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Purpose: To describe Acuros� CTS, a new software tool for rapidly and accurately estimating scatter
in x-ray projection images by deterministically solving the linear Boltzmann transport equa-
tion (LBTE).
Methods: The LBTE describes the behavior of particles as they interact with an object across spa-
tial, energy, and directional (propagation) domains. Acuros CTS deterministically solves the LBTE
by modeling photon transport associated with an x-ray projection in three main steps: (a) Ray tracing
photons from the x-ray source into the object where they experience their first scattering event and
form scattering sources. (b) Propagating photons from their first scattering sources across the object
in all directions to form second scattering sources, then repeating this process until all high-order
scattering sources are computed using the source iteration method. (c) Ray-tracing photons from
scattering sources within the object to the detector, accounting for the detector’s energy and anti-scat-
ter grid responses.
To make this process computationally tractable, a combination of analytical and discrete methods

is applied. The three domains are discretized using the Linear Discontinuous Finite Elements, Multi-
group, and Discrete Ordinates methods, respectively, which confer the ability to maintain the accu-
racy of a continuous solution. Furthermore, through the implementation in CUDA, we sought to
exploit the parallel computing capabilities of graphics processing units (GPUs) to achieve the speeds
required for clinical utilization.
Acuros CTS was validated against Geant4 Monte Carlo simulations using two digital phantoms:

(a) a water phantom containing lung, air, and bone inserts (WLAB phantom) and (b) a pelvis phan-
tom derived from a clinical CT dataset. For these studies, we modeled the TrueBeam� (Varian Medi-
cal Systems, Palo Alto, CA) kV imaging system with a source energy of 125 kVp. The imager
comprised a 600 lm-thick Cesium Iodide (CsI) scintillator and a 10:1 one-dimensional anti-scatter
grid. For the WLAB studies, the full-fan geometry without a bowtie filter was used (with and without
the anti-scatter grid). For the pelvis phantom studies, a half-fan geometry with bowtie was used (with
the anti-scatter grid). Scattered and primary photon fluences and energies deposited in the detector
were recorded.
Results: The Acuros CTS and Monte Carlo results demonstrated excellent agreement. For the
WLAB studies, the average percent difference between the Monte Carlo- and Acuros-generated scat-
tered photon fluences at the face of the detector was �0.7%. After including the detector response,
the average percent differences between the Monte Carlo- and Acuros-generated scatter fractions
(SF) were �0.1% without the grid and 0.6% with the grid. For the digital pelvis simulation, the
Monte Carlo- and Acuros-generated SFs agreed to within 0.1% on average, despite the scatter-to-pri-
mary ratios (SPRs) being as high as 5.5. The Acuros CTS computation time for each scatter image
was ~1 s using a single GPU.
Conclusions: Acuros CTS enables a fast and accurate calculation of scatter images by deterministi-
cally solving the LBTE thus offering a computationally attractive alternative to Monte Carlo methods.
Part II describes the application of Acuros CTS to scatter correction of CBCT scans on the TrueBeam
system. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12850]
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1. INTRODUCTION

Cone-beam CT (CBCT) has proven to be an invaluable clinical
tool in the areas of radiotherapy, interventional procedures,
and dentistry.1–3 The acquisition of extensive volumetric data

in a single rotation is made possible by a wide-area detector
such as an amorphous silicon flat-panel imager. However,
the wide-area beam generates a large amount of scatter in
the projection images, which remains one of the main chal-
lenges to achieving high-quality CBCT images.4,5 If scatter
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is not accounted for, reconstructed images can suffer from
cupping, shading, streaks, inhomogeneities, and quantifica-
tion inaccuracies.6,7

Standard approaches to reducing scatter include use of a
bowtie filter to reduce the peripheral dose8,9 and an anti-scat-
ter grid mounted to the flat-panel detector.10,11 However, scat-
ter still contributes a substantial amount of signal to each
projection. Numerous hardware- and/or software-based
approaches have been proposed to estimate and correct for
the remaining scatter signal. While there are too many of
these techniques to enumerate, they can broadly be classified
as belonging to one of several categories including: (a) source
intensity modulation12,13 or blocking,14–22 (b) scatter decon-
volution,23–27 (c) utilizing a priori knowledge of the
object,28–30 (d) Monte Carlo modeling,31–39 or (e) other
empirical approaches.40–42

Our motivation was to find a fast and accurate scatter cor-
rection method that would not require sophisticated hardware
and could be used on existing platforms. Scatter deconvolu-
tion, also known as scatter kernel superposition (SKS), is the
technique most widely applied commercially. The x-ray cone
beam is modeled as an array of pencil beams that interact
with the object. The scatter produced by each pencil beam is
approximated by predetermined point-spread functions or
kernels. SKS methods have the advantage of being computa-
tionally efficient (i.e., regarding real-time processing of pro-
jections) while not requiring additional hardware. We
previously developed a variant of SKS — fast adaptive scatter
kernel method (fASKS) — that uses object-dependent asym-
metric scatter kernels to estimate and subtract scatter from
projection images.25,26 The method has been used in the
TrueBeam� product (Varian Medical Systems, Palo Alto,
CA) and proven to be remarkably effective given the limita-
tions of this class of corrections. However, SKS methods only
approximate the interaction of x-ray photons with a heteroge-
neous object, which fundamentally limits their accuracy.
Residual artifacts are often seen that limit CT number accu-
racy and can be clinically adverse (Fig. 1).

More accurate software-based scatter estimation and cor-
rection methods have been proposed, primarily based on
Monte Carlo methods. In principle, Monte Carlo methods
can model quite accurately how x-rays propagate through

components of the imaging system and the imaged object.
However, in practice, Monte Carlo calculations are typically
slow and resource intensive, with there being a tradeoff
between run times and the amount of stochastic noise present.
While it is possible to improve performance by utilizing
graphics processing units (GPUs), implementing variance
reduction techniques, and simplifying the approximations of
the underlying physics, it remains to be seen whether a suffi-
ciently fast and accurate calculation can be achieved to meet
clinical demands.

Under standard imaging conditions, the behavior of pho-
tons as they interact with an object is described by the linear
Boltzmann transport equation (LBTE).43 There are two
classes of methods for solving the LBTE — stochastic (i.e.,
Monte Carlo) and deterministic. Both Monte Carlo and deter-
ministic methods inherently model the LBTE, but take funda-
mentally different approaches to solving it. The former
repeatedly samples the behavior of individual particles to
stochastically buildup a solution, while the latter directly
computes a discretized solution for the entire object. Stochas-
tic and deterministic methods both converge to the same solu-
tion given enough simulated particles for the former or
sufficiently fine discretization for the latter.

Recent advances in deterministic methods have shown
great promise as an alternative to Monte Carlo techniques in
applications such as dose calculation for radiotherapy treat-
ment planning and, more generally, modeling particle trans-
port.44–48 In particular, Varian recently introduced Acuros�

XB, a deterministic program providing computation speeds
approaching those of kernel-based methods and accuracies
equivalent to those of Monte Carlo methods.49–52 Inspired by
the success of Acuros XB, we sought to apply a similar deter-
ministic approach to rapidly and accurately estimate scatter in
kV projections to improve CBCT image quality. As a result, a
new deterministic method called Acuros CTS was born.53,54

To our knowledge, this paper describes the first complete
implementation and validation of a deterministic LBTE sol-
ver for estimating scatter in kV projection images.

The description of Acuros CTS and its use for scatter cor-
rection is organized as a two-part paper. In Part I, we first
present the steps that form the LBTE solver in Acuros CTS.
Then, we highlight the numeric methods used to produce a

FIG. 1. Reconstructed cone-beam CT images of a clinical pelvis scan. Severe shading is seen when no scatter correction is applied. Even after kernel-based
(fASKS) scatter correction, some residual scatter artifact remains, including shading in the bladder (arrows). Display window [�300, 300] HU. [Color figure can
be viewed at wileyonlinelibrary.com]
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fast and accurate implementation. Finally, we demonstrate the
ability of Acuros CTS to produce scatter estimates equivalent
to Monte Carlo simulations while benchmarking computation
times. In Part II,55 we describe how the imaging system is
modeled and how Acuros CTS is used to correct for scatter in
projection images with results demonstrated on phantom and
clinical data on a commercial system. For brevity, we will
henceforth refer to Acuros CTS simply as Acuros.

2. MATERIALS AND METHODS

The flow of photons during a CBCT projection can be
organized overall into three steps: (a) photons travel from the
x-ray source to the object, where they (b) interact and scatter,
possibly multiple times, before (c) continuing their path into
the detector panel. These steps, depicted in Fig. 2, are also
natural steps in our computational effort. We have, therefore,
organized the Acuros calculation accordingly.

(1) Ray trace photons from the x-ray source to the object.
(2) Compute the interaction of photons with the object.
(3) Ray trace scattered photons from the object to the

detector.

Thus, the result from an Acuros calculation is the detec-
tor’s scatter signal.

In each step of the algorithm, the steady-state linear Boltz-
mann transport equation (LBTE) governs how photons
behave:bX � ∇~/XEðr~;E; bXÞ þ ltðr~;EÞ/XEðr~;E; bXÞ ¼

Sðr~;E; bXÞ þ
Z E0

0
dE0

Z
4p
dX0½lsðr~;E0 ! E; bX0 ! bXÞ

/XEðr~;E0; bX0Þ�;
(1)

where

- /ΩE is the angular fluence (sometimes referred to as angu-
lar flux) which quantifies the tracks of particles in a

differential volume dV about position r~with energy E travel-
ing along the direction bX. Using the ICRU Report 85 conven-
tion for notation and units,56 the units to the angular fluence
are m�2 sr�1 J�1.
- S is a source of photons to the LBTE. The photon source
describes the number of photons inserted into position r~with
energy E traveling along direction bX. The unit of the photon
source term is m�3 sr�1 J�1. The maximum energy of all
sources in the system is E0.
- lsðr~;E0 ! E; bX0 ! bXÞ is a linear directional scatter coeffi-
cient (sometimes referred to as the directional scattering
macroscopic cross section) that describes the fraction of pho-
tons having energy E

0
travelling along direction bX0 that scat-

ter into a new direction bX with a new energy E. ls is an
intrinsic property of the material(s) being modeled and can
be thought of as a total cross section that encompasses all
Compton and Rayleigh scattering events (photoelectric events
that produce characteristic x-rays may also be included in the
“scatter” model). The values for ls used in Acuros were
obtained from theoretical Klein–Nishina and Thompson scat-
ter coefficients for Compton and Rayleigh scattering, respec-
tively.57 We then adjusted these theoretical coefficients by the
incoherent scattering and atomic form factor functions, which
adjust the theoretical coefficient to the effects of the electron-
bounding energies.58 The units of this directional coefficient
are m�1 sr�1 J�1.
- lt is the linear attenuation coefficient (sometimes referred
to as the macroscopic total interaction cross section) of the
material(s) being modeled and accounts for all scattering and
absorption events. The units of the linear attenuation coeffi-
cient are m�1. The total attenuation coefficient equals the
scattering coefficient plus the photoelectric absorption coeffi-
cient. We derived photoelectric coefficients from the Biggs–
Lighthill analytic model.59

To better understand the LBTE, we describe each one of
its terms physically:

1. The first term in Eq. (1) is a projection of the gradient
of the angular fluence distribution /XEðr~;E; bXÞ.

FIG. 2. Overview of the computational algorithm in Acuros CTS. Photons depart the source and arrive into the object in step 1 (red), where they scatter one or
multiple times in step 2 (orange) to finally arrive at the detector panel in step 3 (green). [Color figure can be viewed at wileyonlinelibrary.com]
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bX � ∇~/XE accounts for how x-rays stream across a dif-
ferential volume.

2. The second term represents the angular fluence along
the direction bX that collide with the object. This term
includes all photoelectric absorption and Rayleigh and
Compton scattering events.

3. The third term provides a mechanism for introducing
photons into the system, for example, from an x-ray
source either internal or external to the object.

4. The fourth term describes scattering interactions that
can increase the angular fluence along the direction bX.

The LBTE states that for a given position r~ and directionbX, the amount of streaming photons (first term) plus that
which collide (second term) is equal to the angular fluence
generated by external sources (third term) plus that which
scatters into r~with direction bX (fourth term). The spatially
dependent object material and density maps, which form both
ltðr~;EÞ and lsðr~;E0 ! E; bX0 ! bXÞ, are assumed to be
known a priori, for example, as from a reconstructed CT
scan. Finally, for kV imaging, the photon energies are too
low to merit the explicit modeling of secondary electrons.
Instead, where an interaction occurs that produces Compton
or Auger electrons, the electrons are assumed to travel a neg-
ligible distance and deposit their energies locally.

The angular fluence distribution /ΩE in the LBTE can be
solved analytically for a limited subset of problems, for exam-
ple, when radiation travels through a purely absorbing mate-
rial (or scatter is ignored) or in problems where there is
scatter, but the geometry is one dimensional.60 More com-
monly, a generalized LBTE solution is numerically computed
either through Monte Carlo or deterministic methods whose
solutions will converge to each other given enough time and
resources.43 While Monte Carlo methods arrive at their
answer by statistically sampling the underlying (absorption
and scattering) probability density functions (PDFs) that gov-
ern x-ray transport and then propagating particles stochasti-
cally according to those PDFs, deterministic methods
iteratively solve the LBTE by propagating a current iteration
of the angular fluence estimate across the object and updating
the estimate for the next iteration, based on the predicted
effects of the local values of ls and lt, until convergence is
reached. The advantages of deterministic methods are that
they produce a solution over the entire LBTE domain (cf.
Monte Carlo tallies) and, with efficient implementation, can
be fast relative to the stochastic Monte Carlo approach.43

We implemented a combination of analytic and determin-
istic techniques in Acuros to solve the LBTE. Specifically,
the ray tracing operations in Steps 1 and 3 were performed
analytically. For Step 2, a deterministic approach was chosen
based on the well-known linear discontinuous finite element,
multigroup, and discrete ordinates methods for discretization
along the spatial, energy, and angular domains, respectively.
Although these methods are partly described in the litera-
ture,43 we include a brief description here for completeness
since our implementation forms a unique combination of
methods for kV imaging.

2.A. Continuous domains ðr~;E; bXÞ
This section describes Acuros’ three steps with a continu-

ous representation of the spatial, energy, and angular
domains. It best illustrates the methodology employed to
solve the LBTE. However, we do not solve the LBTE in the
continuous domain. In Section 2.B, we show how the prob-
lem is discretized and the Acuros solver implemented.

2.A.1. Source-to-object ray trace

In Acuros’ first step, we trace photons as they depart
from the x-ray source S(0), arrive to the object, and first
interact. Our goal is to compute a distribution of uncol-
lided (UC) angular fluence (i.e., photons that have not
been absorbed or scattered) inside the object, then assem-
ble a first-collision source to drive the next step of the
algorithm. We begin by tracing the angular fluence from
the source position to the object, and remove photons as
they are absorbed or scattered:bX � ∇~/UC

XEðr~;E; bXÞ ¼ Sð0ÞðEbXÞ � dðr~� r~0Þ
� ltðr~;EÞ/UC

XE ðr~;E; bXÞ; (2)

where S(0) is the source that drives the uncollided problem (in
units of sr�1 J�1) and is defined on a singular point in space
— that is, the focal point of our beam r~0 from which x-rays
emanate. We can analytically solve for the uncollided /UC

XE
since all uncollided photons arrive to any point r~ from a sin-
gle position r~0:

/UC
XEðr~;EÞ ¼

Sð0Þ E; bXUC
� �

kr~� r~0k2

exp �
Z kr~�r~0k

0
dllt r~0 þ lbXUC;E

� �" #
:

(3)

Here r~ is an evaluation point inside the object, bXUC is a
unit vector pointing in the streaming direction from the x-
ray source located at r~0 to this evaluation point and l is a
variable of integration along the streaming direction. Varia-
tions in angular intensity due to the heel effect, collima-
tion, and/or a bowtie filter are assumed to be known a
priori and can be incorporated into the point source distri-
bution Sð0Þ E; bXUC

� �
. Note that Eq. (3), which shows that

the uncollided angular fluence arriving at a given location
r~ is simply the exponentially attenuated source fluence S(0)

divided by kr~� r~0k2 thus confirming Beer’s law and the
inverse-square law.

Once the uncollided fluence entering each location in the
object is computed, we calculate the magnitude and distribu-
tion of, what is termed, the first-scattered or first-collision
(FC) scattering source:

SFCðr~;E; bXÞ ¼
Z E0

E
dE0

Z
4p
d bX0

lsðr~;E0 ! E; bX0 ! bXÞ/UC
XEðr~;E0Þ � dðbX0 � bXUCÞ

h i
:

(4)
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We note that since E
0
≥ E, this energy integral assumes

that photons cannot gain energy from scattering events.
Particles arrive to r~ from the uncollided direction bXUC

only. We, therefore, do not need to integrate the scattering
kernel in angle to evaluate the first-collided source. The
nature of the uncollided fluence automatically simplifies
this integral.

2.A.2. Scattering source calculation

In this second step, we transport photons as they travel
and collide multiple times with the object to produce higher
order scattering sources. While the first-collision scattering
source computed in Eq. (4) is, by nature (e.g., as described
by Thompson and Klein–Nishina scattering equations57), for-
ward peaked along the direction bXUC, the higher order scat-
tering sources are more isotropic and as shall be shown, can
be efficiently modeled using spherical harmonic functions.
The combined scattering sources of all orders produce a total
scattering source for each position in the object, which then
drives the final step of computing the scatter signal measured
at the detector.

The LBTE describing this second step is more complex
than for the first step since the scattering term now couples
the angular fluence /ΩE from all streaming directions, Ω0:

bX � ∇~/C
XEðr~;E; bXÞ ¼ SFCðr~;E; bXÞþZ E0

0
dE0

Z
4p
dX0½lsðr~;E0 ! E; bX0 ! bXÞ

/C
XEðr~;E0; bX0Þ� � ltðr~;EÞ/C

XEðr~;E; bXÞ:

(5)

Here, the superscript C indicates that this solution is the
collided component of the angular fluence (i.e., photons that
have scattered at least once within the object). Unlike for the
first step, there is no generalized analytic solution to compute
the angular fluence distribution, as the LBTE is now an inte-
gro-differential equation. Thus, we rely instead on numerical
techniques.

We choose the source iteration (SI) method to solve the
problem.61 To understand SI, consider expanding the collided
angular fluence into a series:

/C
XE ¼

X1
n¼1

/ðnÞ
XE; (6)

where n is the number of collisions that each generation of
the angular fluence has encountered. That is, /ð1Þ

XE is the
angular fluence of particles that has scattered only once
with the object, /ð2Þ

XE is the twice-scattered fluence, etc. We
ignore /ð0Þ

XE because this is the angular fluence of uncol-
lided particles /UC

XE , which we have already addressed (step
1).

SI solves each generation n of the angular fluence distribu-
tion sequentially. First, we solve /ð1Þ

XE, then /ð2Þ
XE, and so forth.

The LBTE for each generation n has only three terms, the
particle streaming and interaction terms plus the scattering
source from the higher order fluence:

bX � ∇~/ðnÞ
XEðr~;E; bXÞ ¼ SðnÞðr~;E; bXÞ

� ltðr~;EÞ/ðnÞ
XEðr~;E; bXÞ; (7)

where /ðnÞ
XE is the unknown angular fluence and S(n) is the

amount of (scattered) particles emerging from their nth colli-
sion:

SðnÞðr~;E; bXÞ ¼
Z E0

0
dE0

Z
4p
dX0

lsðr~;E0 ! E; bX0 ! bXÞ/ðn�1Þ
XE ðr~;E0; bX0Þ

h i
:

(8)

Here, /ðn�1Þ
XE is known; we obtained it in the previous itera-

tion of our process. Note that, on average, each generation
has a smaller fluence magnitude than the previous one since
not all photons will scatter into the next generation — some
photons will instead escape from the object while others will
be absorbed. Therefore, after a finite number N iterations, the
calculation converges and contributions from further itera-
tions are negligible (i.e., our collided fluence expansion is
truncated after N terms):

/C
XE ¼

X1
n¼1

/ðnÞ
XE �

XN
n¼1

/ðnÞ
XE: (9)

We apply a convergence criteria <0.1% change between
iterations, which in our experience, requires only a modest
number of iterations (typically 10 < N < 15) for keV photons
compared to the dozens of iterations required for optical pho-
tons or the hundreds needed to model low absorption envi-
ronments like thermal neutrons in water.43

The complete multiple-collision source is the number of
particles that have scattered at least twice:

SMCðr~;E; bXÞ ¼
XN
n¼2

SðnÞðr~;E; bXÞ: (10)

2.A.3. Scatter image

In the remaining step of the algorithm, the scattered pho-
tons are ray traced to the detector. The solution to the LBTE
for the angular fluence /D

XEðr~D;E; bXÞ at detector point r~D for
those particles arriving with direction bX along the line l is:

/D
XEðr~D;E; bXÞ ¼

Z 1

0
dl½SFC þ SMC�ðr~D� lbX;E; bXÞ

exp �R l
0 dl

0ltðr~D� l0 bX;EÞ
h i

l2
:

(11)

This calculation is analogous to the first step of the algo-
rithm, except that now a distributed source is being ray traced
to locations on the detector panel. The exponential attenua-
tion in Eq. (11) deserves special attention. While it may be
intuitive to remove x-rays that are absorbed in the object, it
may be somewhat counterintuitive to also remove those x-
rays that scatter since we, after all, seek to compute the scatter
image. However, these x-rays have already been accounted
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for in the source iteration process and must not be double
counted.

The detected scatter signal Sðr~DÞ is then the integral of the
fluence /D

XE over all energies and angles, weighted by the
grid and detector responses:

Sðr~DÞ ¼
Z E0

0
dE

Z
4p
dX/D

XEðr~D;E; bXÞGðr~D;E; bXÞ

Dðr~D;E; bXÞ;
(12)

where G is the generalized grid response (e.g., transmission
fraction) and D is the generalized detector response (e.g.,
energy deposited). By integrating /D

XE over all angles, we
ensure that the contributions from the entire object volume is
collected.

2.A.4. Primary image

The primary image P is a weighted response to the uncol-
lided photons that travel from the source through the object
to the detector. As in Step 1 above, we analytically trace rays,
this time from the beam origin to the detector while removing
those photons that interact with the object. The analytic
LBTE solution for this ray trace is the familiar Beer’s and
inverse-square laws, combined with the grid and detector
responses:

Pðr~DÞ ¼
Z E0

0
dE

Sð0ÞðE; bXPÞ
kr~D� r~0k2

exp �
Z kr~D�r~0k

0
dlltðr~0þ

"

lbXP;EÞ
�
Gðr~D;E; bXPÞDðr~D;E; bXPÞ;

(13)

where bXP ¼ ðr~D � r~0Þ=kr~D � r~0k is the direction of a pri-
mary ray from the point source position r~0 to detector posi-
tion r~D.

2.B. Discrete domains ðr~i ;Eg; bXmÞ
The expressions in Section 2.A describe the LBTE in con-

tinuous space, energy, and directional domains. In practice,
we discretize the transport problem to make it computation-
ally tractable. These numerical methods are designed to be
very close approximations to the continuous problem while
providing for clinically acceptable run times utilizing readily
available computer architectures. Furthermore, these dis-
cretizations offer the advantage of being convergent. That is,
as the computational mesh becomes finer, the discretized
solution approaches the continuous solution.

At the core of the calculation is a spatial grid that
describes the object’s material properties, providing a frame-
work for evaluating the angular fluence distribution. The
Acuros voxels were chosen to be rectangular cuboid shaped.
The Acuros computational mesh is therefore uniform (all
voxels have equal size) and orthogonal (built on voxels).
Moreover, each step in the Acuros calculations uses the same
computational grid, simplifying the coupling of the three

steps. Given the computational mesh, we reserve the index i
to indicate voxel i.

The next domain is energy, where the spectrum is orga-
nized into a set of energy bins or groups indexed by g:

/X;i;gðbXÞ �
Z Eg�1=2

Egþ1=2

dE/XE;iðE; bXÞ; (14)

Traditionally, energy groups are organized from the most
energetic to the least (i.e., group 1 is the highest energy group
and group G the least energetic one), where each group is
bound by energies Eg 2 [Eg + 1/2, Eg � 1/2]. The energy
group structure is used throughout the LBTE for discretizing
the x-ray source spectrum, total attenuation, and scatter coef-
ficients. In our work, we used six energy groups separated by
predetermined energy thresholds. While this was felt to be
sufficient, the number of groups and their thresholds could
be further explored in future work.

2.B.1. Source-to-object ray trace

In this step, we describe the uncollided fluence inside
voxel i for group g. Then, we define the first-collided source
belonging to this group and voxel. The discretized uncollided
fluence closely resembles its continuous counterpart:

/UC
X;i;gðbXUCÞ ¼ Sð0Þg ðr~0; bXUCÞ

kr~i � r~0k2
exp �

X
i0

lt;i0;g � li0
" #

: (15)

Here, the source spectrum has now been collapsed into G
energy groups. The total interaction coefficient has also been
collapsed into its group equivalent form lt;g in a way that
conserves the group’s attenuation.43 Finally, we apply Sid-
don’s algorithm to ray trace through the object.62 The attenu-
ation of each intersected voxel is weighted by the path length
ðli0 Þ of the ray inside that voxel. With this description, Acuros
accumulates the ray’s line integral of the attenuation coeffi-
cient through the object and exponentially attenuates the
uncollided rays.

Given the uncollided fluence, the first-collided distributed
source inside voxel i for energy group g is:

SFCi;g ðbXÞ ¼
Xg
g0¼1

ls;i;g0!gðbXUC ! bXÞ/UC
X;i;g0 ðbXUCÞ: (16)

Here, SFCi;g is the first-collided scatter source, ls;i;g0!g is the
group-collapsed linear scatter coefficient from group g0 into
group g inside voxel i, and /UC

X;i;g0 is the uncollided angular
fluence. Note that the downscatter energy integral has been
replaced by a summation of down-scattering groups.

2.B.2. Scattering source calculation

We now define how to compute the multiple-collision
source, step 2 in the Acuros algorithm. The multiple-collision
source, Eq. (8), integrates the contribution from a continuum
(in angle) of angular fluences. Evaluating this integral is chal-
lenging. We must evaluate the entire angular fluence
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continuum or somehow approximate the angular integral. We
avoided this challenge in the previous step since the uncol-
lided fluence is defined only in one direction: from the
beam’s focal point to the coordinate r~of interest.

To evaluate the multiple-collision source integral, we
implemented the Discrete Ordinates (DO) method to dis-
cretize the streaming direction bX into a set of M angles bXm

that span 4p.43,63 The multiple-collision integral for the nth
Source Iteration becomes:

SðnÞi;g ðbXmÞ ¼
Xg
g0¼1

XM
m0¼1

wm0ls;i;g0!gðbXm0 ! bXmÞ/ðn�1Þ
X;i;g0;m0 : (17)

Here, /ðn�1Þ
X;i;g;m is the collided angular fluence along

direction bXm. The multiple-collision source angular integral
is now approximated by a quadrature integral, where each

direction bXm is assigned a quadrature weight wm for its
evaluation. In addition, ls;i;g0!g is the scattering coefficient

from energy group g0 to group g and from direction bXm0

into direction bXm. Consequently, we collapsed the multi-
ple-collision source integral into a summation of energy
groups and directions.

The DO approach avoids the need to map the scatter con-
tribution from each point in the object to all its neighbors
— a O(I2) algorithm for a problem with I voxels. By solving
the angular fluence only along M directions for each voxel,
we reduce this effort to an O(MI) algorithm (with M � I).

The set of streaming directions bXm and their corresponding
weights wm are preselected to maximize the accuracy of the
angular integral. Problems with low anisotropy such as the
MC source require a small M to capture this integral accu-
rately. Problems with high anisotropy such as the FC source
would require a large M if using DO, but we avoid this by
evaluating the FC source analytically.

The scatter coefficients ls;i;g0!g can be simplified by con-

densing the discrete directions bXm0 ! bXm into a single vari-

able gm0;m ¼ bXm0 � Xm; the inner product of the two vectors.
This simplification stems from the physics of scattering
interactions; the probability of a scattering event depends on

the outgoing direction bXm relative to the incoming one,bXm0 . We exploit this simplification to represent scattering
coefficient sections with a Legendre series Pl:

ls;i;g0!gðbXm0 ! bXmÞ¼
ls;i;g0!gðgm0;mÞ

2p

�
XL
l¼0

2lþ1
4p

lls;i;g0!gP
lðgm0;mÞ: ð18Þ

Here lls; i;g0!g is the l-th Legendre moment of the linear
scattering coefficient (computed a priori), with the series
being truncated after L terms.

To continue reducing the cost of evaluating the multiple-
collision source, we expand the angular fluence distribution
for each voxel and energy group into its own Spherical Har-
monics series:

/X;i;g;m �
XL
l¼0

Xl

k¼�l

fl;ki;gY
l;kðbXmÞ; (19)

where Yl,k are Spherical Harmonics functions of degree l and
order k, and fl;ki;g are known as the spherical harmonics fluence
moments. Due to the orthogonality of the Spherical Har-
monic functions, the moments can be determined from the
angular fluence using quadrature weighting:

fl;ki;g ¼
Z
4p
dXYl;k�ðbXÞ/X;i;gðbXÞ

�
XM
m¼1

wmY
l;k�ðbXmÞ/X;i;g;m; (20)

where * is the complex conjugate.
To calculate the scattering source from the angular flu-

ence, we insert the Legendre expansion of the scattering coef-
ficient, Eq. (18), and the Spherical Harmonics expansion of
the fluence, Eq. (19), into the scatter source, Eq. (17). The
result is:

SðnÞi;g ðbXÞ ¼
Xg
g0¼1

XL
l¼0

lls;i;g0!g

Xl

k¼�l

fðn�1Þ;l;k
i;g0 Yl;kðbXÞ; (21)

which, like the angular fluence, is also represented by spheri-
cal harmonic functions. The derivation can be found in the
Appendix A and reference.43

Next, we apply the Linear Discontinuous (LD) finite ele-
ment method64,65 to discretize the LBTE in space. We seek a
method to evaluate the angular fluence inside voxel i, energy
group g, and streaming direction m. The LD method approxi-
mates the spatial in the angular fluence within a voxel with a
set of first-order polynomials and provides a framework to
evaluate its unknowns:

/X;i;g;mðr~Þ � /0
X;i;g;m þ /x

X;i;g;m � P1ðxiÞ þ /y
X;i;g;m � P1ðyiÞ

þ /z
X;i;g;m � P1ðziÞ:

(22)

Here, P1 is a linear Legendre polynomial, xi, yi, and zi are
spatial coordinates of point r~ in a coordinate system local to
voxel i, and /0

X;i;/
x
X;i;/

y
X;i and /z

X;i are the LD unknowns
also for voxel i. Note that, these amplitudes are only defined
within this voxel, and it is the union of the /Ωi across all vox-
els that define the complete LD solution to the LBTE.

To compute the LD angular fluence amplitudes, we pro-
ject the LBTE into the LD solution space {1, P1(�)}, the
details of which are in the Appendix B. As a result, this spa-
tial discretization produces a system of four equations (one
for each weighted moment of the LBTE) and four unknowns
(the angular fluence amplitudes) for each voxel, energy
group, and streaming direction.

An important aspect to stress is that the LD method
implicitly communicates to each voxel its boundary condi-
tions. This choice is important, as it implies that the LD
method does not require the angular fluence be continuous
across the faces of a voxel. Although discontinuities across
voxel faces are nonphysical, the LD method is said to
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superconverge since volume integrals of its solution exhibit
quadratic convergence (or a cubic error) of a solution built on
linear polynomials. Armed with a superconvergent method,
Acuros can compute sharp variations in the angular fluence
accurately and with relatively few (and large) voxels. We refer
to the LD literature for further review on its mechanics and
properties.64,65

In step 2 of the Acuros algorithm, the multiple-collision
source is computed. We presented three methods to discretize
the LBTE in space (Linear Discontinuous), energy (Multi-
group), and angle (Discrete Ordinates). The product of these
discretizations is 4 9 I 9 G 9 M angular fluence unknowns
and the matching number of moments of the LBTE. We solve
these amplitudes iteratively by assembling the latest scattering
source, transporting (along M discrete directions) the x-rays it
emits across the object (I voxels), and updating the angular flu-
ence (four unknowns per voxel). This Source Iteration process
is performed until the angular fluence converges for all G
energy groups. We then collect the moments of the collided
angular fluence:

fC; l;ki;g ¼
XM
m¼1

wmY
l;k�ðbXmÞ

XN
n¼1

/ðnÞ
X;i;g;mðr~Þ; (23)

and compute the multiple-collision source in the direction bX:

SMC
i;g ðr~; bXÞ ¼

Xg
g0¼1

XL
l¼0

lls; i;g0!g

Xl

k¼�l

fC; l;ki;g0 ðr~ÞYl;kðbXÞ: (24)

2.B.3. Scattering source to detector

In step 3 of Acuros, we evaluate the FC and MC sources
in the direction of the detector panel, transport the combined
x-ray emissions in the panel’s direction, and accumulate the
energy deposited in the detector. The scatter signal is the
accumulation of these emissions from scatter sources in all
voxels. To organize this calculation, the angular fluence arriv-
ing to our detector from a position inside voxel i is defined:

/D
X;i;gðr~; r~dÞ ¼ SFCg þ SMC

g

h i
ðr~; bXdÞ

exp �P
i0 lt; i0;g � li0

� �
kr~d � r~k2 :

(25)

Here, /D
X;i;g is the angular fluence of group g arriving at

point r~d in the detector pixel. bXd is the streaming direction
pointing from r~ to r~d, and r~ is a point inside voxel i. Similar
to step 1 in our algorithm, a ray trace is performed to deter-
mine the ray’s line integral of the attenuation coefficient and
attenuate the ray accordingly. We again use Siddon’s algo-
rithm to determine which voxels (i0) each ray intersects and
the length of each voxel intersection ðli0 Þ.

The contribution of /D
X;i;g to the scatter signal is:

Si;gðr~; r~dÞ ¼ /D
X;i;gðr~; r~dÞ � GgðbXdÞ � DgðbXdÞ; (26)

where Si;gðr~; r~dÞ is the contribution to the scatter signal
from point r~ in voxel i to point r~d in the panel. The grid

and detector responses have been simplified, as described
below in Section 2.C. To numerically integrate the total
contribution from voxel i to this point in the detector, we
subsample each voxel by applying a spatial quadrature,
where r~i;j are quadrature points (j) inside voxel i, and wj

are quadrature weights. To determine the total scatter sig-
nal in a pixel (u), we also subsample each pixel with a
spatial quadrature and sum over all voxels and energy
groups:

Su ¼
X
d

wd �
XG
g¼1

XI

i¼1

X
j

wj � /D
X;i;gðr~i;j; r~dÞ � GgðbXi;j!dÞ�

DgðbXi;j!dÞ; ð27Þ
where wd and r~d are the quadrature weights and points,
respectively, that numerically integrate the area of the pixel.

2.B.4. Computation of primary

The computation of the primary signal in a pixel (Pu) clo-
sely mimics its analytic counterpart. We apply pixel subsam-
pling, our group structure, and simplified anti-scatter grid
and detector models:

Pu ¼
X
d

wd �
XG
g¼1

Sð0Þg ðbXpÞ
exp �P

i0 lt; i0;g � li0
� �
kr~d � r~0k2

GgðbXpÞ � DgðbXpÞ:
(28)

Here, Sð0Þg ðbXpÞ is beam strength of group g along the
primary direction bXp. Each primary ray is traced from
the beam’s focal point to r~d in the panel. The ray’s line
integral of the attenuation coefficient is evaluated with
Siddon’s algorithm, as exemplified in step 1 and 3 of the
scatter signal calculation. Finally, pixel subsampling is
used to find the total primary signal in pixel u, where
wd and r~d form the spatial quadrature that integrates the
area of pixel u.

2.C. Generating the grid and detector responses

The generalized grid and detector responses can be diffi-
cult to model if they are dependent on all three variables (lo-
cation, energy, and angle). Fortunately, the response
functions can be simplified by making reasonable assump-
tions. For example, our models include a 1D anti-scatter grid
that is assumed to be spatially invariant and is dependent on
two angles (h1, h2), where h1 is with respect to the focusing
direction in the v-source plane and h2 is with respect to the
normal direction in the u-source plane (Fig. 3). The grid
response is then simplified to:

GgðbXÞ ¼ Ggðh1; h2Þ: (29)

Therefore, a 2D lookup table (LUT) in (h1, h2) for each
energy group g is sufficient to characterize G. The response
was precomputed using a Geant4 (v9.6)66 simulation of
transmission fractions through the grid. TrueBeam’s 10:1 grid
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was modeled as a series of lead strips focused at the source,
using the manufacturer’s specifications: 60 line pairs/cm,
36 lm lamellae thickness, 1.5 mm lamellae height, and
150 cm focal distance (Smit Roentgen, Philips, Best, Nether-
lands). A line beam of length 1/60 cm in the v-direction was
directed at the modeled grid at various angles (h1, h2) to
determine the average transmission of each energy group,
which was then stored as a LUT in Acuros.

The detector response was simplified further by assuming
it is spatially invariant, but dependent on the angle between
the incident direction and the normal vector of the detector
plane, accounting for the effectively thicker scintillator
encountered by nonperpendicular rays:

DgðbXÞ ¼ Dgðh0Þ: (30)

Accordingly, D can be represented as a 1D LUT in h0 for
each energy group g. The detector response was modeled
using a Geant4 simulation of energy deposited in the Cesium
Iodide (CsI) scintillator (600 lm thick, q = 4.51 g/cm3) in
TrueBeam’s flat-panel imager. For each energy group, a pen-
cil beam was directed at the scintillator at varying angles h0
to determine Dg. It was then assumed the detected signal
(analog–digital units, ADU) is proportional to the energy
deposited.

2.D. Monte Carlo validation

Validation was performed by comparing Geant4 Monte
Carlo results with Acuros results for projections of two digital
phantoms. A simple geometric phantom composed of water,
lung, air, and bone materials (WLAB) was used to test
various components (fluence, energy deposited in detector,
grid model) of the Acuros calculation. The WLAB
phantom [Fig. 4(a)] is composed of a right rectangular prism
of water (20 9 30 9 40 cm3, q = 1.0 g/cm3), with lung
(6 9 6 9 40 cm3, q = 0.26 g/cm3), air (2 9 2 9 40 cm3,
q = 1.205 9 10�3 g/cm3), and bone (2 9 2 9 40 cm3,

q = 1.85 g/cm3) inserts. The phantom extends �20 cm in/
out of the page, while the detector extends �15 cm in/out of
the page. The phantom was defined using geometrical primi-
tives in Geant4, while Acuros modeled the phantom using
isotropic 1 cm voxels. The geometry of the imaging system is
illustrated in Fig. 4(a) and was similar to that of TrueBeam in
full-fan position — 100 cm source–axis distance, 150 cm
source–detector distance, and a centered 40 9 30 cm2 detec-
tor. The isotropic x-ray point source was collimated to the
detector. For the Geant4 simulations, photon energies were
sampled from a 125 kVp Bremsstrahlung spectrum while
Acuros binned the same spectrum into six energy groups.
The spectrum was validated to match the half-value layer
attenuation properties of the TrueBeam system (no bowtie fil-
ter) including its standard 0.89 mm Ti filter. The 10:1 grid
and 600 lm CsI scintillators described above were physically
modeled in the Geant4 simulations, while their precomputed
response functions were used in Acuros. Both Acuros and
Geant4 discretized the detector into 100 9 75 pixels of size
4 9 4 mm2. The primary and scatter images were recorded
for fluence (photons/mm2) at the detector (without grid) as
well as energy deposited in the detector (without, with grid).
The Geant4 Livermore physics model was used with a range
cutoff 0.1 mm (with similar results obtained from Geant4
Penelope physics, not shown).67,68 The Geant4 spectrum,
material definitions, and results have been included as sup-
plemental material with the manuscript.

A second digital phantom with more realistic anatomy and
density variations was also tested. A pelvis CT volume was
converted from CT numbers into water and bone of variable
density (Fig. 5). The patient volume was placed on top of a
digital model of Varian’s standard IGRT patient couch, as the
patient couch is known to be a substantial source of scatter in
certain views.26 Details of the CT number conversion into
material density process and of the patient couch model are
presented in Part II. The patient was fairly large, with ~40 cm
lateral width. The Geant4 simulation utilized the high-spatial

FIG. 3. (a) Simplified grid response for focused 1D grid and (b) simplified detector response. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. (a) Digital WLAB phantom showing dimensions of water (W) and lung (L), air (A), and bone (B) inserts. (b) Imaging geometry, as viewed from above.
All dimensions are in centimeters. The phantom extends �20 cm in/out of the page, while the detector extends �15 cm in/out of the page. [Color figure can be
viewed at wileyonlinelibrary.com]
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resolution of the CT volume with isotropic 1.25 mm voxels.
The volume was downsampled for Acuros by a factor of
10 9 in each direction, enabling each of Acuros’ isotropic
12.5 mm voxels to represent 10 9 10 9 10 of the original
voxels by taking the average water and bone densities of each
subvolume. As downsampling was performed by an integer
factor, the downsampled grid boundaries were aligned with
the original grid boundaries. The simulated imaging system
was identical to that of the WLAB phantom, with the excep-
tion of the beam being collimated to the detector in half-fan
position (lateral shift of 16 cm) and the addition of an ana-
lytic model of TrueBeam’s half-fan bowtie filter.

Geant4 simulations were conducted with an in-house dis-
tributed network of computers (HTCondor, University of
Wisconsin, Madison, WI) without any acceleration or vari-
ance reduction. Acuros was run on a standard workstation,
with the core algorithms written in the CUDA programming
language (CUDA 8.0, Nvidia, Santa Clara, CA) and run on a
GPU (GeForce GTX 1080, Nvidia, Santa Clara, CA).

3. RESULTS

3.A. Digital WLAB phantom

WLAB results are shown in Fig. 6 comparing primary
and scatter images of fluence at the detector (without grid)
that were generated by Acuros and Geant4. The primary
images show variable attenuation due to the air, bone, and
lung inserts. The scatter images are smooth, and the effect of
the inserts is not immediately apparent. Horizontal line pro-
files across the center of the image show excellent agreement
between Geant4 and Acuros for both primary and scatter flu-
ence, with an average relative difference of �0.2% and
�0.7%, respectively. As the results are normalized to one
photon/steradian at the source, the fluence at the detector is
on the order of 10�8 photons/mm2.

The scatter fraction (SF) is a useful metric for quantifying
the joint accuracy of primary and scatter images and is
defined as the scatter signal divided by the total (primary plus
scatter) signal:

SF ¼ S=ðPþ SÞ: (31)

The SF for energy deposited in the detector without
and with the grid is shown in Fig. 7, again demonstrating

the excellent agreement between Geant4 and Acuros. The
average relative SF difference was �0.1% without the
grid and 0.6% with the grid, respectively. The results
with the detector but without a grid support the simpli-
fied detector response model, and the results with the
addition of a grid support the simplified grid response
model.

For these experiments, Acuros had a major computation
time advantage. The WLAB scatter image with 7,500 detector
pixels was computed in only 1.1 s using a single GPU for an
object comprising 24,000 voxels. For the Geant4 simulation,
4 9 1010 source photons were launched, with the computa-
tion taking ~1,200 CPU-h on our distributed computing sys-
tem. Note, some noise (0.4% relative to the mean) is still
visible in the Geant4 scatter image, while the Acuros result is
free of stochastic errors.

3.B. Digital pelvis phantom

Results from the digital pelvis phantom simulation are
shown in Fig. 8. Two (half-fan) projection angles (0° and
270°) were compared. Primary and scatter images of energy
deposited in the detector for the 0° anterior–posterior (AP)
projection show good visual agreement. Although the same
4 9 1010 source photons were used in Geant4, noise in the
scatter image is much more apparent than with the WLAB
phantom due to the higher attenuation of the pelvis. Horizon-
tal line profiles of SF across the central row show the strong
agreement between Geant4 and Acuros. The 270° lateral pro-
jection experiences a higher SF behind the object due to
greater attenuation and scatter coming from the patient
couch. Despite the presence of the bowtie filter and anti-scat-
ter grid, the SF goes as high as 0.85 [or equivalently, a scat-
ter-to-primary ratio (SPR) of 5.5]. Nevertheless, the average
relative difference in SF between Acuros and Geant4 is only
0.1%.

4. DISCUSSION

Our results show excellent agreement between Monte
Carlo- and Acuros-generated scatter estimates, first for a sim-
ple geometric object and then for a more realistic example of
a spatially varying x-ray beam projecting through a heteroge-
neous object. The CBCT system that was modeled consisted

FIG. 5. Multiplanar reformat of a digital pelvis phantom on an IGRT table, showing water and bone densities. Display window [0, 2] g/cm3.
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of a polychromatic kV x-ray source, bowtie filter, and an
energy-integrating indirect detector with an anti-scatter grid.
Despite discretizing the problem using coarse voxels, limited
energy groups, and a finite number of streaming directions,
Acuros’ accuracy was equivalent to that provided by the
Monte Carlo methods, which used finer voxels (or geometri-
cal primitives), a continuous energy spectrum, and continu-
ous directions. The ability to achieve such a good
correspondence is not only due in part to the low-frequency

nature of the projected scatter image but also due to carefully
constructed discretization methods.

We measured Acuros run times of ~1 s/projection for
fairly representative problems using a single GPU. Con-
versely, the (CPU) Monte Carlo implementations were not
optimized for speed. Rather, they were intended to produce a
high-quality solution with minimal noise as required to
benchmark Acuros’ accuracy. Consequently, a direct compar-
ison between Geant4 and Acuros run times is difficult due to
the lack of implementing run-time optimization techniques
for Monte Carlo, including variance reduction methods and
GPU implementation. As such, the purpose of this study was
not to determine which method is inherently faster for this
application, but rather to determine if Acuros’ accuracies and
run times are well suited for our clinical applications. This
was found to be the case as reported in Part II, where we
explore the trade-offs between scatter estimation accuracy
and run times.

Although many of the underlying algorithms are shared
between Acuros CTS and Acuros XB, key differences exist.
First, Acuros CTS was designed and optimized for estimating
primary and scatter images, whereas Acuros XB (external
beam) and BV (brachytherapy) were designed to compute
dose delivered to a patient. Acuros CTS incorporates the last-
collided technique and anti-scatter grid and detector models
to form the scatter image from scattering sources that lie
within the object. This computationally expensive step
requires ray tracing from every object voxel to every detector
pixel but can be performed efficiently on a GPU. Addition-
ally, Acuros CTS does not model electron transport (which is

FIG. 6. WLAB phantom primary and scatter images of fluence at the detector, comparing Geant4 and Acuros. Primary images shown on [0, 2 9 10�8] photons/
mm2, scatter images shown on [4 9 10�9, 8 9 10�9] photons/mm2 window. Horizontal line profiles are taken across the central row. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 7. Scatter fraction line profiles for WLAB phantom, using energy
deposited in the CsI scintillator, for cases without and with a 10:1 grid.
[Color figure can be viewed at wileyonlinelibrary.com]
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negligible at kV energies), does not utilize adaptive mesh
refinement (a uniform spatial grid is sufficient for estimating
scatter), and does not require secondary source modeling (a
point source is sufficient).

Acuros was designed to provide a flexible framework for
estimating scatter and primary images at diagnostic energies.
To match actual imaging conditions, the user can specify the
x-ray beam’s spectrum and distribution, system geometry,
object’s material and density distribution, grid response, and
detector size and response. Although designed with cone-
beam CT in mind, Acuros may be able to extend to other
medical imaging modalities such as radiography, PET, or
SPECT or other applications such as security or industrial
imaging. We have also begun investigation of Acuros CTS
for calculating radiation dose delivered by a kV imaging sys-
tem, similar to how the original Acuros XB code calculates
MV treatment dose. This is a natural fit for Acuros CTS since
the calculation required (angular fluence within the object) is
already performed in the second step. Hence, essentially, we
stop before ray tracing the fluence from the volume to the
detector. Once the angular fluence distribution is calculated,
we can convert to dose delivered by using the mass density
and mass energy-absorption coefficient of each voxel, which
is simply a property of its materials. While the full details of
our preliminary dose study are beyond the scope of this
paper, the Acuros CTS results showed excellent agreement
with Geant4 simulations.69 We anticipate being able to use
Acuros CTS to compute dose from a cone-beam CT scan or
for diagnostic CT scans, where there is great interest in better
dose reporting.70,71

5. CONCLUSION

We have described Acuros CTS, a new software tool for
fast and accurate scatter estimation in kV imaging applica-
tions that can be used as an alternative to Monte Carlo meth-
ods. We have demonstrated that the LBTE can be
deterministically solved using a combination of efficient dis-
cretization methods implemented on parallel-computing plat-
forms, with validation against Monte Carlo simulations. In

Part II, we will discuss modeling a clinical CBCT system with
Acuros CTS and using the output to remove the scatter signal
from the projection data before reconstruction.
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APPENDIX A

LEGENDRE POLYNOMIAL AND SPHERICAL
HARMONICS EXPANIONS

Substituting the Legendre polynomial and Spherical Har-
monic expansions, into Eq. (17), we find:

Si;gðbXmÞ ¼
Xg
g0¼1

XM
m0¼1

wm0
XL
l¼0

2lþ 1
4p

lls; i;g0!gP
lðgm0;mÞ

" #
XL
l0¼0

Xl0
k0¼�l0

fl
0;k0
i;g0 Y

l0;k0 ðbXm0 Þ
" #

:

(A1)

Therefore, to evaluate the scattering source in directionbXm, we must evaluate two polynomial expansions. This is an
expensive proposition. To combine and simplify this expan-
sion, we refer to the Addition Theorem for Legendre Polyno-
mials:

PlðbXm � bXm0 Þ ¼ 4p
2lþ 1

Xl

k¼�1

Yl;kðbXmÞYl;k�ðbXm0 Þ; (A2)

Furthermore, we reorganize the scattering source terms to
take advantage of the orthogonality of Spherical Harmonics
functions:

FIG. 8. (a) Orientation of 0° (AP) and 270° (lateral) projections relative to patient. Geometry not to scale. (b) Primary and scatter images of energy deposited in
the detector for Geant4 and Acuros for the 0° projection. Primary images are shown on the same log scale, while the scatter images are shown on the same linear
scale. (c) Horizontal line profiles of scatter fraction across central row. [Color figure can be viewed at wileyonlinelibrary.com]
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Si;gðbXmÞ¼
Xg
g0¼1

XL
l¼0

lls;i;g0!g

Xl

k¼�1

Yl;kðbXmÞ
XL
l0¼0Xl0

k0¼�l0
fl

0;k0
i;g0

XM
m0¼1

wm0Yl;k�ðbXm0 ÞYl0;k0 ðbXm0 Þ;
(A3)

where Yl;k�ðbXm0 Þ and Yl0;k0 ðbXm0 Þ are orthogonal functions:XM
m0¼1

wm0Yl;k�ðbXm0 ÞYl0;k0 ðbXm0 Þ ¼ dk;k0dl;l0 : (A4)

Here, M is large enough, so that it exactly integrates spher-
ical harmonic functions of degree l, l0, and order k, k0 thus
reducing the scatter source expression to Eq. (21).

APPENDIX B

LINEAR DISCONTINUOUS SOLUTION SPACE

To project the LBTE into the LD solution space, we integrate
the LBTE over the volume of the voxel, weigh this integral by
each function in the solution space, and replace the angular flu-
ence by its LD definition. For example, the P1(xi) projection is:I

@Vi

dS � ðN̂ � X̂mÞ �P1ðxiÞ �/ðnÞ
X;i;g;mðr~Þ

�
Z
Vi

dV � ½X̂ �r~P1ðxiÞ� �/ðnÞ
X;i;g;mðr~Þ

¼
Z
Vi

dV � SðnÞg;mðr~Þ �P1ðxiÞ�lt;i;g �/ðnÞ;x
X;i;g;m

Z
Vi

dV � ½P1ðxiÞ�2:

(B1)

Here, we have integrated the LBTE of the nth source iterate
of the collided fluence, /ðnÞ

X;i;g;m. The integral was weighted by
the P1(xi) function and is defined over the volume of voxel i. We
applied the Divergence Theorem to cast the integral of the first
term into a surface integral form. This surface integral evaluates
the angular fluence on the voxel surface and communicates to
each the voxel boundary conditions from its upstream neighbors.
N̂ is a vector normal to the voxel’s surfaces that points outward.
The integral of the interaction term (second term on the right-
hand side) was simplified. Here, we exploited the orthogonality
properties of Legendre polynomials to ignore those integrals that
are equal to zero. Finally, the integral of the source term equals:Z

Vi

dV �SðnÞg;mðr~Þ �P1ðxiÞ

¼

Xg
g0¼1

ls;i;g0!gðbXUC! bXmÞ

XJ
j¼1

wj �/UC
X;g0 ðr~j; bXUCÞ �P1ðxijÞ;

n¼0;

Xg
g0¼1

XL
l¼0

lls;i;g0!g

Xl

k¼�l

fðn�1Þ;l;k;x
i;g0 �Yl;kðbXmÞ�

Z
Vi

dV � ½P1ðxiÞ�2;
n[0;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
(B2)

where we have integrated the P1(xi) moment of SðnÞg;m, the
source of the nth iteration of group g and streaming direction
m. We have two formulations for this integrand. The first
belongs to the initial step in the Source Iteration process
(n = 0). Here, the driving source is the first-collision source.
We numerically evaluate this integral over the volume of the
voxel using a quadrature set of J points r~j and weights wj.
The second integrand evaluates the P1 moments of the multi-
ple-collision source, where we use the properties of Legendre
Polynomials to evaluate the volume integral.

a)Author to whom correspondence should be addressed. Electronic mail:
adam.wang@varian.com.
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