Skip to main content
. 2018 Apr 7;18(4):1126. doi: 10.3390/s18041126

Table 1.

Average evaluation metrics of the two deep learning models and the five traditional machine learning classifiers. The relatively best two metrics in each column are shown in bold.

Classifier Accuracy Recall Precision F1-score AUC
ResNet 0.8844 0.9325 0.8623 0.8952 0.9248
ResNeXt 0.8784 0.8944 0.8867 0.8905 0.9070
SMO 0.8082 0.9216 0.7607 0.8286 0.8623
Linear Regression 0.7606 0.8328 0.7403 0.7796 0.8258
Random forest 0.7314 0.8031 0.7148 0.7529 0.7895
Bagging 0.7113 0.7751 0.6999 0.7339 0.7514
Multi-layer Perceptron 0.7827 0.8552 0.7523 0.7971 0.8331