s
current case, their prior criminal record, and age (but not other demographic features like
race, ethnicity or gender). A key challenge is that we only observe Y for released
defendants, which affects both training and evaluation of the algorithm.23

22The share of arrests in our dataset that are for bail jumping or failing to respond to an appearance ticket is 0.4%; this may somewhat
understate the share of arrests related to a prior FTA since our data file, as noted above, only captures the most serious charge per

arrest.

23When training, we do not account for the possibility that the distribution of observables (X) or ‘unobservables’ may differ between
the released and jailed. Relatedly, we do not use a loss function that matches the eventual decision rule, such as placing a larger weight
on marginal rather than infra-marginal defendants. Training on the released set with an imperfect loss function could lead to a worse
and possibly biased predictor, tilting us towards the conclusion that the algorithm cannot improve upon the judge. However, despite
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We form predictions using gradient boosted decision trees (Friedman, 2001) to fit a function
m(X) that outputs a predicted probability 2 (Y= 1|.X) (though our results are similar with
other algorithms). In a decision tree, the data is divided through a sequence of binary splits.
For example, the first split might be whether the person has ever been arrested. In the next
step we can split each of the two nodes created by that first split by different variables,
allowing for a high degree of interactivity in our prediction function. At each final (‘leaf’)
node, there is a value which is the prediction for every data point in that space. The gradient
boosted trees algorithm is essentially an average of multiple decision trees that are built
sequentially on the training data, with each subsequent iteration up-weighting the
observations that have been predicted most poorly by the sequence of trees up to that point.
The complexity of a gradient boosted tree model depends on the depth of each tree, the
number of trees averaged together, and the weighting scheme for each subsequent tree. We
select these parameters using five-fold cross-validation (see Figure I). Once the optimal
model parameters are selected, we estimate the final model using the full training set.

A regression of the algorithm’s predicted values against a linear additive function of the
baseline covariates yields an Adjusted R-squared of 0.51, which provides some initial
indication that there is nonlinear structure in the data that machine-learning tools help
identify. We show below that this additional nonlinear structure captures useful signal.24

[11.B. Evaluating the Prediction Function

Standard practice in machine learning would be to compare predicted probabilities /m(.X) to
outcomes Y'in the test data. A common metric for measuring prediction accuracy would be
something like the area under the receiver operating characteristic curve (AUC), which in
our case equals 0.707.25 Measures such as these, though, do not tell us whether the
algorithm’s predictions can improve on decision quality. For example, an algorithm that
correctly identifies within the released set some defendants as having 0 risk and others as
having 10% risk may do little to change decisions if society’s preference is to release even
everyone with a 10% risk.

Evaluating whether m(.X) can be used to improve judicial decisions raises its own
challenges, which we illustrate using a simple framework. We take the prediction function as
given, which in practical terms is what we would be doing when evaluating performance in a
true holdout set. The framework must also specify the true underlying data-generating
process. In our data, we have a binary Y'variable and a multidimensional X about
defendants. In the modeled data generating process, we assume Pr( Y =1) = y, the
defendant’s probability of committing a crime. Though the underlying data is
multidimensional, we can model it as having only a few dimensions. Specifically, suppose in

these issues, we find that an algorithm trained in this fashion can still produce improvements over the judges’ decisions. In our view,
the bigger potential for errors — and where we focus our energy below — are not errors in prediction so much as errors in evaluating the

redictions.

43ee Online Appendix Table A.1; Online Appendix Table A.2 shows similar projections of predicted risk of an index of either FTA
or re-arrest. These tables also provide some intuition about what variables are important for predicting risk in the NYC data.
The ROC curve reports the combination of false positives and true positives achievable by the model. Random guessing produces an
AUC of 0.5 while perfect prediction produces an AUC of 1. AUC also has an intuitive interpretation: it equals the probability that a
randomly chosen data point with Y= 1 is ranked more highly than a randomly chosen data point with ¥'=0.
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addition to .X; judges observe (but we do not) a multidimensional Z. We could now define
two unidimensional variables x(X) = [Y/X] and 2X, 2 =[Y /X, 2] -E] Y /X].

This motivates a model in which defendants are characterized by an observed xand an
unobserved z (seen by the judge). In addition, we assume there are unobserved w (that
captures something about the defendant or even the judge’s mental state) that affects the
judge’s decision but does not have any information about y. This construction also motivates
the assumption that:

E(y|X,Z)=E[ylx,z]=x+z

This assumption reflects the idea that while wmight affect decisions, it does not predict risk.
It also places some narrow restrictions such as that xand zare distributed so their sum is
between 0 and 1, and assumes that the observed x is a single variable that (on average)
equals risk. Finally, each case is heard by a judge fwho makes a release decision =0, 1.
We will assume that ), x,; zand ware jointly distributed and all individuals are i.i.d. draws
from this fixed distribution. Below we describe how R is determined. Additionally we
assume there is a pool of judges who draw cases from the same distribution - in effect,
random assignment of cases to judges.

We model judicial payoffs on a case by case basis, though for our purposes all that matters is
that judges have an aggregate payoff function that is increasing in the release rate and
decreasing in the crime rate. Each judge j has a payoff function 7/ that depends on a
defendant’s crime propensity and the release decision:

i
R = — YR - b(1-R
7 (,R) ay J( )

s —
Crime Cost  Incarceration Cost

where ajrepresents the weight the judge places on crimes committed and 4;the weight they
place on incarcerating someone. Since crime is a binary outcome we can write the payoff
function as linear in probability of crime.

We define p(x, z, w) to be a generic release rule (written as p for ease), and the expected
payoff of this rule as TT/(p) = E[7/(y; p)] where the expectation is taken over a randomly
drawn y; x; w; z. Judge jthen chooses an optimal release rule o/ that maximizes this
expected payoff. Their rule depends on their (possibly erroneous) assessment of risk, which
we write as /1{x; z; w). Given this assessment, their release rule will be:

b.

pj(x, z,w) = 1 if and only if hj(x, z,w) < Kj = a—‘/

~

Defendants are released if their risk is below the judge’s threshold x ;which is determined
by how they weigh crimes committed (a)) relative to incarceration costs (5)).
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The basic question we address is whether a given algorithm’s predictions /m(x) can improve
upon judicial predictions. In particular, we would like to evaluate whether there is a release
rule dfor judge /that combines their judgement /;and /mto produce a higher payoff for
judge j i.e. if TH(o® >TH(©/). Note that the difference between these two is:

)1 = ol = | R = ] 8
clease

A Crime

where R” denotes the release rate of any release rule and we write &/ as shorthand for E”3.
One challenge, to which we return below, is whether we know the preference parameters (a;,
by). If these were known, the effect of the second term can be calculated since the release
rates are calculable. To abstract from this, for now, suppose we are considering an

algorithmic release rule which makes the second term zero, i.e. where R =R,

The remaining first term poses a more serious measurement problem. Since it cancels for
cases where the judge and algorithm agree (i.e. if o/ = p%), the difference is determined by

the cases where they disagree; at RY=Rlitis proportional to:

~Ey|p? =007 1]+ E]y|o? = 107 = 0|

—_ s
Measured Unmeasured

We can only measure the crime changes due to defendants released by the judge and jailed
by the algorithm; but we cannot measure the changes due to the defendants jailed by the
judge and released by the algorithm. Two points are worth noting here.

First, procedures in the literature typically use the observable data to resolve the lack of
labels with, for example, propensity scores, imputation or Bayesian procedures. Even
abstracting from estimation issues, at best these procedures amount to assuming crime rates
of the jailed, E[y/pf= 0, x], are equal to the crime rates of the released with similar x: E[y/,o’
=1, x]. The challenge, of course, is that

E[y‘pj= l,x] —E[y‘pj=0,x] =E[x+z|pj= l,x] —E[x+z‘pj=0,x] = (E[x|pj= l,x] —E[x‘pj=0,x])

Imputation Error at x
+(E[z‘p] = l,x] —E[x|p] = O,X]) = O+E[z|p] = l,x] —E[z‘p] :0,x]

Selective Release at x

If judges select at all on unobservables, there is no reason to believe that outcomes of the
released with similar x serve as a good proxy of what the jailed would do if released. By
ignoring unobserved factors, these imputation procedures have the potential to be very
misleading. Consider a stylized example. Suppose that for young defendants, judges see
gang tattoos and we do not, and that judges know this type of tattoo is highly predictive of
crime risk so they never release anyone with a gang tattoo. The imputer would attribute to all
young people the crime rate of those without gang tattoos. This could seriously understate
the increase in crime that would result from a risk tool that released all young people. We
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refer to this as the selective labels problem - even for the exact same x, the defendants who
have labels (i.e. the defendants judges released) need not be the same as the defendants who
do not have labels.

Second, this problem is one-sided. We have no trouble calculating the other counterfactual,
the effect of jailing defendants whom the judge releases (or what one might call contracting
the released set). This evaluation problem is of course not unique to the bail context. It
occurs in a variety of machine-learning applications whenever we are trying to compare the
performance of an algorithm to human decisions using data generated by the human decision
maker: for example using an algorithm to predict who should receive some medical test
using data generated by previous doctor testing decisions. Both our solutions below to this
problem rely on its one-sided nature.28

IV. JUDGE DECISIONS AND MACHINE PREDICTIONS

IV.A. How risky are the riskiest people judges release?

To understand how we might exploit the one-sidedness of the selective labels problem, we
begin by looking at the distribution of predictable risk among those defendants judges in fact
release. (As a reminder, since judges in NYC are asked to predict only FTA risk, this is the
outcome we predict in our models unless otherwise noted, although for convenience we refer
to our outcome generically as ‘crime.”) The left panel of Figure Il bins defendants in our test
set into 1,000 equal-sized groups based on the predicted risk values from our algorithm,
m(X)) and plots the observed judge release rates against predicted risk.

We see that at the low end of the predicted risk distribution, where most defendants are
concentrated, judges release at a rate of over 90%. As predicted risk increases the judge
release rate declines, which implies that the predictions of the judges and the algorithm are
correlated. But we also see that the algorithm and the judges disagree, particularly at the
high end of the risk distribution. If the predictions of the judges and the algorithm were
identical, we would expect to see a step function: There would be some predicted-risk
threshold where the release rate would be 0% above and 100% below. But that is not what
we see. The curve relating judge release rates to the algorithm’s predicted crime risk flattens
out as predicted risk increases. The riskiest 1% of defendants have a predicted risk of 62.6%
yet are released at a 48.5% rate.2’

These release rates suggest a natural way to modify judicial decisions: jail those the judge
releases but whom the algorithm predicts to be high risk. We define the release rule p9¢:

Release if and only if pj = land m(x) < Kj

26Lakkaraju et al. (2017), using the insights below about the selective labels problem, consider the algorithmic aspects of the problem
and apply it to other datasets, synthetic and real.

In principle a different reason why we might not see a clean division of defendants released versus detained around some risk
threshold is if the different judges hearing cases in our dataset each used a different risk threshold. But this could only explain the
pattern we see in the figure if some judges basically released almost everyone and other judges detained almost everyone, since we see
releases across the entire risk distribution. In practice we do not see this much variation across judges in release rates, as noted below.
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which contracts the release set by removing high risk defendants. We refer to this as guasi-
contraction, in contrast to a more complete contraction procedure described below.

To understand whether this release rule can improve on judge’s payoffs, we calculate

) = ¢ e 5]

So the algorithm can improve upon decisions if it jails additional defendants (o/ = 1 & p9€ =
0) whose crime rates exceed the cost of incarceration (£[)] > x)).

The left panel of Figure I1 hints that there may be such defendants. But, of course the
algorithm’s predictions are just predictions. In principle these defendants could actually be
low risk, and the judges might realize this even if the algorithm does not. That is, perhaps
the judges are able to identify defendants who look high risk with respect to the
characteristics available to the algorithm, x; but are actually low risk with respect to features
only the judges see, z

Yet the right panel of Figure Il shows that the people the algorithm predicts are risky are
indeed risky. This figure relates observed crime rates to predicted risk, £[y/m(x)], among
released defendants. This plot shows the data are clearly centered around the 45 degree line
over almost all of the risk distribution. While this does not rule out the possibility that those
defendants the judges detained versus released are different with respect to their
unobservables (a point to which we return below), it does suggest that the defendants the
judges released do not seem to have unusual unobservables that cause their observed
outcomes to systematically diverge from what the algorithm had predicted. It also confirms
that the defendants judges released who were predicted to be high risk are in fact high risk.
For example, using just information the judge had at the time of the bail hearings, the
defendants predicted to be riskiest by the machine-learning algorithm—the riskiest 1%—go
on to have an observed crime rate of ¥ = 56.3.

As an aside, we can also explore the value added of machine learning relative to more
familiar and simpler econometric methods for forming predictions. Table 11 compares the
predicted risk distribution of the machine-learning algorithm to that produced by a logistic
regression; specifically, we compare the cases flagged as risky by these two procedures.28
At the 15 percentile of the risk distribution (row 1), we see substantial disagreement in who
is flagged as risky—only 30.6% of the cases flagged as top percentile in the predicted risk
distribution by our machine-learning algorithm are also flagged as top percentile by the
logistic regression (column 1). These defendants identified as high risk by both procedures
also have the highest realized crime rates (60.8% in column 3). Those flagged only by the
machine-learning algorithm are nearly as risky (54.4% in column 2), while those flagged
only by the logit are far less risky (40% in column 3). As a result, algorithm-flagged

28This logistic regression uses the same set of covariates as are given to the machine-learning algorithm, using a standard linear
additive functional form. Interestingly, estimating a model that adds all two-way interactions between the predictors causes the logistic
regression model to overfit the training dataset and predict poorly out of sample, even in a pared-down model with just five or ten
covariates. Many of these interactions seem to be picking up statistical noise in the training set, although the machine-learning
algorithm is able to find the interactivity that reflects real signal.
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defendants (column 4) are riskier as a whole than logit-flagged ones (column 5). This pattern
repeats in the other rows but begins to attenuate the further we move down the predicted risk
distribution (rows 2 through 4). By the time we reach the 25 percentile of the distribution
(row 4) the two procedures agree on 72.9% of the cases. As a whole, these results suggest
that even in these data, which contain relatively few variables (compared to sample size), the
machine-learning algorithm finds significant signal in combinations of variables that might
otherwise be missed. These gains are most notable at the tail of the distribution and
(somewhat predictably) attenuate as we move towards the center. This intuition suggests that
were we to look at outcomes that have relatively lower prevalence (such as violent crimes, as
we do in Section V.A.1.) the difference in results between the two prediction procedures
would grow even starker.

The key challenge with quasi-contraction is interpretational. We have established that the
algorithm can ex ante identify defendants with a (56.3%) risk. By itself, this tells us that
social gains are possible so long as society’s risk threshold for detention is below 56.3% — in
this case, high risk defendants who should be jailed are being released. But it does not tell us
that judges, by their own preferences, are mistaken: we do not know the risk threshold «;
that they have. Without additional analysis, we cannot rule out the possibility that judges
place such a high cost on jailing defendants that even this level of risk does not merit
detention in their eyes.

IV.B. Using Differential Leniency

We overcome the challenge of not knowing x;by using the fact that judges have different
release rates: crime rate differences between judges of different leniency provide
benchmarks or bounds for how society currently trades off crime risk and detention costs.
Forming such benchmarks requires some assumptions about the underlying data-generating
process and how judges do, and do not, differ from one another.

The first assumption we will make is that judges draw from the same distribution of
defendants. This assumption can be implemented in the NYC data by taking advantage of
the fact that we have (anonymous) judge identifiers, together with the fact that conditional
on borough, court house, year, month, and day of week, average defendant characteristics do
not appear to be systematically related to judge leniency rates within these cells.29 For this
analysis we restrict our attention to the 577 cells that contain at least five judges (out of
1,628 total cells) in order to do comparisons across within-cell judge-leniency quintiles.
These cells account for 56.5% of our total sample, with an average of 909 cases and 12.9
judges per cell. Online Appendix Table A.3 shows this sample is similar on average to the
full sample. Online Appendix Table A.4 also shows that the stricter judges tend to be the
ones who see fewer cases. This also implies a balance test must account for within-cell
randomization and cannot simply compare mean defendant characteristics across judge
leniency quintiles.

29while neither defendants nor judges are randomly assigned to arraignment hearings, as an empirical matter it appears that on
average the caseload within (say) a given Brooklyn courthouse in February 2009 in one Monday looks like another February 2009
Monday’s caseload.
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We carry out a permutation test that focuses on the projection of our outcome Y (in this case
FTA) onto the baseline characteristics, which essentially creates an index of baseline
defendant characteristics weighted in proportion to the strength of their relationship with the
outcome. Separately for each borough, year, month and day of week cell, we regress this
predicted value against a set of indicators for within-cell judge-leniency quintile, and
calculate the A~test statistic for the null hypothesis that the judge leniency indicators are
jointly zero. We then randomly permute the judge-leniency quintiles across cases M=1,000
times within each cell to form a distribution of ~test statistics calculated under the null
hypothesis of no relationship between judge leniency and defendant characteristics. If
defendant characteristics were systematically related to judge leniency, we would expect to
see a concentration of our ~test statistics with low p-values. Yet Figure 111 shows that the
histogram of p-values across the 577 cells in our analysis sample does not show unusual
mass at low p-values. (See Online Appendix B for more details).

The other thing we need for this design to work are differences in judge leniency within
cells. As in past research, we see this in our data as well. The most lenient quintile judges
release 82.9% of defendants. Relative to the most lenient judge quintile, less lenient quintiles
have average release rates that are 6.6, 9.6, 13.5 and 22.3 percentage points lower,
respectively.

Quasi-random assignment to judges together with differing leniency allow us to answer a
straightforward question: if we begin with the most lenient judge’s caseload and detain
additional defendants according to predicted risk, what crime and release rates are produced
and how do these compare to what results from the decisions of more stringent judges? We
discuss this below and will illustrate it in Figure V.

However we are also interested in answering a second question: Can we build a decision aid
for judges that improves their payoffs [T/2 Answering this question requires making an
additional assumption in our framework regarding judges’ ‘technologies.” Each judge’s
release rule depends on two factors: a preference x;between crimes and incarceration; and a
‘technology” /; for identifying riskiness of individuals. Since we will seek to use judges as
benchmarks for each other, it is worth being precise about this distinction. In what follows,
for simplicity, our framework focuses on the case of two judges, j= 1, 2 where judge 2 is
more stringent than judge 1. Judge J; if asked to implement an arbitrary preference «, could
form the release rule:

pPX(x,z,w) = 1if and only if hnzw) <k

Note that because any pair of judges have different technologies, there is no reason that p**
= p%*. We will assume that, while judges can have very different release rules, their ability
to select on unobservables is the same. Specifically, when judge / (for some «) releases a
fraction /of all people with observed x, we can define their average unobservable quality to
be z/(x, 1). Our assumption about similar capacity to select on unobservables can then be
written as:
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( Vi, x):Zl(x, D = 22(x,1)

Put in words, at different levels of leniency, in each x-cell, both judges would release people
who on average have the same unobservables.

Of course, since we only observe each judge at a given level of leniency this cannot be tested
directly. If we define R/(x) as judge /s lenience for individuals with observed x, we can
empirically look at a weaker form of this assumption:

Zl(x, El(x)) = Z_Z(x, ﬁz(x))

To test this, we train an algorithm on the released set of the most lenient quintile and then
use that to impute crime rates to defendants released by the less lenient quintile judges. This

in effect lets us test 7' (x, R, () = yz(x, Ez(x)) which, given that xis the same, tests the

difference in Zz If the most lenient judges are better able to identify defendants with high-risk
zthan are the less lenient judges, the imputed values would be below the actual crime
outcomes within the caseloads of the less lenient judges. Yet what we see is that within each
of the stricter quintiles, the imputed and actual values are well calibrated across the full
range of the risk distribution (as shown in the bottom four panels of Figure 1V) - indeed not
very different from plotting the predicted values calculated using the full training set against
observed outcomes within the full training set (shown in the top panel of Figure 1V). These
results show no evidence that more lenient judges select differently on unobservables z
within each x cell compared to the more stringentjudges.:"0 Of course, these results only tell
us that imputed values are calibrated up to a point: they hold within the range of release rates
we observe. For example, if in a particular x cell, every judge jails at least 10% of
defendants, then those 10% could have arbitrary crime rates, far off from the imputed value,
and we would never observe them.

With these assumptions in place, we can now form a meaningful test. Recall that judge 1
releases more people than judge 2:R' > R*. We can therefore contract judge 1's release set to
produce a rule p<:

Release if and only if /)1 =landm(x) <k

for some constant & Because this rule releases only individuals released by judge 1 its crime
performance is measurable:

1

E[y|pc= IJ = E[y‘p =1,mx) <k

301 principle, another reason for this finding could be that lenient judges are better at screening, so at a given release rate have lower
Z, but release more individuals so must go further up the zdistribution.
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Relative to her own choices, this rule changes judge 2’s payoff by:

) = 5007) = anfeol o =1 = pfo? = 1]) =R -5

As before, even without knowing the preference parameters, we can choose the constant kso
that either we release the same number of defendants as judge 2 (Ez - Ec) or we achieve the

same crime rate as judge 2 (£] Y2|o€ = 1] = A Y3|¢? = 1])). If we can achieve lower crime or
higher release rates by doing this, then we will have improved outcomes given judge 2’s
preferences irrespective of what her preferences are.

We can test this contraction procedure in our data. Starting with the released set of the most
lenient judges, we can choose additional defendants to detain according to predicted risk.
For each amount of additional incarceration, this allows us to calculate the crime rate that we
observe for each of these (smaller) released sets. Importantly, because case characteristics
are on average similar across judges, these numbers can be compared to the outcomes
produced by the stricter judges. These results are presented graphically in Figure V. The
solid curve calculates the crime that would have resulted if additional defendants had been
detained in order of the algorithm’s predicted risk. Each of the points denotes the different
judge leniency quintiles. Since any additional detention reduces crime for purely mechanical
reasons (incapacitation), even randomly selecting defendants would reduce crime (the
dashed line in the figure). The judge detention decisions are better than random, though one
cannot tell whether they are doing much or only modestly better without a counterfactual.

When comparing each of the stricter judge quintiles to the algorithm, two points are
particularly salient: (i) how much does crime fall when the algorithm increases jailing rates
by the same amount; and (ii) what jailing increase does the algorithm need to achieve the
same crime reduction as the judge?

The results presented in Table I11 show contraction produces significant gains over what
judges manage. The second quintile of judges reduce crime by 9.9% relative to the most
lenient quintile judges by increasing the detention rate by 6.6 percentage points. Our
algorithm’s contraction curve shows that the same crime reduction could have been
accomplished by increasing the detention rate by only 2.8 percentage points, or equivalently
by increasing the detention rate by 6.6 percentage points we could have reduced crime by
20.1%. Put differently, relative to the observed judge outcomes we could have reduced the
increase in jail population by only 42.1% as much, or increased the size of the crime drop by
103.0%. The magnitudes of these effects diminish somewhat as we move to the other
leniency quintiles. Were we to average across all four of these quintiles we could jail only
48.2% as many people, or we could get crime reductions that are 75.8% larger.

This contraction rule could also form the basis for an implementable decision aid, though
currently p€ improves judge 2’s payoffs by combining the algorithm with judge 1’s
decisions, rather than with judge 2’s decisions. Under the assumptions we have made,
though, p€ can also be implemented as a true decision aid: the algorithm combined with
judge 2. By construction, there exist a set of x for which p jails everyone, call this X. For
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the remaining x, o€ releases at a rate equal to judge 1, so a release rate of R'(x). A decision
aid for judge 2 would therefore have that judge jail everyone with xin X, and then have
them apply a leniency rate of &' (x) for each x & X¢. By construction, the crime rate for x €
Xcis 0, which also matches the crime rate of o€ in these cells. For x X, this produces a
crime rate equal to x + 2°(x, ' (+v)). By our assumption, however, this equals

x+ zl(x,kl(x)) = E[y‘pc, x]. The key reason we can turn o€ into an implementable decision

aid is that we are assuming judges have similar technologies for selecting on unobservables,
an assumption for which we provided supporting evidence above in Figure IV.

IV.C. Reranking

We have restricted our attention so far to two release rules that jail additional defendants
relative to the judge. Both were carefully constructed to avoid the selective labels problem
but neither captures the obvious release rule: release defendants solely based on the
algorithm’s predicted risk; specifically, for some k; define the release rule

p™ = 1if and only if m(x) < k.

Evaluating the crime effects of this rule again raises the selective labels problem:

E[ylpm = 1] = P(pj = I)E[y‘pj = l,pm = 1] +P(pj = O‘pm = 1)E[y|pj = O,pm =1
Measured Unmeasured

where jhere denotes the judge a defendant was assigned to. To bound the extent of the
selective labels problem, we would need to place a bound on the second term, the crime rate
of the jailed. Since the algorithm’s release rule only depends on x, we can write this second

. _m . .
term as E[E[y x,pl = O]R/’ (x)|. The central challenge of selective labels is how we calculate

for each xthe value £[y/x, o/ = 0]. Recall that:

E[y|pj= O,x] = E[y|pj= 1,x]+E[z‘pj= l,x] —E[z‘pj= O,x]

Selective Release at x

At one extreme, we could assume unobservables played no role so that the second term is
zero: we would use the outcomes of the released as a proxy for the jailed. At the other
extreme, notice that the unobservables could be arbitrarily large so that £[yjo/ = 0, X] = 1:
everyone whom the judge jails is sure to commit a crime. This second extreme illustrates
why, when we take seriously the possibility of judges using unobservable factors wisely,
evaluating reranking is impossible without additional structure.

Two observations specific to bail provide structure that allows a tighter bound. The first is
the quasi-random assignment of judges. Within each x cell, we have a variety of release rates
by judge. Second, Figure IV show that the model is well calibrated even for the most lenient
judges, suggesting unobservables play little role up to the release rate of the most lenient
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judges. So if, in a given xcell, the most lenient judge releases 80% of cases, we can assume
up to 80% of defendants can be proxied for with £[y/x, o/ = 1]. Of course, the remaining
20% could have any crime rate.

In empirically evaluating any release rule, we use a bound derived from these observations.
For those defendants for whom we have labels we use those labels.31 For the remaining
defendants, up to the release rate of the most lenient judge in that x bin, R, we impute the
label A[y/x, o/ = 1]. For the remainder we impute the label min{1, aE[y/x, o/ = 1]}, where a,
the extent of the bound varies from 1 to co. Our imputed values come from fitting a separate
set of gradient-boosted trees on the imputation set (the random 40% partition of our working
dataset), which yields predictions of each defendant’s crime rate m(.X}). Results are similar if
we use a logit imputer.

Because we would like a crime rate that can be meaningfully compared across release rates,
we use the ratio of crimes committed by released defendants to the total number of
defendants heard by the judge (not just the number released). In the Online Appendix,
Figure A.2 graphs the crime rate (y-axis) that results at every possible target release rate (x-
axis) when a = 1, the selection on observables assumption. To simplify the reranking
analysis we initially assume that society’s preferences are reflected by the average choices
of all the judges.

We find large potential gains if we assume no effect of unobservables: judges release 73.6%
of defendants for a crime rate equal to 11.3% in the test set. At the judge’s release rate, the
algorithm could reduce crime by 24.7%. Alternatively, at the judge’s crime rate, it can
reduce the detention rate from 26.4% to 15.3%, for a decline of 41.9%. Translated into
absolute numbers, these impacts would be large, given that the US has well over 700,000
people in jail at any point in time. Such large gains are possible because at current release
rates the risk of the marginal defendant is still relatively low, as shown in the bottom panel
of Online Appendix Figure A.2. With much larger reductions in detention, the risk of the
marginal defendant begins to increase rapidly.

These potential gains are not just a matter of the algorithm beating a single judge who serves
an outsized caseload. We find the algorithm dominates each judge in our dataset that sees a
large enough caseload to let us construct a meaningful comparison.32

We are primarily interested in bounding these gains. Table IV shows how these results vary
with a. In particular, at each risk level 3 we assume up to the fraction R’(y), the release rate
of the most lenient judge in that bin, have average crime rate y. For the remainder, we
assume that their true crime equals min {1, ay}. The last column of the table shows results for
the most extreme possible assumption: the most lenient quintile of judges make perfect
detention decisions (that is, a = 00), so that literally everyone the lenient judges detained

31Results are similar if we use imputed values also for those defendants the judges released.

Online Appendix Figure A.3 shows the relative gains of the algorithm with respect to reducing crime (holding release rate constant)
or reducing the jail population (holding crime constant) for the 25 judges with the largest caseloads, rank ordered by caseload size. We
focus on this group so we have enough cases per judge to evaluate their individual performance; together they account for 47.2% of all
cases in the test set. While there is some variation across judges, the algorithm dominates each judge.
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would have committed a crime if released.33 We see that even at a = oo, the worst case, the
drop in crime from the algorithm’s release rule holding jail rate constant equals 58.3% of the
gains we see in our main policy simulation. The reduction in the jail rate, holding crime
constant, equals 44.2% of the total gains reported above. Even using a worst case bound, the
algorithm would produce significant gains.

The results do not appear to be unique to New York City. In Online Appendix A we present
the results of analyzing a national dataset of felony defendants, which unfortunately does not
include judge identifiers and so does not let us carry out the contraction analysis. But we can
calculate the other analyses presented above, and find qualitatively similar results.

V. ARE JUDGES REALLY MAKING MISTAKES?
V.A. Omitted-Payoff Bias

These policy simulations suggest large potential gains to be had if we use the algorithm’s
predictions to make release decisions. But could judges really be making such large
prediction errors? Several factors could be confounding our analysis. In particular, perhaps
judges have preferences or constraints that are different from those given to the algorithm.

One potential concern is that when making release decisions, judges might have additional
objectives beyond the outcome the algorithm is predicting. Recall we defined 7 (y;, R) as the
judge’s payoff in each case which depends both on the person’s crime propensity and
whether they were released. Suppose the judge’s true payoffs were actually 7 = #(y, R) + vR
where vis a (possibly unobserved) feature of the defendant. The payoff to any release rule is
in actuality:

Ti(p) = () E[vR’

and the difference between two rules becomes:

filoy) ~i{oy) = o)) =1ilpy) + %!~ £ur?)
True Payoffs  Evaluated Payoffs (m

When comparing two release rules we have so far focused only on their difference in payoffs
that come from y/(crime, in our case). We have neglected this second term. It is possible that
one release rule dominates another when we focus on the first term but actually produces
lower total payoff because of the second term. We call this concern omitted-payoff bias. To
build intuitions about the nature of this bias, notice that for a release rule p, we are primarily
worried when A vR°] # E[VE[RF]. That is, we are concerned when the rule releases

33To maintain the judge’s release rate, the algorithm effectively swaps released defendants for jailed defendants. In quasi-contraction
we saw high-risk released defendants to jail can be identified. The question is whether it has properly identified low-risk jailed ones.
One intuition for these bounds is that as a increases the jailed defendants become riskier: only up to release rate R1 (9) in each cell do

defendants have risk y. Under the worst-case bound (a = 00), for example, additional defendants are assumed to have y'= 1, meaning
it must look in other y bins for jailed defendants to release.

@ J Econ. Author manuscript; available in PMC 2018 May 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kleinberg et al.

Page 22

selectively as a function of v. Since algorithmic release rules p are constructed to correlate
with ), we are particularly worried about v variables that might inadvertently be correlated

with £[yAl.

1. Omitted-Payoff Bias: Other Outcomes—An obvious version of this concern stems
from the fact that, as New York state law directs judges, we have so far taken y'to equal
flight risk. Yet judicial payoffs may include costs from other sorts of crime, such as risk of
re-arrest or risk of committing a violent murder. These other crime risks v could create
omitted-payoff bias as long as yand vare not perfectly correlated: low flight risk individuals

we release could be high risk for other crimes if vand de are positively correlated.
Complicating matters, to minimize omitted-payoff bias, the outcome variable should weight
different crimes as judges would, but these weights are unknown to us. To gauge the
problem, we examine a variety of crime outcomes individually in Table V.

Panel A of Table V shows that those defendants who are at highest risk for FTA are also at
greatly elevated risk for every other crime outcome as well. The first row shows that the
riskiest 1% of released defendants, in terms of predicted FTA risk, not only fail to appear at
a rate of 56.4%, as already shown, but are also re-arrested at a 62.7% rate. They are also re-
arrested for violent crimes specifically at a 6.1% rate, and re-arrested for the most serious
possible violent crimes (murder, rape or robbery) at a 4.8% rate. The remaining rows show
that identifying the riskiest 1% with respect to their risk of re-arrest (or re-arrest for violent
or serious violent crimes in particular) leads to groups with greatly elevated rates for every
other outcome as well.

We also repeat both our contraction analysis and our re-ranking analysis for each one of
these measures of crime as a distinct outcome. The results of our re-ranking policy with a =
1 and the algorithm releasing at the same rate as judges are in Panel B of Table V. With so
many variables, the effects of the contraction analysis are harder to summarize in a single
Table and so we show the figures in Online Appendix Figure A.4. As we might have
anticipated from Panel A, different crime risks are correlated enough that simply releasing
according to FTA risk also reduces other risks. We also see that, had we trained specifically
on these other outcomes, the gains would have been even larger. For example, a reranking
policy based on an algorithm explicitly trained to predict risk of the most serious violent
crimes could reduce the rate of such crimes by 57.3% (from 1.4% to 0.6%) while still also
doing better than the judge on FTA rates. As a whole these analyses suggest no omitted-
payoff bias from other crimes, as they show that these other crimes vand the release rule

m
R?  are negatively, not positively correlated.

2. Omitted-Payoffs Bias: Racial Fairness—Another additional objective judges might
have is racial equity. Even though we do not make race or ethnicity available to the machine-
learning algorithm, it is possible the algorithm winds up using these factors inadvertently - if
other predictors are correlated with race or ethnicity. This is perhaps the most important
concern that has been raised by the possibility of using data-driven predictions to inform
criminal justice decisions.34
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Our contraction analysis relies on a dominance argument. We jail additional defendants until
we achieve the same crime or detention rate as the next quintile of judges; if doing so
produces a lower detention or crime rate we argue that judges can be made better off. But
what if we achieved the same crime rate or same total detention rate by detaining far more
blacks? Judges who cared about racial equity would not be made better off by this outcome.
To account for this possibility, we calculate the effect of contraction on the black detention
rate. The numerical results are displayed in Table VI (and graphed in Online Appendix
Figure A.5). We see that across each leniency quintile, judges at the margin jail blacks at an
above average rate (first versus second column) to achieve lower rates of crime as we move
towards stricter quintiles (third column). In the sixth column we ask what the drop in crime
would be were we to jail defendants until we jailed either as many total or black defendants
as the judge, whichever comes first. Even with this constraint, the algorithm reduces crime
relative to judges, at a magnitude similar to what we saw when it was unconstrained (in
Table I11). Alternatively we can ask what happens to the black jailing rate when we match
the judge’s overall crime rate. We see that to achieve the same crime rate the algorithm only
jails 0.037 additional blacks—less than half as many blacks as judges jail (0.079). Similarly
large gains for blacks are seen in all the other quintiles.

Our results are qualitatively similar when we analyze racial equity in our reranking exercise
with a = 1 in Table VII; because this exercise is simpler we can show effects on Hispanics
as well as blacks. The first row shows the racial composition of the defendant pool as a
whole. The second row shows the outcome of current judge decisions: a crime rate (the ratio
of crimes to total defendants) of 11.3%, with a detention rate to minorities of 28.6%. The
fourth row shows that when we construct an algorithmic release rule to match the judge’s
overall detention rate, the 24.7% decline in crime comes with a detention rate to minorities
that is very similar to that of the judges (29.0%). The remaining rows of Table VII show
what happens when we explicitly constrain the algorithm that seeks to match the judge’s
overall detention rate to also not increase the detention rate for blacks and Hispanics
specifically as well relative to judge decisions, or to not exceed the base rate (share of total
defendant pool). We do this by ranking defendants by predicted risk separately by race and
ethnic group and then detain from each group in descending order of risk until we hit the
constraint for the jailing rate for that group. As with contraction, this constraint results in a
nearly identical crime reduction to what we achieve without the constraint.

Table VII also shows what happens when the algorithmic release rule (even the one built
without any consideration of racial equity) sets a release rate threshold designed to achieve
the same crime rate as what the judges currently achieve. The algorithm can achieve the
same crime rate as the judges but by jailing 40.8% fewer minorities, including 38.8% fewer
blacks and 44.6% fewer Hispanics. As a whole, these results suggest our gains are not
coming from the hidden costs of increasing racial inequity. If anything we see that the
algorithm can reduce racial inequity.

34see for example the 2014 speech given by then-Attorney General Eric Holder (Holder 2014), as well as Harcourt (2010) and Starr

(2014).
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3. Other Omitted-Payoff Biases—Judges could also care about defendant employment
or family circumstances. If these (or any) variables vonly enter the utility function indirectly
— because judges use them to predict y— it would not bias our results. Our concern is instead
if they affect payoffs directly, above and beyond their effect on risk. We cannot directly
examine this in the NYC data because there are no measures of employment or family
status.

Our best option for examining this hypothesis comes from a separate dataset that does
include information about employment and family status of defendants, but has the
disadvantage of being somewhat dated with a relatively modest sample size. This national
dataset, assembled by Toborg (1981, 1997) captured information on a sample of 3,488
pretrial defendants between 1976 and 1978 drawn from eight jurisdictions. (More details
about the dataset and our analysis methods, which are similar to those we use in the NYC
data, are in Online Appendix C.) Since judges in most jurisdictions are asked to focus on
safety as well as flight risk, our outcome is an index equal to one if the defendant was either
re-arrested or FTA’d.3°

At the same release rate as the average judge, the algorithm’s release rule yields a crime rate
that is 9.8% lower than that of the judges. This gain is somewhat smaller than in our New
York data, presumably because the sample size here is much smaller. Interestingly, the
algorithm’s predicted risk (of FTA or re-arrest) is negatively related to marriage and
employment rates. This provides one initial indication that the algorithm’s gains in terms of
reducing crime or detention are not coming at the expense of jailing more married or
employed defendants.

We can also more directly examine this question by comparing who is jailed by the judges
versus the algorithm (see Online Appendix Table A.5). Of the defendants in this dataset,
23.4% were married and 48.2% were employed at the time of their hearing.

Judges are jailing a relatively lower share of married defendants (19.4%) or employed
defendants (28.2%). An algorithm trained to predict crime and construct a release rule that
matches the release rate of the judges (ignoring consideration of these other factors) yields a
jailed population that has a somewhat higher share of defendants who are married (22.3%
versus 19.4%) or employed (41.8% versus 28.2%) relative to the judges. But as in the case
of racial equity, it is possible to explicitly constrain the algorithm to ensure no increase in
the share of the jail population that is married or employed with very little impact on the
algorithm’s performance in reducing crime. These constraints do not affect the conclusion:
they lead to almost no loss in terms of the potential gain from reduced crime. While this
dataset has some important limitations, these results are not consistent with the hypothesis
that our results are driven by omitted-payoff bias from defendants’ marital or employment
status.

35Re-arrests also raise the possibility of ‘replacement’ effects: if crime is committed in groups or if someone else would step in to fill
an opportunity to commit a crime a jailed defendant would have committed (Donohue 2009). If this occurs, our results for reduced
arrests overstate reduced crime. To the extent to which replacement is an issue for other interventions, we can still make meaningful
comparisons between our tool and other crime-control strategies.
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Omitted-payoff bias poses a serious challenge since we rarely know the full breadth of
decision makers’ preferences. We chose an example with a narrow, specific preference
dictated by the law. We also ruled out some of the most obvious, important confounds — race
and other crimes. Yet even here one can postulate other, harder-to-account-for preferences,
such as case employment and marital status. When evaluating whether machine predictions
improve human decisions, omitted-payoff bias appears as important as selective labels.

V.B. Other Potential Sources of Confounding

In this section we consider other potential sources of confounding as well. (More details and
results are provided in Online Appendix D.)

Besides omitting preferences that drive judicial decisions, we might also have omitted a
particularly important constraint that binds judge’s decisions: jail capacity. This could
prevent the judge (but not the algorithm) from putting high-risk people in jail during times
when the local jail is filled up. Online Appendix Table A.7 shows that even after accounting
for this concern, we continue to see large potential social-welfare gains from releasing
defendants using machine rather than judge predictions.

A different potential concern is that our analysis overstates the potential gains of the
algorithm relative to the judges because the algorithm is unstable - that is, changing over
time in ways that attenuate the potential gains of the algorithm relative to the judge
decisions. Yet in practice we find few signs our algorithm is particularly unstable.

A final potential concern is that our algorithm performs well only because after much trial
and error we have stumbled across the one model specification that dominates the judges -
that is, our results are due to some form of inappropriate human data mining. As noted
above, one way we guard against this is by forming a true hold-out set of 203,338 cases that
remained in a ‘lock box’ until this final draft of the paper. We obtain very similar results in
this ‘lock box’ as in the “preliminary’ hold-out set.

VI. UNDERSTANDING JUDGE MISPREDICTION

The previous results suggests that judges are mispredicting. We now attempt to understand
why they are mis-predicting. This exercise sheds light on what judges are getting wrong, and
more generally highlights the potential of machine-learning tools to help test theories of
human decision making and behavior, not just solve policy problems.

VI.A. Release vs. bail amount

For starters there is a question of what exactly judges are mispredicting. So far in our
analysis we have made the simplifying assumption that judges simply release or jail, when
in fact they set a bail amount as well. It is logically possible that in the results we presented
above, the judge actually intended to jail high-risk people but simply mispredicted what bail
amount they would be able to make and assigned them bail amounts that were ‘too low.” Put
differently, perhaps judges are mispredicting ‘ability to pay’ rather than risk?36
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To examine this possibility we can examine the degree of predictable risk we find among
defendants the judges release outright - that is, people the judges assign to release on
recognizance (ROR). For this group there is no possibility of mis-predicting ability to pay.
Even among those ROR’d, we see high levels of predictable risk: the crime rate for the
riskiest 1% of defendants ROR’d by the judge is similar to what we see among the full
released set (y = 59.2% versus y = 56.3%).

We can also redo our contraction analysis but now restricting the algorithm to select
marginal defendants to detain only from among the set of people the most lenient quintile
judges ROR’d. We again see very large gains of the algorithm relative to the judges (see
Online Appendix Figure A.6). This result also helps rule out a more subtle potential
problem: our contraction analysis could be biased if higher bail amounts deter misbehavior
and if judge leniency were systematically correlated with bail amounts.37

VI.B. Misranking by observables

Why are judges mispredicting crime risk? One reason appears to be that they misuse the
defendant and case characteristics observable in our data (.X). To show this we return to our
contraction exercise, where we look across the decisions of judges in different leniency
quintiles to compare how the judges versus our algorithm select additional defendants to
detain as we reduce leniency (release rates).

Looking across the caseloads of judges with different levels of leniency (release rates) we
can uncover the implicit rank ordering of defendants. In particular, it allows us to quantify
the risk of the marginal defendants detained. Suppose for instance that we have two judges
who differ in their release rates, equal to say 90% and 80%, and that defendants are
randomly assigned to judges. Because we can calculate the algorithm’s predicted risk for
each defendant in each judge’s caseload, we can compare the distributions of predicted risk
among the two judge’s caseloads to determine where in the distribution the additional

defendants jailed by the stricter judge come from. That is, if R! = 0.9 and R* = 0.8 are the

release rates for the lenient and strict judges, respectively, then at each value of the
algorithm’s predicted risk we can observe £[RL|m(x)] and E[~%|m(x)] and calculate £[RY|

mx)] - E[RAm(X)].

Figure VI illustrates the results of this exercise. We sort defendants by predicted risk and bin
them into 20 equal-sized groups. The dark segment at the top of each bin shows what share
of defendants in that bin is detained by the most lenient quintile judges. The medium-shaded
segments on the left shows that the algorithm would prioritize for detention people in the
highest predicted risk bins if the goal were to lower the release rate from the most lenient
quintile’s rate down to the second-most-lenient quintile’s rate (top panel), or third-most-

36Bail amounts for those assigned cash bail by decile of predicted risk are in Online Appendix Table A.9. Mostly we see large
difference in the share of defendants released on recognizance rather than assigned cash bail.

Suppose more lenient judges assigned higher cash bail amounts among those released. If higher bail deters misbehavior (because
bail is collateral), the algorithm’s contraction of the lenient quintile’s released set could show less crime than what we see in the next-
most-lenient quintile’s released set (at the same release rate) because defendants within the lenient quintile’s released set are deterred
by their higher bail amounts. So showing that the algorithm beats the stricter judges even when constrained to jail cases ROR’d by the
lenient quintile rules this out. In addition the distribution of cash amounts at almost every quantile of the bail distribution is very
similar across leniency quintiles; see Online Appendix Table A.10.
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lenient quintile’s rate (second panel), etc. The medium shading on the right shows from
which risk bins the judges actually select marginal defendants to detain. It is worth noting
that there are no predicted-risk bins where there are more defendants released by a stricter
judge than by a more lenient judge.

The key finding from Figure V1 is that as judges become stricter, they jail low risk
individuals before high risk ones: marginal defendants are drawn from throughout the
predicted risk distribution. The extent of misranking is sizable. All the additional jailing of
the second quintile could be had by jailing everyone in the top 11.98 percentile of risk; yet
only 33.2% of additional defendants come from this riskiest tail.38 The third quintile of
stringency could be achieved by jailing everyone in the top 14.10% of risk, and only 29.8%
are drawn from there. For the fourth and fifth quintiles, the analogous numbers are the 18.56
and 28.45 percentiles; and 31.8% and 39.6%. A primary source of error is that all quintiles
of judges misuse the signal available in defendant characteristics observable in our data:
when prioritizing defendants for detention, many low risk defendants are ranked above high
risk ones.

VI.C. Predicting Judicial Behavior

To better understand where and how judges are mistaken, it will be helpful to form a
prediction of the judge’s choices, J: Let j}(X) = Elp{x 2, W)|x] be the expected release
probability for each individual based solely on the data available to judge /at the time of
choice. Note that this predictive model of the judge never sees the outcome of whether the
defendant committed crime, only who the judge released.

1. Which Cases are Hard?—We begin by examining where in the risk distribution
judges are having the most trouble. While ex ante the answer is not obvious, looking at other
domains can provide us with some initial intuition about what we might have expected. For
example in education, studies find that principals do a good job identifying which teachers
are in the tails of the performance distribution - the very high performers and the very low
performers - but have a hard time distinguishing among teachers in the middle of the
distribution (Jacob and Lefgren, 2008). Yet, our results for judge bail decisions run counter
to this intuition.

We examine this question by investigating where in the predicted-risk distribution judges
have the most uncertainty. What we observe is just a binary indicator of whether the judges
released a given defendant /, which cannot convey much about judge uncertainy. However
J(X), since it measures the probability of release, does quantify this uncertainty.

We find that judges struggle not so much with the middle of the distribution, but instead with
one tail: the highest-risk cases. When we sort defendants into quintiles based on predicted
crime risk, 71(.X;), we see a much greater dispersion in predicted jailing probabilities J{.X)
among the highest-risk cases compared to the low-risk cases (Online Appendix Figure A.7).
That is, judges treat many of these high-risk cases as if they are low risk. We have also

38since the second quintile jails 6.6 percentage points additional defendants, this means only an extra 2.19 percentage points from the
top 12.0% of the risk distribution.
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examined the characteristics that define these tails. Judges are most likely to release high-
risk people if their current charge is minor, such as a misdemeanor, and are more likely to
detain low-risk people if their current charge is more serious (Online Appendix Table A.11).
Put differently judges seem to be (among other things) overweighting the importance of the
current charge.

2. Noisy Predictions—~Putting aside for the moment the evaluation problem, let us first
consider how J"compares to the judge herself. To do this let us form a release rule

/)JA = lif and only if fj(x) >k
J
where kis set to equalize its release rate to judge s's. The difference in crime rates between

the judge and E - E[ypj] which we can write as:

yﬂf.
J

E = E|x| +E

Y

20 — Zj(x)]

Py = Pj
J

pj._pj

We see it depends on two factors: (i) whether they release from some high-risk bins; and (ii)
whether judges select well on unobservables, i.e. on whether the judge selects better or
worse unobservables than the average in each xbin (which is what J"achieves). It is clear
that if /1{x, z, W) = x+ zthen, conditionally on X, judges release the lower risk defendants;
and hence o/ will outperform J. At the same time if human judgment is also influenced by
w;, unobservables not correlated with y, that can induce some high-risk bins to be released
and possibly even selection on unobservables to be poor, allowing J'to do better than .

In practice, evaluating J'suffers from the same issues as evaluating any /7(x) rule and we
will use contraction as above. We will do this in the same way we compared in Section I1V.B.
the judge to the algorithm. As before, we begin with the set of cases released by the most
lenient quintile judges. We then jail additional defendants as we predict the judges would -
jailing first those defendants with the highest predicted probability of judges jailing them. In
other words, we begin by jailing those defendants who are released but whom we predicted
have the highest probability of being jailed by the judges. (The difference with our previous
comparison to the judges is that we had earlier jailed defendants by the algorithm’s
predicted crime risk.)

We find that the predicted judge does better than the judges themselves. In Table VIII we
quantify the crime reduction for the same increase in jailing, and we measure what jailing
increase leads to the same crime reduction (the results are also plotted in Online Appendix
Figure A.8). The predicted judge does significantly better. The second quintile of judges
reduce crime by 9.9% by increasing the detention rate by 6.6 percentage points. The
predicted judge would have achieved the same crime reduction by increasing the detention
rate by only 4.7 percentage points (28.8% less than the judge); or alternatively, by increasing
the detention rate by 6.6 percentage points we could have reduced crime by 13.4% (35.5%
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more than the judge). These are large gains by comparison: they represent more than half the
gain achieved by using the algorithm trained on crime directly to release defendants. These
results could in principle be due to a ‘wisdom of the crowd” effect: .J'is not the predicted
version of a single judge, but rather the prediction of many judges. Yet we find similar
results using an algorithm trained on just a single judge’s caseload.39

Our results taken together suggests one reason why judge release decisions can be improved
upon: Their actual decisions are noisy relative to a mean J'that contains much more signal.
In particular, this ‘noise’ appears to be due to unobservable variables, which unduly
influence these decisions. Our data cannot tell us what these sources of ‘noise’ are but the
behavioral science literature suggests that highly salient interpersonal information (such as
the degree of eye contact that is made) can be overweighted, and that less salient but more
informative data (like past behaviors) can be underweighted.

3. Decomposing the Sources of Judicial Error—A simple decomposition helps
calibrate the extent of each source of judicial error. In particular, we focus on the crime gap
between the judges’ and algorithm’s decisions: £ Y p/] £ Y p9). For simplicity, empirically
we calculate this difference in the context of our reranking policy simulation with a = 1. As
in the previous section we can decompose this difference as (£ Y p]- £ Yp‘f])+(E[ ij]_
A Y p9), the first term reflecting the inconsistency we have documented. Examples of this
inconsistency include judges making exceptions to their usual decision rules based on
irrelevant case characteristics or their mood at the time (1). We calculate this difference and
display it in the Online Appendix, in Table A.12. This difference explains 25.9% of the gap
in results between (o/) and (o9. It is worth noting that this is smaller than the gains we saw
in Table V111 — it is possible that J'is more useful for ranking marginal defendants than for a
full reranking.

The predicted judge release rule pfhas two components. First, it groups people together as
judges would: it treats (up to the need to tiebreak) all defendants within a J{) cell
identically. Second, it rank orders these cells as judges would: based on release rates E[A’j/f
(x)]. But these are distinct errors. If judges had a simple linear model, but used the wrong
sign on one of the binary variables, their groupings could be correct, but they would be
misranking on one dimension. Our second decomposition differentiates between these two
errors. We form a release rule that groups defendants as judges would, by J'(X), but which
then ranks them by £[ Y/.7'(x)] (or more precisely £[m(x)|J(x)]). We see that this release
rule is able to achieve 36.4% of the total performance gain of (0% versus (¢/), or put
differently adds another 10.5% of the overall p” gain relative to what is achieved by our
standard predicted judge rule, J{x).

The remaining judge error is due to judges having the wrong underlying structure for which
defendants are similar to one another with respect to risk. This could arise if for example
there are key case characteristics that judges completely ignore, or interactions between

39 restrict ourselves to judges that heard at least 5,000 cases in our study sample, to ensure that we have enough data to construct a
meaningful algorithm. We can then use any one of these individual predicted judges to contract down the released set of the most
lenient-quintile judges’ caseload; the results are shown in Online Appendix Figure A.9. Lakkaraju et al. (2015) propose a general
Bayesian method for analyzing decisions by groups of evaluators.
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variables that judges do not consider.40 Our decomposition is only approximate, since our
model for the judge’s decisions J(x) is not perfect.41 But it is telling that fully 63.6% of the
gap in performance between (o) and (o9 is left unexplained by the other components of our
decomposition.

VII. CONCLUSION

The bail example highlights the value of solving social science problems of the type:

Data — Prediction — Decision

Machine-learning applications typically focus solely on the Data — Prediction link. The
objective is to search through different candidate prediction functions and identify the one
with the greatest prediction accuracy - a ‘bake off.” Algorithm performance tends to be
quantified on predictive value. The bail example, though, illustrates why understanding the
Prediction — Decision link is at least as important. Looking past prediction quality to
decision quality is what makes clear the problems of selective labels and omitted-payoff
biases. Good predictors do not necessarily improve decisions. There is significant distance
between constructing a prediction algorithm and knowing that a decision aid based on it can
improve outcomes.

It is instructive to compare the state of the art for introducing data-driven decision aids with
how new drug therapies are brought to market. Before any new drug can be sold the Food
and Drug Administration (FDA) requires several stages of testing. Phase 0 and Phase 1 trials
demonstrate basic safety of the drug, while Phase 2 trials compare at medium scale and for
easily measured outcomes the effects of the new drug to either placebo or current best
practice. If a drug passes, it is subject to a larger scale Phase 3 trial that quantifies key
clinical outcomes. Current machine-learning practice of establishing predictive validity is
analogous to passing a Phase 0 or 1 trial. As with drugs, going directly from a Phase 0 or 1
trial to market risks doing social harm.

We view our results, with their focus on payoffs and counterfactual evaluation of the
decision aids, as the equivalent of a Phase 2 trial. They show promising impacts. At the same
time, they leave several open questions that would require the analogue of a Phase 3 trial.
Such a trial would begin with an explicit discussion of the key objectives for any new
decision aid, reducing risk of omitted-payoff bias. The trial itself would quantify how judges
interact with the decision aid. Sometimes judges largely ignore these tools, as in New York
City, perhaps because the six-item checklist risk tool they use has limited predictive
accuracy (NYC CJA 2016). But in other cases where algorithms may be more accurate they
do appear to be used, as in the Philadelphia bail experiment (Goldkamp and Gottfredson,
1984, 1985) and more recently when parole boards get machine-learning-based tools (Berk,
2017). The design of decision aids requires some way to ensure judges override when they

40we have also explicitly compared the release and jailed sets between judges and .J: We show how these sets differ for each of our
observed variables in Online Appendix Table A.13. .
1\We know defendants in different J (x) cells are viewed differently by judges, but judges could view defendants in similar J"(x) cells

differently.
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have signal rather than when they are simply adding noise (the ‘override problem’). Finally,
a large-scale trial is the only way to quantify general equilibrium effects. For example in our
application both defendant and judges’ behavior could change if all cases were filtered
through a predictive model (for example if judges change their willingness to dispose of
cases at the bail hearing).

Prediction policy problems are not only socially important, they are also scientifically
interesting. Predictive algorithms can serve as a behavioral diagnostic, helping to understand
the nature of human error. Though the data we have were somewhat limited in this regard,
algorithms applied to richer data might produce novel behavioral insights. Progress on these
problems will require a synthesis of multiple perspectives, both the techniques of machine
learning as well as behavioral science and economics. Experimental tools have been
invaluable for understanding and improving human decisions. If our findings are any
indication, predictive tools could prove similarly effective.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure I. Partition of New York City Data (2008-13) into Data Sets Used for Prediction and
Evaluation

Notes.: We show here the partitioning and analysis strategy for our dataset from New York
City covering arrests from November 1, 2008 through November 1, 2013. The original
sample size is 1,460,462. For our analysis we drop cases that were not subject to a pretrial
release hearing, which leaves us with a total of 758,027 observations. We selected the final
hold-out set of 203,338 by taking all cases arraigned in the last six months of our dataset (all
cases arraigned after May 1, 2013), randomly selecting all cases heard by judges among the
25 judges with the largest caseloads until reaching 10% of total observations, which winds
up selecting 7 judges, and randomly selecting 10% of all observations (these samples can be
overlapping). In this draft we evaluate all of our results by randomly selecting a test set of
20% of the remaining 556,842 observations in our working sample. The remaining data is
evenly divided between a training set that is used to form the algorithmic crime predictions
used in all our analysis; and an imputation set used to impute crime risk (when needed) for
jailed defendants. To account for potential human data-mining, this lock box set was
untouched until the revision stage (this draft): in Table A.8 we replicate key findings on this
previously untouched sample.
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Figure Il. How Machine Predictions of Crime Risk Relate to Judge Release Decisions and Actual

Crime Rates

Notes: The figure shows the results of an algorithm built using 221,876 observations in our
NYC training set, applied to the 110,938 observations in our test set (see Figure 1). Both
panels show the algorithm’s predicted crime risk (defined here as predicted risk for failure to
appear, or FTA) on the x-axis: each point represents one of 1,000 percentile bins. The left
panel shows the release rate on the y-axis; the right panel shows the realized crime risk on

the y-axis.
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Figure I11. Testing Quasi-Random Assignment of Defendants Across Leniency Quintiles
Distribution of p-values for Balance Tests in Contraction Sample

Notes: The figure shows the distribution of p-values for balance checks in our contraction
sample summarized in Table A.3. We construct 577 borough, year, month and day of week
‘cells” in the New York City data where we have at least five judges. We then define judge
leniency quintiles within each cell. We regress each defendant’s predicted FTA (based on
baseline characteristic) against dummies for leniency quintile and form an/statistic for the
test of the null that these dummies all equal zero; these are compared to a distribution of ~
statistics produced by permuting the leniency quintile dummies randomly within each cell.
The figure graphs the resulting p-value distribution. See Online Appendix A for more
details.

@ J Econ. Author manuscript; available in PMC 2018 May 11.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Kleinberg et al.

Predictions Formed
Using All Quintiles

Predictions Formed Using Most Lenient Quintile Only

Page 38

- » ,'
0.f 3 ons It 2 o
2 b, Jui 5 7
A= %
oy -
[ |} -
st se
g o I
- ’
% 0.2
0.0 t’
|_,'i| 0.2 ||..'| -_|I|.
Predicted Risk
ictions Ev 2 Predictions Evaluated el
& Q2 . i on Q3 .
E - . E - -
T e z -
I . &
o -t &) e e
T Ky T o
G Sppe” C L
% ##' 2 fk*
Predicted Risk Predicted Risk
Predictions Evaluated Predictions Evaluated e
@ on Q4 et £ on Q5 " .
E PEAE E o
= - =4 -7 .
&) e -} L% e
= &% * z _Tye
£ . 4 P“‘.'
e e g .
- f S
0.2 i 0.6 )0 0.2 04 0.6
Predicted Risk Predicted Risk

Figure IV. Do Judges of Different Leniency Screen Differently on Unobservables? Evaluated
Predictors Formed Using Most Lenient Quintile on Other Quintiles
Notes: This figure tests whether the most lenient quintile judges in our NYC dataset are

better at using ‘unobservables’ in making release / detain decisions than are the less lenient
quintile judges. The top panel reproduces the calibration curve from Figure 2, plotting the
algorithm’s predicted crime risk (defined here as predicted risk for failure to appear, or FTA)
against observed crime rates within the test set. For the remaining panels, we train an
algorithm using just the set of defendants released by the most lenient quintile judges, and
then use that algorithm to generate predicted crime risk to compare to observed crime rates
for the set of defendants released by the less lenient quintiles of judges.

@ J Econ. Author manuscript; available in PMC 2018 May 11.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Kleinberg et al.

Most Lenient

Quintile

2nd
Quintile

3,rd
Quintile

4‘t.h
Quintile

5th
.
Quintile

Percent Decline in Crime

Percentage Point Increase in Detention Rate

Figure V. Does Jailing Additional Defendants by Predicted Risk Improve on Judges?
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Notes. This figure looks at performance when additional defendants are jailed according to a
predictive model of crime risk (defined here as predicted risk for failure to appear, or FTA),
comparing crime rates and release rates to the actual decisions made by stricter judges. The
rightmost point in the graph represents the release rate of the most lenient quintile of judges,
with the crime rate that results. The solid line shows the crime reductions that we realize if

we released defendants according to the predicted crime risk. By comparison, the light

dashed line shows the decline in crime (as a percentage of the lenient quintile’s crime rate,
shown on the y-axis) that results from randomly selecting additional defendants to detain
from within the lenient quintile’s released cases, with the change in release rate relative to
the lenient quintile shown on the x-axis. The four points on the graph show the crime rate /
release rate outcomes that are observed for the actual decisions made by the second through
fifth most lenient quintile judges, who see similar caseloads on average to those of the most

lenient quintile judges.
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Figure V1. Who do Stricter Judges Jail and Who Would the Algorithm Jail? Comparing
Predicted Risk Distributions Across Leniency Quintiles

Notes: This figure shows where each of the quintiles of stricter judges in NYC select their
marginal defendants (relative to the most lenient quintile), compared to how the algorithm
would select marginal detainees. Within each panel, we divide the sample up into 20 bins by
predicted crime risk (shown on the x-axis). The black segment at the top of each bar shows
the share of each bin the most lenient quintile judges jail. In the top right-hand panel, we
show which defendants the second-most-lenient quintile judges implicitly select to jail to get
from the most lenient judge’s release rate down to their own lower release rate (blue), and
who they continue to release (white). The left-hand top panel shows whom the algorithm
would select instead. Each of the remaining rows shows the same comparison between the
judge and algorithm decisions for the other less lenient judge quintiles.
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Summary Statistics for New York City Data, 2008-13

Sample Size
Release Rate
QOutcomes
Failure to Appear (FTA)
Arrest (NCA)
Violent Crime (NVCA)
Murder, Rape, Robbery (NMRR)
Defendant Characteristics
Age
Male
White
African American
Hispanic
Arrest County
Brooklyn
Bronx
Manhattan
Queens
Staten Island
Arrest Charge
Violent Crime
Violent Felony
Murder, Rape, Robbery
Aggravated Assault
Simple Assault
Property Crime
Burglary
Larceny
MV Theft
Arson
Fraud
Other Crime
Weapons
Sex Offenses
Prostitution
DUI
Other
Gun Charge

Drug Crime

Full Sample
554,689
0.7361

0.1112
0.1900
0.0274
0.0138

31.98
0.8315
0.1273
0.4884
0.3327

0.2901
0.2221
0.2507
0.1927
0.0440

0.1478
0.0581
0.0853
0.2144

0.0206
0.0738
0.0067
0.0006
0.0696

0.0515
0.0089
0.0139
0.0475
0.1375
0.0335

Judge Releases
408,283
1.0000

0.1521
0.2581
0.0372
0.0187

31.32
0.8086
0.1407
0.4578
0.3383

0.2889
0.2172
0.2398
0.2067
0.0471

0.1193
0.0391
0.0867
0.2434

0.0125
0.0659
0.0060
0.0003
0.0763

0.0502
0.0086
0.0161
0.0615
0.1433
0.0213

Judge Detains
146,406
0.00

33.84
0.8955
0.0897
0.5737
0.3172

0.2937
0.2356
0.2813
0.1535
0.0356

0.2272
0.1110
0.0812
0.1335

0.0433
0.0959
0.0087
0.0014
0.0507

0.0552
0.0096
0.0078
0.0084
0.1216
0.0674

p-value

<.0001
<.0001
<.0001
<.0001
<.0001

.0006

<.0001
<.0001
<.0001
<.0001

<.0001
<.0001
<.0001
<.0001

<.0001
<.0001
<.0001
<.0001
<.0001

<.0001
.0009

<.0001
<.0001
<.0001
<.0001
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Full Sample  Judge Releases

Drug Felony 0.1411
Drug Misdemeanor 0.1142

Defendant Priors

FTAs 2.093
Felony Arrests 3.177
Felony Convictions 0.6157
Misdemeanor Arrests 5.119
Misdemeanor Convictions 3.122
Violent Felony Arrests 1.017
Violent Felony Convictions 0.1521
Drug Arrests 3.205
Felony Drug Convictions 0.2741
Misdemeanor Drug Convictions 1.049
Gun Arrests 0.2194
Gun Convictions 0.0462

0.1175
0.1156

1.305
2.119
0.3879
3.349
1.562
0.7084
0.1007
2.144
0.1778
0.5408
0.1678
0.0362

Judge Detains
0.2067
0.1105

4.288
6.127
1.251
10.06
7.473
1.879
0.2955
6.163
0.5429
2.465
0.3632
0.0741

p-value
<.0001
<.0001

<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Notes: This table shows descriptive statistics overall and by judge release decision for the 554,689 cases that serve as our New York City analysis
dataset shown in Figure I. For each variable, we perform a test of the equality of means between released and detained defendants. Released
defendants are defined as those who are released outright by judges, as well as those assigned cash bail who are released because they make bail.
Detained defendants are those who are assigned cash bail and cannot make bail, together with those who are remanded (no offered bail). Failure to
appear is defined as not showing up at a required court hearing prior to adjudication of the defendant’s case, as measured from court records. Re-
arrest is defined as being arrested again prior to adjudication of the case; this could include some defendants who are arrested as a result of a failure

to appear. The p-value for this test are in the last column.
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Table Il

Does Jailing Additional Defendants by Predicted Risk Improve on Judges? Contraction of the Most Lenient

Judges’ Released Set

Judges Algorithm

Relative to Most Lenient Quintile  To Achieve Judge’s

A Jail
Second Quintile 0.066
Third Quintile 0.096
Fourth Quintile 0.135
Fifth Quintile 0.223

A Crime A Jail

A Crime AJail  ACrime
-0.099 0.028 -0.201
-0.137 0.042 -0.269
-0.206 0.068 -0.349
-0.307 0.112 -0.498

Notes: This table reports the results of contrasting the cases detained by the second through fifth most lenient quintile judges compared with the
most lenient quintile judges, and to a release rule that detains additional defendants in descending order of predicted risk from an algorithm trained
on failure to appear. The first column shows from where in the predicted risk distribution each less lenient quintile’s judges could have drawn their
marginal detainees to get from the most lenient quintile’s release rate down to their own release rate if judges were detaining in descending order of
risk. The second column shows what share of their marginal detainees actually come from that part of the risk distribution. The fifth column shows
the increase in the jail rate that would be required to reach each quintile’s reduction in crime rate if we jailed in descending order of the algorithm’s
predicted risk, while the final column shows the reduction in crime that could be achieved if we increased the jail rate by as much as the judge

quintile shown in that row.
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Table VIII

Comparing Judges to the Predicted Judge using Contraction

Judges Predicted Judge (J)

Relative to Most Lenient Quintile  To Achieve Judge’s
A Crime A Jail

A Jail A Crime A Jail A Crime

Second Quintile 0.066 -0.099 0.047 -0.134
Third Quintile 0.096 -0.137 0.068 -0.188
Fourth Quintile 0.135 -0.206 0.106 -0.254
Fifth Quintile 0.223 -0.307 0.166 -0.399

Notes: This table replicates the comparison of the algorithmic release rule to the decisions of less lenient quintile judges, but now using an

Page 50

algorithmic release rule based on a model that predicts the release decisions of the judges (our ‘predicted judge’ model). The first and second
columns show the difference in jail rates and crime rates between the 2nd through 5th most lenient quintile judges compared to the most lenient
quintile. The third column shows the increase in the jail population that would be required to meet the judges’ drop in crime if we jailed people in
descending order of our prediction that the judges release a case. The fourth column shows the decline in crime that could be achieved if we

increased the jail rate the same as the judges do, but detain people in ascending order of the judge predicted release probabilities.
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