Table 1.
Classifier | Accuracy | Recall | Precision | F1-score | AUC |
---|---|---|---|---|---|
ResNet | 0.8844 | 0.9325 | 0.8623 | 0.8952 | 0.9248 |
ResNeXt | 0.8784 | 0.8944 | 0.8867 | 0.8905 | 0.9070 |
SMO | 0.8082 | 0.9216 | 0.7607 | 0.8286 | 0.8623 |
Linear Regression | 0.7606 | 0.8328 | 0.7403 | 0.7796 | 0.8258 |
Random forest | 0.7314 | 0.8031 | 0.7148 | 0.7529 | 0.7895 |
Bagging | 0.7113 | 0.7751 | 0.6999 | 0.7339 | 0.7514 |
Multi-layer Perceptron | 0.7827 | 0.8552 | 0.7523 | 0.7971 | 0.8331 |