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Recent advances in condensed matter physics have shown that the spin degree of freedom of electrons can be ef-
ficiently exploited in the emergent field of spintronics, offering unique opportunities for efficient data transfer, com-
puting, and storage (1–3). These concepts have been inspiring analogous approaches in photonics, where the
manipulation of an artificially engineered pseudospin degree of freedom can be enabled by synthetic gauge fields
acting on light (4–6). The ability to control these degrees of freedom significantly expands the landscape of available
optical responses, which may revolutionize optical computing and the basic means of controlling light in photonic
devices across the entire electromagnetic spectrum. We demonstrate a new class of photonic systems, described by
effective Hamiltonians in which competing synthetic gauge fields, engineered in pseudospin, chirality/sublattice,
and valley subspaces, result in bandgap opening at one of the valleys, whereas the other valley exhibits Dirac-like
conical dispersion.We show that this effective response hasmarked implications on photon transport, amongwhich
are as follows: (i) a robust pseudospin- and valley-polarized one-way Klein tunneling and (ii) topological edge states
that coexist within the Dirac continuum for opposite valley and pseudospin polarizations. These phenomena offer
new ways to control light in photonics, in particular, for on-chip optical isolation, filtering, and wave-division multi-
plexing by selective action on their pseudospin and valley degrees of freedom.
INTRODUCTION
The rich physics of electromagnetic phenomena facilitated by the inter-
nal degrees of freedom of light (for example, polarization and angular
momentum) has enabled a multitude of applications, from multimode
optical fibers and holography to tractor beams and topologically robust
propagation (7–9). This plethora of opportunities for optical manipula-
tion is enabled by the use of synthetic photonic potentials implemented
via engineered light-matter interactions in structured materials, which
allow imprinting of a specific structure to light. Periodically patterned
opticalmedia, such as photonic crystals andmetamaterials (10, 11), play
an important role here, allowing the emulation of a wide range of
condensedmatter phenomena. Suitably tailored periodicity has enabled
the emergence of photonic bandgaps and, most recently, led to the dis-
covery of photonic topological insulators (4–6, 12–27), enabling par-
allels with condensed matter physics that have been an inspirational
driving force for photonics research.

Recent progress in spintronics has opened markedly new opportu-
nities to manipulate spin-polarized carriers and serves as an additional
example of this analogy. Engineered pseudospin in photonics has
inspired significant interest as an additional degree of freedom in the
context of topological electromagnetic states (4–6, 12–27). Photonic
structures biased by synthetic gauge potentials selectively acting on
the polarization of light, its angular momentum, or valley degrees of
freedom have been used to engineer symmetry-protected topological
order for photons and topologically robust pseudospin-polarized
transport (24–27). More recently, coupling of pseudospin and valley
degrees of freedom has been used to create spin-polarized bandgaps
at the two valleys of a photonic analog of graphene (27).

To engage the full potential of spin-valley photonics, we should de-
sign a special class of materials exhibiting conducting versus insulating
states for opposite photonic pseudospins and valleys. Even more in-
triguing properties canbe achieved if the conduction takes place via pho-
tonic modes with relativistic-like Dirac spectrum. Here, we achieve, for
the first time, this selectivity in systemswithDirac spectrumwith respect
to both pseudospin and valley degrees of freedom. In turn, this discovery
allows us to nontrivially extend the space of available effective photonic
potentials by coupling pseudospin, valley, and sublattice (chiral) degrees
of freedom. We demonstrate these phenomena in systems with and
without time-reversal symmetry (TRS), proving the existence of valley-
and spin-valley–polarized one-wayDirac spectra in both circumstances.
The proposed structures behave effectively as Dirac semimetals and in-
sulators for opposite pseudospin and/or valley polarizations. These
exotic optical responses emerge at the crossover between distinct topo-
logical photonic phases: (i) quantumHall and valley Hall and (ii) quan-
tum spin Hall and valley Hall phases. The critical points of topological
transitions exhibit unusual properties at topological domainwalls, where
the pseudospin- and valley-polarized edge states coexist within the
continuum associated with opposite polarizations.

The proposed systems to realize these effects are shown in Fig. 1 (A
and B), which emulate two different scenarios without and with TRS,
and represent photonic crystals with hexagonal and triangular lattices,
respectively. The degeneracies with crossed linear Dirac-like dispersion
in honeycomb crystals are protected by both spatial inversion symmetry
(SIS) andTRS. In photonic lattices, theseDirac cones necessarily appear
in pairs, unless TRS is broken. For this reason, photonic graphene
exhibits a pair of Dirac cones at each valley of its Brillouin zone (28).
Provided that the intervalley scattering is absent, the valleys can be used
as a new degree of freedom, offering the opportunity to engineer and
control electrons and photons (29–36). In particular, coupling of valley
and pseudospin degrees of freedomhas been proposed to generate spin-
valley–coupled currents and spin-valley filtering in condensed matter
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physics. In photonics, the valley degree of freedom has been used to
emulate spin in photonic topological insulators (6) and to separate pseu-
dospin flows in metamaterials (27).
RESULTS
Topological photonic crystals with one-way Dirac spectra
We first consider the simpler case of photonic graphene (Fig. 1A) with
broken TRS—a honeycomb array of high-index ferromagnetic rods
magnetized along their axes. The bipartite unit cell consists of cylinders
with radii rA and rB with scalar permittivity D in a lattice with lattice
constant a. The gyromagnetic response of the ferromagnetic material
is induced by a static magnetic field B0 along the z axis, and it is de-
scribed by a magnetic permeability tensor with diagonal components
mxx = myy = m and off-diagonal components mxy = −myx = ik. Two types
of symmetry reduction can be introduced to this system, resulting in
two distinct quantum Hall–like (12, 13, 15) and valley Hall topological
phases (12, 35). In the photonic graphene, the valley Hall phase is in-
duced by the reduction of the sublattice symmetry due to the dimeriza-
tion of A and B sites, that is, by making the radii unequal. The quantum
Hall–like phase is attained by breaking of TRS due to magnetization.
For the photonic crystals with hexagonal symmetry considered here,
the spectrum hosts a pair of Dirac points at K and K′ valleys of the
Brillouin zone. Both symmetry reductions induce synthetic gauge fields,
leading to the inversion of bands touching at the Dirac points. As a re-
sult, the bands ascribed to nonvanishing Berry curvature and can ascribe
an appropriate topological invariant—Chern or valley Chern number
for magnetized and dimerized lattices, respectively (12, 35).
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The effective Hamiltonian describing both states can be obtained
from Maxwell’s equations using the plane-wave expansion (PWE)
method (4, 11) and the k·p approximation in the vicinity of the Dirac
points. Including the valley degree of freedom, the effectiveHamiltonian
then assumes the form (section S1.1)

Ĥ ¼ vDŝx t̂zdkx þ vDŝy t̂0dky þ ŝzðt̂zmT � t̂0mIÞ ð1Þ

where t̂i and ŝi are Pauli matrices in valley and sublattice degrees of
freedom, dk is a deviation of the wavevector fromDirac points, andmT

andmI aremass terms induced by TRS and SIS reductions, respectively.
The form of Hamiltonian (Eq. 1) reveals that the effective mass due

to TRS breaking (mT-term) has opposite signs at the two valleys. On the
other hand, the effective mass due to SIS breaking (mI-term) has the
same sign at both valleys. This implies that one can artificially tune
the structure parameters to make the masses equal mT = mI, thus
closing the bandgap at the K point and, at the same time, doubling
it at the K′ point. As a result, the dispersion at the K′ valley exhibits
locally quadratic (parabolic) dispersionW±ðdkÞ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Dðdk2x þ dk2yÞ þm2

q
,

with m = mT + mI, whereas the dispersion at the K valley exhibits
gapless linear Dirac-like dispersion.

The second model we consider implements TRS-preserving
scenario with a pseudospin degree of freedom. It represents a triangular
array of triangulated bianisotropic rods. The pseudospin degree of free-
dom is introduced by the duality symmetry, ensured by equal electric
permittivity D̂ and permeability m̂ of the rods (5). The dual crystals have
been shown to emulate a quantum spin Hall state for the pseudospins
y↑(↓) = Ez ± Hz when the bianisotropic response is introduced. The
bianisotropy is described by the effective constitutive relations with
magnetoelectric coupling D ¼ D̂Eþ x̂H and B ¼ m̂Hþ x̂

†
E , where

the only nonvanishing elements of the bianisotropy parameter x̂ are
xxy = −xyx = iD.

The duality of the crystal provides double degeneracy of the spectrum
with respect to transverse electric (TE) and transverse magnetic (TM)
modes, whereas its triangular symmetry ensures the presence of two
overlaid Dirac points for dipolar (orbital number l = ±1) bands at each
valley. The bianisotropic response has an effect analogous to spin-orbit
coupling in electronic systems, and it results in band crossing of TE and
TM bands and opening of topological bandgaps for both pseudospins
and valleys (5). In addition, the Dirac points can be gapped by the re-
duction of spatial symmetry by triangulation of the rods, which has an
effect analogous to the dimerization of a honeycomb (graphene) lattice,
giving rise to a valley Hall photonic state (24, 35).

The effective Hamiltonian describing this structure can be again
obtained fromMaxwell’s equations (see section S1.2) and has the form

Ĥ ¼ vDŝx t̂z ŝ0dkx þ vDŝy t̂0 ŝ0dky þ ŝzðt̂z ŝzmB � t̂0 ŝ0mIÞ ð2Þ

where an additional set of Pauli matrices ŝi corresponding to the pseu-
dospin degree of freedom is introduced, and mB and mI are mass
terms induced by the bianisotropy and SIS reductions, respectively.

The form of Hamiltonian (Eq. 2) suggests that the two mass terms
exhibit different behaviors at the two valleys, implying that one can
again artificially tune the structure parameters to equate the effective
masses mB = mI, thus closing (doubling) the bandgap at the K point
while doubling (closing) it at the K′ point for the pseudospin-up
(spin-down) state. Thus, for this system, TRS invariance ensures that
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Fig. 1. Schematic geometries and corresponding band structures. (A) Non-
reciprocal two-dimensional (2D) photonic crystal composed of ferromagnetic rods
arranged in a honeycomb lattice with magnetic bias applied along the z direction.
(B) Topological 2Dphotonic crystalmade of bianisotropic triangulated rods arranged
in a triangular array in air. Dimensionless (normalized to lattice constants a and a′) ge-
ometric parameters of the rods are rA= 0.191, d= rA− rB= 0.01,m=2,k=0.6, DA= DB= 14
(A) and r0 = 0.34, rf=0.27, D|| = m|| = 14, Dz = mz = 1 (B). A bianisotropic response xxy=0.2 is
introduced in the background. In (B), red bands correspond to (pseudo)spin-up states,
whereas blue bands correspond to (pseudo)spin-down states.
2 of 9



SC I ENCE ADVANCES | R E S EARCH ART I C L E
opposite spins exhibit Dirac-like dispersion at the two opposite valleys.
As a result, the dispersion for the pseudospin-up (spin-down) state is
quadratic at the K′ (K) valley, with effective mass m = mB + mI. Both
proposed systems therefore exhibit valley-selective linear Dirac-like dis-
persions, which should manifest itself in peculiar wave transport prop-
erties both in the bulk and on the edges.

One-way Klein tunneling
Klein tunneling is a fascinating phenomenon in quantum mechanics,
consisting in the unimpeded penetration of particles through potential
barriers. It was first envisioned in relativistic quantum physics of high-
energy spin-1/2 fermions (36). More recently, a prediction of this exotic
chiral transport found experimental confirmation (37, 38) in junctions
of graphene (39), which exhibits quasi-relativistic carrier dynamics de-
scribed by the effective massless Dirac equation (40–43). The optical
analog of this unique 2Dmaterial, referred to as photonic graphene, also
shows unprecedented optical characteristics, and it is of eminent re-
search interest in photonics (28, 44–46).

In the systems under investigation, Klein tunneling is expected to
assume an even more exotic form—consisting in valley- and pseudospin-
polarized uniform transmission through the Dirac bands. To illustrate
this behavior, we performed analytical (section S2) and first-principle
numerical studies of wave transmission through a photonic potential
barrier introduced in the middle of a larger domain. To describe the
transmission analytically, we use the description based on the effective
photonic Hamiltonian obtained directly from Maxwell’s equations by
applying the PWE method, along with the continuity boundary condi-
tions across the interfaces.We consider a geometry sequence 1/2/1,where
domains (1) and (2) are characterized by total massesm1,2 and homo-
geneous photonic potentials u1,2, which essentially represent unit-cell
averaged dielectric parameters (see section S1 for the details).We assume
the case of normal incidence ky = 0 of the propagating wave (|W| > m1)
from region 1 along the x axis onto the photonic “potential barrier” of
height (u2 − u1) and width L located in domain (2), which is assumed
to be infinitely long in the y direction. The difference in effective di-
electric parameters would typically give rise to impedance mismatch
and reflection from such a barrier, but similar to the electronic case,
the physics of Dirac bands redefines the way photons scatter in our
systems. By solving for the photonic eigenmodes in each region de-
scribed by the respective effective Hamiltonians and then by applying
the continuity boundary conditions, we obtain the transmittance

T ¼ 4s21js2j2
j2s1s2cosðdk2xLÞ � iðs21 þ s22Þsinðdk2xLÞj2

ð3Þ

where s1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW� u1;2Þ2 �m2

1;2

q
∕ ðW� u1;2 �m1;2Þ and dk2x ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðW� u2Þ2 �m2
2

q
=vD. Assuming linear dispersion for the K valley,

the well appears to be perfectly transparent in the K valley for all fre-
quencies for any width of the barrier, which is a direct manifestation
of Klein tunneling. In contrast, for the K′ valley, where the spectrum
is parabolic, total transmission takes place only within the passband
when the resonant condition, dk2xL =Np,N∈Z, is satisfied. As expected
for the gap at the K′ valley, the transmittance T decreases exponentially
with the depth (and width) of the well (section S2). To verify these an-
alytical predictions, we modeled the electromagnetic response of the
two proposed crystals in Fig. 1 using the finite element method solver
in COMSOL Multiphysics.
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Valley-polarized Klein tunneling in photonic topological
crystal with broken TRS
In Fig. 2A (top), we show the two lowest TM bands of the honeycomb
crystal of Fig. 1A for the case when the magnetic field is absent and the
rods in the unit cell are identical. Because time and space inversion sym-
metries are preserved, the band structure is reciprocalwith respect to the
wavevector kx, and the band diagram features a pair ofDirac bands with
nearly linear dispersion crossing at K 4p

3a ; 0Þ
�

and K′ð� 4p
3a ; 0Þ points. In

Fig. 2A (middle), we show the dispersion of the same structurewithTRS
and SIS broken by applying oppositemagnetization in the two cylinders
of each unit cell. In this case, the dispersion exhibits two slightly non-
reciprocal Dirac cones with slightly detuned frequencies, due to the ap-
plied magnetic bias. This magnetization preserves parity-time (PT)
symmetry so that Dirac-like dispersion is maintained.

Finally, we introduce valley-chirality coupling in the system (Fig. 2A,
bottom). First, we dimerize the structure by applying a small detuning
in the cylinders with radii rA(B) = r ± d/2, therefore breaking SIS and
inducing a valley Hall state. Second, we break TRS bymagnetizing both
A andB sites in the samedirection,which drives the system in a quantum
Hall–like state. We now observe nonreciprocal Dirac spectra w(k) ≠
w(−k). Next, we tune the parameter d such that the effects of magnetiza-
tion and dimerization cancel out for positive values of kx (K-valley), thus
closing the gap but amplifying the bandgap for negative values of kx (K′
valley). This one-way nonreciprocal response is shown in the photonic
band structure in Fig. 2A (bottom), and it reveals the presence of a one-
way Dirac cone.

For the band structures at the K′ valley (kx < 0) of two nonreciprocal
crystals, plotted in Fig. 2B (upper left), we observe an overlay of theDirac
and gapped bands, whereas for the ones at the K valley (kx > 0), plotted
in Fig. 2B (lower left), two nearly overlapping Dirac cones appear in the
spectrum. We use these nonreciprocal photonic band structures to de-
sign a large-scale photonic transport, an analog of Klein tunneling, in a
supercell that consists of three adjacent domains separated by zigzag
cuts. The two side domains are constructed from the nonreciprocal
PT-preserved crystal (gapless spectrum at both K and K′ valleys). The
middle domain is made of the nonreciprocal PT-violating crystal exhi-
biting a one-wayDirac cone, and it also effectively behaves as a potential
well for propagating waves due to the spectral shift of the photonic
bands between the domains (Fig. 2B, bottom). To calculate the trans-
mission through the potential well, we use a pair of current sheets lo-
cated in the side regions, which selectively excite modes with positive
and negative group velocities at K and K′ valleys, respectively. As ex-
pected for Klein tunneling, the calculated transmission is close to unity
for the K valley (forward propagation) across a wide frequency range, as
illustrated in Fig. 2B (lower right). Only at higher frequencies, where the
band becomes parabolic due to the presence of the higher-order band-
gap, the transmission starts to fall off. In contrast, we see that for the K′
valley (backward propagation), Klein tunneling is not observed, and the
transmission rapidly drops to zero in the bandgap region, which is
consistent with the band structure in Fig. 2B (upper left). At the same
time, transmission through the parabolic passband at the K′ valley
exhibits numerous resonances, intermitted by regions of low transmis-
sion. These first-principle resultswere subsequently fittedwith the use of
Eq. 3 by assumingm1 =u1 = 0 (and optimizing other fitting parameters),
with the result plotted in Fig. 2B (green dashed line). Analytical and nu-
merical results are in excellent qualitative agreement, confirming the
origin of the observed valley-polarized one-way Klein tunneling.

Inspection of the field profiles in Fig. 2C, obtained by first-principle
simulations at different frequencies, provides additional details explaining
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themarkedly different wave transport behavior at the two valleys. Thus,
when the structure is excited from the right edge (K′-valley case) of the
domain (as indicated by a black arrow), at the frequency within the
bandgap, the excited wave experiences an exponential decay in themid-
dle region (Fig. 2C, top). At the lower frequency, a standing wave pat-
tern is formed in the middle region (Fig. 2C, middle), explaining the
resonant transmission at certain frequencies. Conversely, when the sys-
tem is excited from the left (K-valley case), a uniform field distribution is
observed over the whole structure (Fig. 2C, bottom). The wave travels
toward the right without decay, featuring the analog of one-way Klein
tunneling in this magneto-optical photonic crystal.

Spin-valley–polarized one-way Klein tunneling in
TRS-invariant photonic topological insulator
We switch now to the TRS-invariant photonic crystal in Fig. 1B. We
calculate the photonic band structure of a triangular lattice of circular
rods preserving the duality D = m, which exhibits a pair of overlaid Dirac
spectra at both K and K′ valleys, plotted in Fig. 3A (top). The inversion
symmetry reduction is achieved, triangulating the rods, which leads to
the lifting of the degeneracy at the Dirac points. Bianisotropic response
is also introduced to mix TE and TMmodes, effectively creating gauge
fields with opposite signs for pseudospin-up and pseudospin-down
states. These two mechanisms of bandgap opening are tuned by
changing the parameters of triangulation and bianisotropy in such a
way that for the pseudospin-up state, plotted as a red line in Fig. 3A
(bottom), the bandgap closes at theK valley and doubles at theK′ valley,
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thus exhibiting valley-dependent Dirac-like and parabolic dispersions,
respectively. For the pseudospin-down state, shown with blue lines, the
situation is reversed, and the linear dispersion appears at the K′ valley
instead. One can regard this scenario as the two copies, essentially time-
reversal pairs, of the one-way Dirac cones described above for the
magnetic crystal with broken TRS. Therefore, the TRS-invariant system
should also exhibit one-way Klein tunneling, with an additional selec-
tion rule with respect to the pseudospin degree of freedom, thus exhi-
biting spin-valley–dependent transport.

Turning to first-principle simulations of spin-valley–polarized trans-
mission, in Fig. 3B (left), we plot alongside the band structure for (i)
the crystals without either gap-opening mechanisms (black lines)
and (ii) the optimized spin-valley–coupled structure with the Dirac
cone for pseudospin-up (down) state at one of the valleys. The Dirac
cones largely overlap, with a slight shift in frequency, sufficient to
provide a potential barrier and coexist with the gapped spectrum
for the opposite pseudospin. Note that the flip of valley from K to
K′ results in the reversed situation for the pseudospin states. Large-scale
simulations were carried out for the supercell consisting of three do-
mains, with the middle domain made of the triangulated rods with
the bianisotropic response and the two side domains made of nontrian-
gulated and nonbianisotropic rods. Periodic boundary conditions are
imposed along the top and bottom boundaries, and matching layers
are implemented on the sides. To ensure both pseudospin- and valley-
polarized excitation, we constructed the field source from a pair of
current sheets located at right (left) side domains, as indicated by
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Fig. 2. One-way Klein tunneling in nonreciprocal photonic topological insulator. (A) Dispersion bands for a symmetric (nondimerized) structure of nonmagnetized
rods (m = 2, k = 0) (top), a nonreciprocal PT-preserving crystal where cylinders of equal radii aremagnetized in opposite directions (m = 2, k = 0.6) (middle), and a nonreciprocal
PT-violating crystal where cylinders of slightly detuned radii aremagnetized in the samedirection (parameters are as in Fig. 1) (bottom). (B) Photonic bands nearK andK′points
(left) and transmission coefficients (right). Top and bottom panels correspond to the backward and forward wave propagation, respectively. Numerically calculated transmis-
sion is plotted with a blue line. The analytically retrieved dependencewith second-order correction in k·pmethod is shownwith a green dashed line. The fitting parameters of
the spectra extracted from the numerically calculatedbanddiagramsare as follows: At the top (K′ valley), the frequency of theDirac crossing at theK′pointw0a/2pc=0.233, and
Fermi velocity vD/2pc= 0.020. In domain (1), u1 = 0,m1 = 0,a1 =−0.12vD, b1 = 0.54vD; in domain (2), u2a/2pc=−0.007,m2a/2pc= 0.005,a2 =−0.005vD, b2 = 0.06vD;. At the bottom
(K valley), parameters are the sameas those in domain (1) at the K′ valley, except that the frequency of theDirac crossing at theKpoint becomesw0a/2pc=0.228, and indomain
(2),m2 = 0, u2a/2pc=−0.004.ai, bi are the coefficients ofs0dk

2
x ; sxdk

2
x in the effectiveHamiltonianwith their numerical values expressed in termof vD. (C) Simulated electric field

intensity |E|2 distributions in the strip for backward (top and middle) and forward (bottom) wave propagation. The strip consists of three domains: Domain (1) is the non-
reciprocal PT-preserving honeycomb lattices and separated by domain (2), which is composed of the inequivalent-sites latticewithmagnetic field applied perpendicular to the
lattice, and domains (1) and (2) contain 2 × 42 and 2 × 12 unit cells, respectively. The boundaries of three crystal regions are marked by black vertical lines. The modes are
excited by current sheets at cuts indicated by the arrows and white lines.
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arrows and white lines in Fig. 3C. The symmetric current distribution
again ensures that we always excite the mode with positive (negative)
group velocity at the K (K′) valley. Transmission spectra for left (right)
to right (left) excitation calculated for each pseudospin are shown in
Fig. 3B (right). For the Dirac bands, the Klein tunneling is observed,
and a perfect uniform transmission from the left (right) to right (left) is
observed for the pseudospin-up (spin-down) state, whereas for the op-
posite pseudospin, which perceives the gapped spectrum at the partic-
ular valley, the transmission is suppressed because of exponential decay.
In addition, as expected for the parabolic bands, the transmission
exhibits oscillatory behavior at frequencies outside the bandgap region.

The electric field distributions corresponding to the cases of forward
(K valley) and backward (K′ valley) valley- and pseudospin-polarized ex-
Ni et al., Sci. Adv. 2018;4 : eaap8802 11 May 2018
citations are plotted along the supercell strip. When the excitation fre-
quency is chosen inside the bandgap, the pseudospin-up (spin-down)
state transmitted from the left (right) to the right (left), that is, at the
K-valley (K′-valley), we observe uniform field intensity distribution, as
shown in Fig. 3C (bottom). At the same time, for opposite pseudospin
polarizations excited at the same valleys within the gapped frequency
band, the field undergoes exponential decay, as seen in Fig. 3C (top).
For the frequency chosen within the parabolic dispersion outside the
bandgap, the field exhibits a clear standing wave pattern, as shown in
Fig. 3C (middle), which complieswith the transmission spectra in Fig. 3B.

The analytical expression of Eq. 3 implies that the Klein tunneling
will appear for any width of the barrier, and therefore, the transmission
should be uniform as long as the bands remain linear. To confirm this,
Fig. 3. Spin-valley–coupled Klein tunneling in bianisotropic photonic topological insulator. (A) Photonic band diagrams for dual triangular lattice without any
symmetry reduction and with D|| = m|| = 14 (top) and triangulated triangular lattice with D|| = m|| = 14 with bianisotropic response xxy = 0.2 introduced along with fillet of radius
rf = 0.27 at each vertex (other parameters are the same as before) (bottom). Red bands correspond to the states of (pseudo)spin-up, and blue lines correspond to the states of
(pseudo)spin-down. (B) Photonic band diagrams of the symmetric triangular lattice (black lines) overlappedwith the triangulated rods and bianisotropy introduced. Numerically
calculated transmittance for the spin-polarized source generating selectively (pseudo)spin-upor (pseudo)spin-down state for the transport at K (K′) valleys, as shown in the upper
(lower) right panel. The analytically retrieved transmittance with second-order correction in k·p method at the K valley for pseudospin-down (spin up) is shown with a green
(black) dashed line. The fitting parameters of the spectra extracted from the numerically calculated band diagrams are as follows: In the case of pseudospin-down, the frequency
of theDirac crossing atKpointw0a/2pc= 0.358, and Fermi velocity vD/2pc= 0.039. In domain (1), u1 = 0,m1 = 0,a1 =−0.05vD, b1 =−0.4vD; in domain (2), u2a/2pc=−0.003,m2a/
2pc = 0.018, a2 = −0.001vD, b2 = −0.07vD;. In the case of pseudospin-up, parameters are the same as those in pseudospin-down, exceptm2 = 0, a2 = −0.04vD, b2 = −0.25vD.
ai and bi are the coefficients ofs0dk

2
x ; szdk

2
x in effective Hamiltonian with their numerical values expressed in term of vD. (C) Simulated electric field intensity |E|2 distributions

along the strip excited by the sources containing only one pseudospin component. The upper (lower) three panels correspond to pseudospin-down (spin-up) excitation. The strip
consists of two domains of the first type on the left and right (1), which represent triangular lattices of circular rodswith D = m, separated by domain type (2), in themiddle, which is
composed of the triangulated rodswith bianisotropy. The domains (1) and (2) contain 2 × 25 and 2× 20 unit cells, respectively. Black dashed lines denote the boundaries between
domains. The source is placed in the right domain (1) in the upper panel and in the left domain (1) in the lower panel, as indicated by black arrows and white lines.
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we performed numerical calculations of the transmittance as a function
of the barrier for the two pseudospin states at the same valley. The
results, shown in Fig. 4A, prove that the transmission is uniform and
close to unity for the pseudospin-up state, exhibiting Klein tunneling
through the Dirac cone at this valley. In contrast, the pseudospin-down
state exhibits vanishingly small transmission within the bandgap due to
the exponential decay. Right outside the bandgap region, where the
corresponding bands are parabolic, we observe strong oscillatory behav-
ior due to standing waves. Very small oscillations can also be seen for
the pseudospin-up state due to slight parabolicity of the bands (de-
scribed by the second-order corrections in k·p theory), but they do
not exceed 3% inmagnitude. The corresponding numerical results were
successfully fitted by Eq. 3, with second-order corrections included,
which, once again, confirms the adequacy of the effective photonic
Hamiltonian description. Therefore, the numerical results demonstrate
the most extreme case of spin-valley–polarized transport in the form of
spin-polarized one-way Klein tunneling.

Robustness against structural imperfections
In the presented designs, the occurrence of one-way Dirac degeneracies
was dictated by the precise balance of the two mass terms, mI and mT.
However, small deviations from this condition can arise in any realistic
structure due to fabrication imperfections. In general, two scenarios
can be considered: (i) uniform (global) mismatch of mass terms and
(ii) nonuniform (local) disorder.

In the first scenario, we argue that these imperfections and the re-
sultant mass imbalance do not significantly affect the Klein tunneling
because the gap at one of the valleys is always expected to be significantly
narrower than that at the opposite valley. The latter fact directly stems
from the inequality jmK′ j ¼ jmI þmTj≈2jmIj≫jmI �mTj ¼ jmKj,
which is always satisfied for relatively weak imbalance of themass terms
across the structure. Consequently, even if the Dirac cone at one valley
(for example, K) is not perfectly induced, the unimpeded transmission
due to Klein tunneling will still be observed at almost all frequencies.
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The exception is only a narrow frequency range near the bandgap in-
duced by this imbalance. These conclusions are confirmed by the results
in Fig. 4B, where the band structure and transmittance are presented for
the case of uniform mass imbalance (mI ≠ mT). One can see that the
Klein tunneling prevails at almost all frequencies. Moreover, even with-
in the narrow gap due to the imbalance of mass terms, the transmission
remains very high (for finite structures of width L) because the localiza-
tion length l ~ 1/|mI −mT| is very long (l≫ L). This phenomenon can
be simply explained by the fact that a tiny bandgap open at the Dirac
point leads to mixing of chiral states close to the Dirac point, giving rise
to mixing between different chiral states and backscattering. However,
far from this narrowband gapped region, within the region of linear dis-
persion, this perturbation is negligible, the chirality is preserved, and
backscattering does not occur.

In the second, andmore likely, scenario, the structural imperfections
and defects will be randomly distributed over the structure, which leads
to a differentmechanism of backscattering due to disorder-induced dif-
fusion and localization. We note that, although these isolated defects
can lead to the appearance of localized resonant states, which may po-
tentially appear within the spectrum of the bulk crystal, these localized
states still will be embedded within the Dirac continuum. However, in
this case, we also expect that the chiral nature of the modes of this
continuum will lead to suppression of the effects of disorder. It has al-
ready been shown that Dirac and other pseudospin systems are
protected to some degree against disorder, and these anomalous local-
ization regimes have been reported (44). Our numerical simulations
confirm that in this scenario, the transmission is quite insensitive to
the pseudospin-preserving disorder.

To confirm the robustness of modes in our structure, we performed
numerical simulations and calculated transmission through the TRS
crystal, with (pseudospin-preserving) disorder deliberately introduced
at randomly selected sites (Fig. 4C, inset). The strength of defects was
gradually increased until the regime of Klein tunneling recedes and lo-
calization occurs. The simulation results, shown in Fig. 4C, show that
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the system demonstrates significant robustness against disorder, and
spin-polarized one-way Klein tunneling survivesmoderate levels of dis-
order. It is only for large values of disorder that spins and valleys start to
mix intensely, leading to the collapse of Klein tunneling.

Edge states in the continuum at critical points of
topological transitions
Although the observed one-way Klein tunneling appears at the
crossover between two topological phases, (i) quantum Hall–like and
valley Hall phases and (ii) quantum spin Hall and valley Hall phases,
respectively, it is important to assess whether the structures under in-
vestigation can host topological surface states. To address this question,
we performed first-principle numerical studies of the edge states re-
siding in the bandgaps for both TRS-breaking and TRS-preserving
scenarios.

In our simulations for the nonreciprocal crystal, the supercell was
chosen to contain a domainwall between two domains withmass terms
of opposite signs due to simultaneous TRS and SIS reduction. In that
case, the bandgaps and theDirac cones for the two domains appeared at
the same valleys. We found that the edge mode does occur within the
gap at the K′ valley, and it coexists spectrally with the gapless bulk
continuum at the K valley, as shown in Fig. 5A.

Similarly, for the TRS-invariant bianisotropic crystal of triangulated
rods, we calculated the band diagram of a supercell made of two do-
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mains with mass terms of opposite signs. The latter was achieved by in-
verting both the orientation of triangulated rods and their bianisotropy,
and the band structures found from the first-principle simulation are
shown in Fig. 5B. Edge states supported by the domain wall for the
pseudospin-up and spin-down states appear at different valleys, and
they coexist with the corresponding bulk continuum of opposite
pseudospin state at the same valley.

Large-scale simulations enable the observation of this one-way prop-
agationof spin-valley–locked edgemodes. A spatiallymodulated current
line source containing both electric and magnetic dipole components
je = jm = j0 exp[ikxx] was placed at the domain wall to excite only the
pseudospin-up mode at the K-valley (kx = 4p/3a0). As seen in Fig. 5E,
the pseudospin-up edge state excited by the source propagates to the
right along the domainwall (indicated by the red line), in the direction
that corresponds to the K-valley. At the same time, reversal of excited
valley (kx = −4p/3a0) for the same pseudospin-state leads to the exci-
tation of bulk modes propagating in all directions away from the
source (as in Fig. 5D), as expected for the bulk Dirac spectrum. The
edgemode in our simulations (Fig. 5E) experiences a quadratic growth
of energy density as it propagates away from the center of the structure.
This growth occurs because of the one-waynature of the edgemode that
is generated by a continuous current line placed along the domain wall
starting at the center (red dotted line in Fig. 5E). This specific excitation
geometry yields a linear buildup of the field along the edge and therefore,
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a quadratic growth of the energy density. This effect creates an illusion of
field spreading into the bulk. However, we confirmed that the excited
fields have the same exponential decay rate in the direction perpendicular
to the domainwall at all locations, which proves the fact that only the edge
mode is excited. Our simulation results for both TRS-breaking and TRS-
preserving structures therefore unambiguously show that the combined
action of gauge fields in sublattice and valley and inpseudospin and valley
subspaces leads to the appearance of one-way topological edge states that
are polarized with respect to both degrees of freedom.

We believe that the new physics reported in this study will enable a
new class of nonreciprocal and pseudospin-controlled devices. For ex-
ample, we envision a new class of devices where one-way peer-to-peer
communications over the edge states can be performed for one of spin
and/or valley polarizations. At the same time, the opposite polarizations
can be used to broadcast signals over bulk states to multiple in-
discriminate receivers. A conceptual functionality of this device is
plotted in Fig. 5C, where a set of transmitters and receivers (shown as
antennas) can communicate unidirectionally peer-to-peer via spin-
valley–polarized edge states (indicated by blue and red arrows) and, at
the same time, can broadcast bidirectionally to all receivers via bulk
modes (shown by small black arrows).

Proposed experimental design
Both suggested systems in Fig. 1 can be readily implemented in practice.
Topological states and robust transport have been successfully demon-
strated experimentally in the recent past for both systems with and
without TRS. In particular, a graphene-like photonic crystal with ferrite
rods was used to demonstrate edge states confined at the interface with
free space (38). This system would need only a minor modification, the
dimerization of ferrite posts, to introduce the effective valley gauge field
that can couple to chiral states induced by themagnetization. To realize
the spin-valley–polarized analog of Klein tunneling, we propose a de-
sign that is amenable to a physical implementation in the microwave
domain, with details summarized in section S3.
DISCUSSION
Synthetic gauge fields acting on either natural or engineered degrees of
freedom of light, such as chirality/sublattice, polarization, pseudospin,
and valley, offer an unprecedented degree of control of electromagnetic
fields and have recently been proven to be of great potential in photon-
ics. Combining the effects of these gauge fields, acting in synergy on
different synthetic dimensions, may significantly expand the space of
possible optical responses, pushing forward the field of topological pho-
tonics. In particular, co-acting gauge fields effectively increase the di-
mensionality of synthetic photonic potentials, thus enabling a much
broader degree of control of electromagnetic radiation. On the basis
of this idea, we introduced topological TRS-violating andTRS-preserving
optical systems, showing how the combined action of sublattice-valley
and spin-valley potentials enables valley- and spin-valley–polarized
one-way transport, respectively. We demonstrated sublattice-valley–
and spin-valley–polarized one-way Klein tunneling, which represents
the extreme case of selective action of these hybrid photonic potentials,
enabling efficient filtering of bulk modes by either of the degrees of
freedom used, as well as a new class of valley-polarized one-way and
spin-locked edge states. An increasingly large domain of synthetic
degrees of freedom engineered in photonics, from quasicrystals
(17, 21) to synthetic dimensions in multispectral Floquet systems
(22, 23), makes it even more interesting to investigate the effects of co-
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active gauge potentials in these complex, higher-dimensional systems.
To the best of our knowledge, the classification of topological orders in
systems with several gauge fields acting on orthogonal internal degrees
of freedom is not well understood, and it may require the use of non-
Abelian gauge field theory methods (23), which makes it of special fun-
damental and practical interest.
MATERIALS AND METHODS
Methods
The full-wave numerical modeling of electrodynamic response of pho-
tonic structures was performed with a finite element method solver
COMSOL Multiphysics, radio frequency module (version 5.2a).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaap8802/DC1
section S1. Low-energy effective Hamiltonians
section S2. Nonreciprocal tunneling in photonic graphene with a single potential barrier
section S3. Specific designs of spin-valley–coupled metacrystals with one-way Dirac cones
fig. S1. Photonic bands and transmission spectra.
fig. S2. Schematics of the meta-waveguide design and band structures.
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