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Abstract: The noise distribution of images obtained by X-ray sensors in low-dosage situations can
be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the
most popular noise reduction methods used in recent years. Estimation of the noise distribution of
each subband in the multiscale domain is the most important factor in performing noise reduction,
with non-subsampled contourlet transform (NSCT) representing an effective method for scale and
direction decomposition. In this study, we use artificially generated noise to analyze and estimate the
Poisson–Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the
subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the
noisy subband coefficients. The noise-after-transform also follows a Poisson–Gaussian distribution,
and the relationship between the noise parameters of the subband and the full-band image is
identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of
the proposed noise estimation method with an existing noise reduction method confirms that the
proposed method outperforms traditional methods.

Keywords: low-dose X-ray; non-subsampled contourlet transform (NSCT); Poisson–Gaussian noise;
noise analysis; noise estimation

1. Introduction

Since their discovery by Röntgen, X-rays have been the subject of research in a broad variety of
fields. One of the first uses of X-rays was in the medical field to obtain information on the interior
of the body without dissection. In addition to the basic technique of X-ray imaging of still-cuts,
a number of imaging systems have been developed, including methods for using moving X-ray images
to observe the cardio-vascular system and 3D imaging through computed tomography. An X-ray
beam is partially absorbed by structures within the body in a process known as attenuation, and the
detector on the other side of the body absorbs this attenuated X-ray to produce an X-ray image.
The high permeability of X-rays owing to their high energies can have negative effects on the human
body. It is also continuously concentrated, such as lead and mercury, and has a detrimental effect.
Although risk from medical radiation continues to decrease with the application of isotopes with
shorter half-lives, even very small dosages can be dangerous under frequent exposure. To reduce the
risk of exposure, methods for using low-dose X-rays have been developed in recent years. In low-dose
X-rays, the incident photon density and the photon unevenness are reduced, resulting in a much higher
quantum noise concentration relative to the anatomical information of the human body, which in turn
degrades image quality. Many of the existing algorithms for X-ray image noise reduction algorithms
assume a Poisson distribution of quantum noise [1]; however, Elbakri and Fessler [2] demonstrated
that the actual noise combines Poisson and Gaussian distribution, with the Poisson distribution arising
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from quantum noise and the Gaussian distribution arising from thermal noise generated by sensors
and other electronic devices.

Because Poisson noise is signal-dependent, it is difficult to design a general noise reduction
algorithm; to address this, variance stabilization transforms (VSTs) have been introduced.
The Anscombe transform targeting the Poisson noise was proposed by Anscombe in [3] and extended
to the generalized Anscombe transform (GAT) and inverse transform for Poisson–Gaussian noise by
Makitalo and Foi in [4]. Using this VST, Poisson–Gaussian noise is converted into Gaussian noise with
constant noise variance, enabling the effective application of a number of noise reduction algorithms
based on Gaussian noise [5–11]. Other methods for solving Poisson–Gaussian noise directly without
using variance stabilization have also been developed. A noise-reduction method based on total
variation regularization under a new model for Poisson distribution was proposed in [12], while the
use of stochastic distance, a non-local measure based on symmetric divergence, instead of similarity
measure, was proposed in [13]. A Poisson noise reduction method based on the Poisson PCA was
proposed in [14]. Another effective method for reducing Poisson noise is to use a multiscale transform,
the most commonly used of which is [15]. The Expectation–Maximization (EM) algorithm is used
for image restoration based on the penalized likelihoods formulized in the wavelet domain [16].
Poisson–Gaussian unbiased risk estimate (PURE), a noise reduction method based on the extension
of Stein’s unbiased risk estimate (SURE) in Poisson–Gaussian conduction is also performed in the
wavelet domain [17].

Although the wavelet transform is an efficient computational algorithm that performs well in
image noise reduction, it has fundamental drawbacks, including immobility, directional invariance,
and directional selectivity. In addition, small coefficients are likely to arise from noise, while large
coefficients are more likely to be caused by important signal characteristics. Discrete wavelet transforms
(DWTs) consist of vertical and horizontal filters and cannot not be expressed in other directions.
Therefore, they can only find discontinuities of straight lines at the edges, but cannot represent
smoothness along the contours [18]. Furthermore, conventional wavelet transforms are less efficient
for line- and curve-specific (edge) analysis in the two-dimensional domain [19]. Thus, a typical
wavelet transform does not have optimal properties for the analysis of two-dimensional signals such as
natural images. To overcome these drawbacks, multiscale and directional representations have recently
been proposed. Ridgelet [20], curvelet [21], and contourlet [18,22,23] methods have been introduced
to efficiently solve the 2D multiscale and directionality problems. The primary characteristics of
contourlet transform (CT) are multi-resolution, localization, directionality, and anisotropy; in particular,
the directionality property overcomes the well-known limitations of the commonly used separable
transforms by enabling the resolution of unique directional features characterizing an analyzed image.
Although CT can display the contours and textures of an image very sparsely, because up- and
down-sampling is included in the CT process, it does not produce a one-to-one correspondence
between coarser and finer levels. In addition, CT has a shift-variance property, with produced values
changing according to sub-sampling position. To solve this problem, a non-subsampled contourlet
transform (NSCT) was proposed in [24]. Unlike CT, NSCT does not use up- and down-sampling, giving
it a shift-invariant property and a one-to-one correspondence between pixel positions at different levels.

The contribution of this paper is twofold. First, we analyze the Poisson–Gaussian noise for
low-dose X-ray images in the NSCT domain, and show that it also has a Poisson–Gaussian distribution.
This is done by analyzing the noise distributions of simulated noisy images and the noiseless original
image in the non-subsampled pyramid (NSP) domain and then analyzing the Poisson–Gaussian
noise distribution in non-subsampled directional filter banks (NSDFBs). The Poisson–Gaussian noise
in the NSCT domain is then analyzed by linking these analyses. To confirm the consistency of
this theoretical analysis with the actual results, we then analyze the noise distribution of the actual
low-dose X-ray images in the NSCT domain. Second, we estimate the Poisson–Gaussian noise in each
subband. Noise estimation is the most important component in noise reduction processing and has
the most impact on results; correspondingly, we estimate the Poisson–Gaussian noise in NSP, NSDFB,
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and NSCT domains using the analyzed noise distribution. We observe the relationship between the
noise parameters of the full-band image and the noise parameters of the NSP subband and then
analyze the relationship between the noise parameters of the NSP subband and those of the NSCT
subband after passing through the NSDFB. Finally, the advantages of the proposed method relative to
the conventional method are demonstrated by applying the estimated noise parameter to an existing
noise reduction method.

The paper is organized as follows. The Poisson–Gaussian noise model and the NSCT are described
briefly in Section 2. In Section 3, we analyze the Poisson–Gaussian noise in the NSP, NSDFB, and NSCT
domains and use the results to estimate the noise parameters in each decomposition domain in
Section 4. The results of noise reduction using proposed noise analysis and estimation method are
compared with those obtained from a conventional method in Section 5 and, finally, Section 6 presents
our conclusions and future work.

2. Preliminaries

2.1. Poisson–Gaussian Noise Model

The target images for noise analysis in this work are low-dose X-ray images. X-ray images are
known to have signal-dependent Poisson noise; however, noise added by the sensor itself and other
electronic devices during measurement results in noise with a distribution following a Poisson–Gaussian
mixture model. The generic signal dependent noise model in [25] is given by

y = x + η (x) δ, (1)

where y is the acquired image, x is the original image, η (x) is the standard deviation of the noise
distribution, and δ is the independent Gaussian noise with zero-mean and a standard deviation equal
to one. Because of the signal-dependent noise, the standard deviation of the noise η is a function of
the original signal, x. In a Poisson–Gaussian image noise model, the noise variance η2 (x) can be
separated into signal-dependent and signal-independent components (Poisson and Gaussian noise,
respectively). The variance of the noise term can thus be expressed as

η2 (x) = αx + σ2, (2)

where α and σ are the Poisson noise parameter and the standard deviation of the Gaussian noise,
respectively. The signal-dependent component of the noise term is proportional to the original image,
while the signal-independent component is an additive constant term.

To characterize the noise patterns in low-dose X-ray images, we analyzed the noise in 100 captured
images. The image data for the evaluation were acquired using a clinical angiography prototype
system supported by Samsung Electronics and a chest phantom (Multipurpose Chest Phantom N1
“LUNGMAN”, Kyoto Kagaku, Kyoto, Japan), yielding life-like radiographs very close to actual clinical
images, as shown in Figure 1. The size of each digital image was 1024 × 768 pixels, while the
image intensity had 12-bit precision. The image acquisition environment was as follows. The source
to image-receptor distance (SID) was 120 cm, and the source to object distance (SOD) was 70 cm.
The radiation exposure level was 1.94 µGy/pulse and the scan parameters were 62 kVp and 40 mA.
The average of the images is shown in Figure 2b. Since 100 images are averaged, the variance of
the noise is reduced to 1/100. The maximum value of the noise variance in Figure 2d was about
1820. Then, in the averaged image, the strongest noise had a variance of about 18.2, and the standard
deviation of about 4.266. Because the δ of Equation (1) is a normal distribution, 99.7% of the noise is in
the range of −3η (x) to 3η (x) . Using the maximum standard deviation of the noise of the averaged
image obtained above, 99.7% of the noise in the averaged image was within the range of −12.8 to
12.8. Since the precision of the input image was 12-bit, it had a pixel value of 0 to 4095, and most
of the noise in the averaged image had the range of about 0.3% of the pixel value range. Averaging
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over 100 images did not completely eliminate noise, however, since the range of noise was negligible
compared to the range of pixel values, we assumed that the averaged image with maximum variance
of Poisson–Gaussian noise lower than 20 to be noiseless image. Using the differences between the
acquired images and this assumed original image, noise-only images (Figure 2c) were calculated and
their variance (Figure 2d) was used to analyze the noise. Figure 2c,d show that the noise level is strong
in places where the intensity of the original image is bright and weak in a dark places, suggesting that
the noise in low-dose X-ray images depends on the signal.

Figure 1. A clinical angiography prototype system and chest phantom (Multipurpose Chest Phantom
N1 “LUNGMAN”, Kyoto Kagaku, Kyoto, Japan).

(a) (b)

(c) (d)

Figure 2. Noise analysis of actual image. (a) observed image; (b) noiseless image (average of 100 noisy
images); (c) noise image (difference between observed and noiseless images); (d) variance of noise images.
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We then plotted the pixel values of the noiseless image (Figure 2b) against the variance of noise
images (Figure 2d) in Figure 3 and found a linear relationship between the intensity of the noiseless
pixels and the variance of the noise. The solid line in Figure 3 was drawn by putting the noise
parameters estimated in Section 4 into Equation (2). As shown in Figure 3, the variance of the noise
according to the pixel intensity corresponds with Equation (2); the slope can be interpreted as the
parameter of the Poisson noise (α), while the y-axis intercept can be interpreted as the variance of the
Gaussian noise (σ2).

Figure 3. Noise variance against noiseless pixel intensity estimated from noisy images. The slope of
the solid line is the Poisson noise parameter, α, and the y-axis intercept is the variance of the Gaussian
noise, σ2.

2.2. Non-Subsampled Contourlet Transform

CT [18] is a transform that separates the subbands by band-pass frequency and direction using
a Laplacian pyramid (LP) [26] and directional filter bank (DFB) [27]. In the CT process, as shown in
Figure 4a, LP decomposition is first used to separate an image into a low-pass subband and band-pass
subbands and then a DFB is applied to the band-pass subbands to separate the subband region of
each direction. The LP separates the images by frequency band and the DFB separates images by
direction rather than by the frequency band. The filter of the LP is used to separate high-frequency and
low-frequency regions, and then low-frequency regions are repeatedly separated into high-frequency
and low-frequency regions. In this manner, images are separated by scale level. The DFB is efficiently
implemented through N-level tree structure decomposition. In each tree structure decomposition,
an hourglass filter and a fan filter are applied to divide the image into two parts according to directions.
Through the decomposition of N iterative tree structures, we divide into 2N wedge-shaped frequency
bands. The advantage of the DFB is directional selectivity and efficient structure. Since the directionality
is considered by using the DFB, the CT can complement the disadvantage of wavelet transform and
express the contour of the image. A wavelet transform stronger in the vertical or horizontal patterns
corresponds to a stronger contourlet transform in the curves or contours, respectively. LP and DFB
both include subsampling procedures. Therefore, CT also performs subsampling, which means that
the size of the subband after CT is different from that of the original image. This causes the transform
to have a shift-variant property, which causes major issues in noise reduction. To solve this problem,
Da Cunha et al. proposed the non-subsampled contourlet transform (NSCT) in [24], which eliminates
the subsampling process in CT. Like CT, NSCT decomposes into scale and direction; unlike CT, it has
no sub-sampling process. To achieve shift invariance, NSCT uses a non-subsampled pyramid (NSP)
and a non-subsampled directional filter bank (NSDFB) for multiscale and directional decomposition,
respectively. NSP and NSDFB are constructed by eliminating the downsamplers and upsamplers in
LP and DFB, respectively, and, therefore, NSCT has no downsamplers and upsamplers. The multiscale
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shift-invariant property of the NSCT is obtained from the shift-invariant filter structure. The NSP can
generate a sub-image comprising a low-frequency image and a high-frequency image, each having
the same size as the source image. The NSDFB then decomposes the high-pass subband into multiple
directional subbands. This scheme is iteratively repeated in the low-pass subband. Figure 4b shows
the NSCT decomposition process. As there is no subsampling process, the position of the child node is
the same as that of the parent node.

↓ (2,2)

Image

⋅
⋅
⋅

(a)

Image

⋅ ⋅ ⋅

(b)

Figure 4. CT and NSCT decomposition schemes. (a) CT; (b) NSCT.

The NSCT decomposition process is described in detail as follows. First, in the NSP decomposition
process, a low-pass and a high-pass filter are used to decompose the image. The input image is
decomposed into low- and high-frequency bands through low- and high-pass filters, respectively.
The separated high-frequency band is used as the detail layer, while the low-frequency band signal
is further separated into a lower frequency and a band-pass frequency band by using the low- and
high-pass filters, respectively, of the next scale level. If the total scale level at which the input image
is divided is M, NSP decomposition filtering is repeated M times; here, m (m = 1, 2, · · · , M) denotes
each scale level, where m = 1 representing the finest level and m = M the coarsest level. G0 denotes an
original image, Gm and Lm denote, respectively, the low-frequency band and high- or band-pass band
at the m-th scale level, with 1 ≤ m ≤ M. In the next step, directional decomposition, the detail layer of
the NSP (Lm) is separated directionally through the NSDFB to form the NSCT subband. The number of
directions separated by NSDFB should be an exponential power of two, with the number of directional
levels denoted by Nm and each directional level denoted by n (n = 0, 1, · · · , Nm − 1) and the n-th
directional subband at the m-th scale level denoted by Lm,n.

3. Poisson–Gaussian Noise Analysis in the NSCT Domain

Before using actual images, we analyzed the noise using simulated images. Using high-dose X-ray
images assumed to be a noise-free, 100 noisy images were created for noise analysis by generating
and adding artificial noise, first in the form of Poisson-contaminated images and then in the form of
Poisson–Gaussian-contaminated image. Noise was generated using the imnoise function in MATLAB’s
(R2017b, MathWorks, Natick, Massachusetts, USA) image processing toolbox. The noise parameters
were set to α = 0.0304 for Poisson-contaminated images, and α = 0.0844 and σ2 = 32.5125 for
Poisson–Gaussian-contaminated images. To analyze the noise in the NSCT domain, we analyze the
images following NSP and NSDFB in a step-by-step fashion.

The noise analysis utilized the low-bands of the noiseless image and the variance of the coefficients
of the noisy images. The noisy images were first separated into subbands using a multiscale transform
and then the variances of the coefficients of these 100 subbands were calculated at a fixed scale level,
direction level, and pixel position. The noiseless image was used in only the low-band in the multiscale
transform. The Poisson and Poisson–Gaussian noises were analyzed in terms of the relationship
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between G, the low-band coefficient of the noiseless image y, and Var(L), the variance of decomposed
noisy image coefficients.

3.1. Poisson Noise Analysis

Poisson noise-generated images were analyzed using the methods shown in Figures 2 and 3.
Figures 5c,d show that the Poisson noise has signal-dependent tendencies similar to those in actual
images, with the noise becoming stronger in bright areas. Figure 6 shows that the linear relationship
between noiseless pixel intensity and the variance of the noise images takes the form η2 (x) = αx
because only Poisson noise is present. Near the maximum value of pixel intensity, the noise variance is
rather low because the noise is above the maximum value of the image, resulting in saturation.

(a) (b)

(c) (d)

Figure 5. Noise analysis of Poisson noise. (a) Poisson noise-added image; (b) noiseless image (high-dose
X-ray image); (c) noise image (artificially generated); (d) variance of noise images.

We then analyzed the Poisson noise in the NSP domain using the NSP-decomposed low-band
layer of the noiseless image (Gm) and the detail layers of the noisy images (Lm). The variance of the
noise was estimated using the variance of the detail layer coefficients of the noisy images; Figure 7
shows the noise variance of the detail layer as a function of the low-band pixel density distribution
of the noiseless image. It is seen that the noise of the detail layer follows the Poisson distribution of
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the coefficients of the noiseless image low-band layer and that the value of the noise coefficient, α,
varies with the scale level, m. The noise distribution trends in the NSP domain were the same at all
scale levels, and the variance of the noise became smaller as the scale level became coarser. The noise
of NSP detail layer can be expressed as

η2
m (Lm) = αmGm, (3)

where αm is the Poisson noise parameter at scale level m in NSP domain. As m increases, the bandwidth
of the low-band decreases, which in turn reduces the noise and therefore the value of the Poisson noise
parameter, αm, decreases. This is because the coarser the scale level, the narrower the bandwidth of the
NSP low-pass filter; the detailed description is covered in Section 4.

Figure 6. Noise variance against noiseless pixel intensity for Poisson simulated noisy images.

(a) (b) (c)

Figure 7. Noise analysis of Poisson noise in the NSP domain. Variance of noise subband coefficient
(Var(Lm)) against pixel intensity of noiseless low-band image (Gm) at the scale level (a) m = 1; (b) m = 2;
(c) m = 3.

The decomposed NSP detail layer was then converted to an NSCT layer through NSDFB. As it
has a wider high-pass bandwidth, the finer level was decomposed into more directional levels using
N1 = 8, N2 = 4, and N3 = 2. As was done for the NSP domain, we analyzed the relationship between
the noiseless low-band pixel intensity, Gm, and the noise variance of NSCT coefficients, Var(Lm,n);
the results are plotted in Figure 8. The results for scale level m = 1 are plotted in Figure 8a–d, scale level
m = 2 are plotted in Figure 8e,f, and for scale level m = 3 are plotted in Figure 8g,h. Similar to the noise
distribution in the NSP, the noise distribution for the subband of the noisy image in the NSCT domain
follows a Poisson distribution. It is seen that the noise variance after passing through NSDFB is smaller
than the noise variance at the NSP detail layer; furthermore, at a given scale level, the distribution of
the NSCT noise does not change with directional decomposition. Since the filter of NSDFB has the



Sensors 2018, 18, 1019 9 of 22

same energy irrespective of the direction, it is affected only by the number of direction levels to be
decomposed and the noise is distributed equally as per that number. This can be expressed as

η2
m,n (Lm,n) = αm,nGm, (4)

where αm,n is the Poisson parameter for scale level m and directional level n in the NSCT domain.
Note that αm,n has a constant value for a given m regardless of n.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Noise analysis of Poisson noise in the NSCT domain. Variance of noise subband coefficients
(Var(Lm,n)) against pixel intensity of noiseless low-band image (Gm) for the scale level m and direction
level n (a) m = 1, n = 0; (b) m = 1, n = 1; (c) m = 1, n = 2; (d) m = 1, n = 3; (e) m = 2, n = 0;
(f) m = 2, n = 1; (g) m = 3, n = 0; (h) m = 3, n = 1, where N1 = 8, N2 = 4, and N3 = 2.

3.2. Poisson–Gaussian Noise Analysis

In the succeeding analysis, both Poisson and Gaussian noise were generated and added to an
image and the Poisson–Gaussian noise was analyzed using the methodology applied in the analysis
of Poisson noise. After analyzing the Poisson–Gaussian noise without multiscale decomposition,
the noise in the NSP and NSCT domains were then analyzed in order. The noise variance against
noiseless image pixel intensity is shown in Figure 9a. In the full-band image without decomposition,
the signal-dependent trend is similar to that in the Poisson noise case but has an added constant;
this is similar to the results of the analysis using real images plotted in Figure 3. The variance of the
Poisson–Gaussian noise is expressed in the form of Equation (2).

Figure 9b shows the results of the Poisson–Gaussian noise analysis in the NSP domain at scale
level m = 1. As in the Poisson noise analysis, the values of the noise parameters for each scale level are
different, but the trends of noise distributions are all the same; therefore, it is plotted for only one scale
level. In the figure, the variance of the noisy detail layers follows a linear relationship with the pixel
intensity of the low-band of the noiseless image. The Poisson–Gaussian noise in the NSP domain can
be expressed as

η2
m (Lm) = αmGm + σ2

m, (5)

where σ2
m is the variance of Gaussian noise at scale level m in NSP domain. Like Poisson noise,

the Gaussian noise σ2
m becomes smaller as scale level becomes coarser.

The Poisson–Gaussian noise analysis in the NSCT domain is shown in Figure 9c–e. The figures
show the noise analysis for only one direction level at each scale level because the distribution of
the noise at a given scale level is unaffected by the direction level. In the NSCT decompositions,
the Poisson–Gaussian noise distribution also follows a distribution in which a constant (Gaussian)
noise is added to noise with a low-band signal (Poisson) dependence, which is given as follows:
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η2
m,n (Lm,n) = αm,nGm + σ2

m,n. (6)

In conclusion, the Poisson–Gaussian noise comprising a combination of original signal-dependent
Poisson noise and independent Gaussian noise has low-band-dependent Poisson–Gaussian distribution
even after multiscale conversion. The value of the noise variable is different for each scale level, as is
discussed in the next section.

(a) (b)

(c) (d) (e)

Figure 9. Noise analysis of Poisson–Gaussian noise. (a) variance of noise against noiseless pixel
intensity; (b) variance of noise subband coefficients in NSP domain (Var(Lm)) against pixel intensity
of mean low-band image (Gm) for m = 1; (c,d,f) variance of noise subband coefficients in the NSCT
domain (Var(Lm,n)) against pixel intensity of mean low-band image (Gm) at scale level m and direction
level n = 0 for (c) m = 1, N1 = 8; (d) m = 2, N2 = 4; (e) m = 3, N3 = 2.

3.3. Real Image Noise Analysis

We then analyzed low-dose X-ray noise using an actually obtained image. As shown in Figure 3,
the low-dose X-ray images corresponding to the actual image have Poisson–Gaussian noise. Unlike the
noise-generated images, saturation does not occur in the actual image near the maximum pixel value.
Figure 10 shows real noisy image noise analysis in the NSP and NSCT domains. Since the noise
tendencies in the NSP and NSCT domains are all similar, only one scale level is indicated for the NSP
domain and only one direction level for each scale level in the NSCT domain. Unlike the previously
simulated images, a single main noise distribution and several branches appear at the coarse level.
In addition to noise generated during the attenuation process, actual X-ray images also exhibit edge
changes as a result of photon scattering. As the branches outside of the main distribution are likely to
cause errors in noise estimation, the noise should be analyzed separately. The detailed subband of the
multiscale transform is sparse, with noise primarily included in the small values of the coefficients
while edge information is primarily included in the large section. Using these properties, the noise can
be analyzed by thresholding only small absolute values of the detailed subband coefficients. In this
experiment, the thresholding value was set to 150 and the analysis limited to the section in which
|Lm| ≤ 150 and |Lm,n| ≤ 150. The actual noise in the NSP and NSCT domains following thresholding
is shown in Figure 11, from which it is seen that the real noise in the NSP and NSCT domain is
Poisson–Gaussian distributed and follows Equations (5) and (6), respectively.
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(a) (b) (c) (d)

Figure 10. Noise analysis of real image in the NSP and NSCT domains. (a) variance of noise subband
coefficients (Var(Lm)) against pixel intensity of mean low-band image (Gm) at the scale level m = 3;
(b–d) variance of noise subband coefficients (Var(Lm,n)) against pixel intensity of mean low-band
image (Gm) at the scale level m and direction level n = 0 for (b) m = 1, N1 = 8; (c) m = 2, N2 = 4;
(d) m = 3, N3 = 2.

(a) (b) (c) (d)

Figure 11. Noise analysis of real image in the NSP and NSCT domains after thresholding. (a) variance
of noise subband coefficients (Var(Lm)) against pixel intensity of mean low-band image (Gm) at the
scale level m = 3; (b–d) variance of noise subband coefficients (Var(Lm,n)) against pixel intensity of
mean low-band image (Gm) at the scale level m and direction level n = 0 for (b) m = 1, N1 = 8;
(c) m = 2, N2 = 4; (d) m = 3, N3 = 2.

4. Noise Parameter Estimation

Next, noise parameters were obtained for each scale and direction level and the noise parameters
were estimated by analyzing these noise parameters. The noise parameters αm,n and σm,n of Equation (6)
were estimated using the noise distribution results obtained in the previous section. In the Var(L) and
G graph of the simulated noisy image, the noise variance appears to deviate from that derived from
Equation (6) as a result of saturation near the minimum and maximum pixel values; thus, for accurate
estimation, the noise parameters were estimated within the range in which saturation does not occur
using the following rule:(

Gm, Var(Lm,n)
)
=
{ (

Gm, Var(Lm,n)
)
|10 ≤ Gm ≤ 220

}
. (7)

Using the rule in Equation (7), the mean of low-band image, Gm, and the noise variance of subband
coefficients, Lm,n, were used to produce k samples from which Equation (6) could be constructed:

Var(Lm,n) (i) ≈ αm,nGm (i) + σ2
m,n, i = 1, 2, · · · , k. (8)

Equation (8) can be converted into a matrix equation using the selected k samples as follows:

b = Ca, (9)

where

b =


Var(Lm,n (1) )
Var(Lm,n (2) )

...
Var(Lm,n (k) )

 , C =


Gm (1) 1
Gm (2) 1

...
...

Gm (k) 1

 , a =

[
αm,n

σ2
m,n

]
. (10)
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Using the least-square method, a can be estimated a using pseudo inverse matrix as

a =
(

CTC
)
−1CTb. (11)

The noise parameters of the full-band and each subband in the NSP and NSCT domains were
estimated using Equation (11) and are listed in Table 1.

Table 1. Estimated noise parameters for simulated noisy image in NSP and NSCT domains.

m n αm,n σ2
m,n

Full-band 0.085417 32.533870

0
NSP

0.065490 25.032060
1 0.015346 5.813242
2 0.003845 1.433520

0

0 0.008101 3.113986
1 0.007989 3.066360
2 0.008038 3.076296
3 0.008290 3.192081
4 0.008321 3.190195
5 0.008037 3.071675
6 0.008069 3.087203
7 0.008573 3.265702

1

0 0.003774 1.424735
1 0.003838 1.444526
2 0.003820 1.466331
3 0.003909 1.483386

2 0 0.001915 0.709337
1 0.001930 0.725090

The estimated noise parameter values in the full-band are similar to those used in noise generation
(α = 0.0844 and σ2 = 32.5125). This means that the noise estimation method using the least-squares
method has very high accuracy. Moreover, as the NSP scale level coarsens, the Poisson and Gaussian
noises both decrease. The Poisson noise ratios of the full-band and scale level subband are similar to
the ratios of the Gaussian noise to the scale level. The rate at which the noise parameter decreases for
each scale level is listed in Table 2.

Table 2. Ratio of NSP subband noise parameters those in full-band.

m αm/α σ2
m/σ2

0 0.766709 0.769415
1 0.179659 0.178682
2 0.045014 0.044062

The Poisson and Gaussian ratios are similar for each level in the full-band and to the NSP subband
ratios, i.e., the Poisson and Gaussian noise decrease at the same rate for each scale and follow a ratio
related to the NSP decomposition.

Figure 12 shows a schematic of NSP decomposition and the bandwidth of the decomposed
subbands. If the low- and high-pass filters of NSP are denoted by H0 (z) and H1 (z) , respectively,
Ψm (z)—the NSP subband decomposing filter of m-th scale level (Lm)—can be expressed as follows:

Ψm (z) =

{
H1 (z) , if m = 1,

H1

(
z2(m−1)I

)
· ∏m−1

k=1 , H0

(
z2(k−1)I

)
, if m > 1.

(12)
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Figure 12. Non-subsampled pyramid decomposition. (a) decomposition scheme; (b) bandwidth
of subbands.

The magnitude of Ψm (z) is shown in Figure 13. For m = 1 and m ≥ 1, Ψm (z) is, respectively,
a high- and band-pass filter, and the passband of Ψm (z) becomes narrower as the scale level becomes
coarser. The energy of Ψm (z) , Em, can be calculated as follows:

Em =
1

(j2π) 2

∮
C
|Ψm (z) | 2dz. (13)

The calculated values of Em—E1 = 0.769155, E2 = 0.178771, and E3 = 0.044181—are similar to
the noise parameter ratios shown in Table 2, indicating that the Poisson–Gaussian noise in the NSP
is reduced at the same rate as the energy of the decomposition filter for each scale. The relationship
between the Poisson Gaussian noise of the full-band and NSP domain is given as

αm = α · Em, σ2
m = σ2 · Em. (14)

We then estimated the noise parameters after passing through the NSDFB. As shown in Table 1,
NSDFB distributes the noise uniformly to each directional subbands, which can be expressed as

αm,n = αm/Nm =
α · Em

Nm
, σ2

m,n = σ2
m/Nm =

σ2 · Em

Nm
. (15)

The Poisson–Gaussian noise parameters in the NSCT domain were then estimated as follows.
First, the noise in the full-band was reduced in accordance with the energy ratio of the NSP
decomposition filter as it passes through the NSP. Second, NSDFB divided the noise in the NSP
domain equally by the number of directional decomposition levels.

Finally, the noise value of the actual low-dose X-ray image was obtained. Unlike the simulated
noisy image, this image had no saturation but had a distribution of real noise that included several
branches rather than one main distribution over an image range of 12 bits. Therefore, a candidate
group different from that obtained using Equation (7) had to be set using the threshold method applied
in the previous section. A sample group for the analysis of the actual noise image was obtained
as follows: (

Gm, Var(Lm,n)
)
=
{ (

Gm, Var(Lm,n)
)
| |Lm,n| ≤ 150

}
. (16)
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Table 3 shows the estimated noise parameters of the low-dose X-ray image obtained from
Equation (11). The noise ratio of the full-band and the NSP subband decrease and converge with the
energy ratio of the NSP decomposition filter, while the noise ratios of the NSP and NSCT subbands are
reduced proportionally to the number of decomposition direction levels of NSDFB. Thus, the ratios of
actual noise in both the NSP and NSCT domains also satisfy Equations (14) and (15).

(a) (b) (c)

Figure 13. The magnitude of |Ψm (z) | for (a) m = 1; (b) m = 2; (c) m = 3.

Table 3. Estimated noise parameters for real low-dose X-ray image in NSP and NSCT domains.

m n αm,n σ2
m,n

Full-band 0.466315 51.910244

0
NSP

0.357528 39.940532
1 0.083778 9.275465
2 0.020991 2.287289

0

0 0.037924 5.083407
1 0.047112 5.444466
2 0.047549 5.320386
3 0.038998 4.907889
4 0.040472 4.923046
5 0.051170 4.922164
6 0.051729 4.797308
7 0.041266 4.814809

1

0 0.020238 2.351813
1 0.020622 2.310953
2 0.021323 2.317017
3 0.021655 2.293817

2 0 0.010413 1.126114
1 0.010583 1.161471

5. Experimental Method and Results

To investigate the effects of the proposed method for accurate noise estimation on noise reduction
performance, we compared its performance with that of an existing noise reduction technique.
The thresholding method is a widely used noise reduction method that applies multiscale transforms
such as wavelet, curvelet, and NSCT. The thresholding method can be broadly divided into hard and
soft thresholding, and the threshold value, which is determined by the noise intensity, has a large effect
on the noise reduction performance. The relationship between the noise level and the variances of
a noisy and original image is obtained from Equation (1) as

σ2
y = σ2

x + σ2
η . (17)
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The variance of an observed image can be divided into the variance of its corresponding noiseless
image and the variance of the noise. The most popular noise estimation method in the wavelet
domain—the robust median estimator in multiscale transform proposed by Donoho in [28]—involves
the use of the median of the absolute deviation of the subband coefficients. This estimator is useful for
sparse signals such as wavelet, curvelet, and contourlet transforms because the subbands of the finest
level have almost no signal power and are composed instead of mostly noise power. Applying the
robust median estimator in [28] to the NSCT, the estimated noise standard deviation, σRM, is derived
as follows:

σRM ≈
Median (|Lm,n|)

0.6745
. (18)

Du et al. proposed Poisson noise reduction using a thresholding method in wavelet transform
in [29]. In this method, the threshold is determined adaptively using the robust median estimator
and the variance of the subband coefficient. Applying Du’s method to the NSCT domain, σ2

y can be
estimated as follows:

σ2
y = E2 [Lm,n] = E

[
L2

m,n

]
− (E [Lm,n] )

2 = E
[

L2
m,n

]
. (19)

Because Lm,n has no DC component, E [Lm,n] = 0. The variance of an observed signal can
be calculated as the average of the squares of the subband coefficients. From Equations (17)–(19),
the standard deviation of an unknown noiseless signal can be estimated as

σx =

√
max

(
σ2

y − σ2
RM, 0

)
. (20)

Because the standard deviation, σx, cannot have a negative value or be obtained directly, it is
assumed to be zero if a negative number is found in the estimation process. The threshold, T,
is determined to minimize Bayesian risk r(T) = E (x̂− x) 2 = ExEy|x (x̂− x) 2 where x̂ is the Bayesian
estimate of the x. The adaptive threshold T is then obtained as

T =
σ2

RM
σx

. (21)

The hard and soft thresholding methods are both processed using the value of T obtained
by Equation (21).

In the proposed method, it is possible to calculate ση using the estimated parameters without
estimating σRM for each subband by taking the expected value in Equation (1),

E [y] = E
[
x + ση (x) δ

]
= E [x] + E

[
ση (x)

]
E [δ] = E [x] , (22)

because E [δ] = 0. The expected value of Equation (2) is then expressed as

E
[
σ2

η (x)
]
= E [αx] + E

[
σ2
]
= αE [x] + σ2. (23)

As E [x] = E [y] from Equation (22) and σ2
RM = E

[
σ2

η

]
, we can rewrite Equation (23) as

σ2
RM = E

[
σ2

η (x)
]
= αE [y] + σ2. (24)

Using E [y] and the estimated noise parameters, T can be easily calculated.
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Du et al.’s method [29] estimates the noise parameter for each subband at each time, resulting in
inevitable sorting owing to the median calculation used in the process. Sorting takes a long time to
execute, with the execution time increasing with the number of objects sorted. In addition, regardless of
the type of noise, only one threshold value necessary for removing noise, σRM, can be obtained.
By contrast, the proposed method is able to estimate the noise parameters of each subband using the
estimated full-band noise parameters at once using Equation (15). Furthermore, it can estimate the
parameters of Poisson and Gaussian noise, respectively.

Noise reduction under both hard and soft thresholding was then performed using the threshold
value, T, obtained from Du et al.’s method [29] and from the proposed method, and the results
were compared. Figure 14 shows the noise reduction results for a Poisson–Gaussian corrupted image,
with Figure 15 providing a partial magnified view of Figure 14. It is seen that noise was eliminated using
both the hard and soft threshold methods. While the hard threshold method produced a small artifact,
the results of the soft method were much smoother overall. Furthermore, the noise removal results
obtained using the threshold value obtained from Du’s method were smoother than those obtained
using the threshold value of the proposed method. Table 4 provides a quantitative evaluation and
comparison of the noise reduction results in terms of mean squared error (MSE), peak signal-to-noise
ratio (PSNR), and structural similarity (SSIM). The similarity in terms of noise removal results indicates
that the thresholds obtained by the respective methods are similar, which in turn suggests that the
proposed method performs well in terms of noise analysis and estimation.

Table 4. Quantitative evaluation of denoising results of simulated Poisson–Gaussian noisy image.

MSE PSNR SSIM

Du’s method [29] + Hard threshold 12.86810 37.03574 0.929491
Proposed method + Hard threshold 10.96603 37.73034 0.950617

Du’s method [29] + Soft threshold 10.60109 37.87733 0.960309
Proposed method + Soft threshold 10.32063 37.99378 0.961132

Noise reduction was then performed on real low-dose X-ray images with Poisson–Gaussian noise.
Figure 16 shows the noise reduction results obtained using the threshold values from Du’s method and
the proposed method under the application of hard and soft thresholding methods (a magnification
is shown in Figure 17), and Table 5 provides a numerical analysis of the noise results by threshold
method and threshold-setting method. The results obtained using Du’s method and the proposed
method were similar in both quantitative and qualitative cases for hard and soft thresholding. Since the
noise reduction method uses the same threshold method, there is no significant improvement in the
noise reduction performance. The only factor affecting noise reduction performance is the threshold
value; hence, the similarity of the two sets of results suggests that the thresholds of Du’s method and
the proposed method are similar, which implies that the noise parameter estimation of the proposed
method has high accuracy.

Table 5. Quantitative evaluation of low-dose X-ray image denoising results.

MSE PSNR SSIM

Du’s method [29] + Hard threshold 2650.051 38.01466 0.966992
Proposed method + Hard threshold 2641.592 38.02854 0.967035

Du’s method [29] + Soft threshold 1627.141 40.13295 0.973222
Proposed method + Soft threshold 159.0478 40.23192 0.973426
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Denoising experiments for Poisson–Gaussian-corrupted image. (a) image with Poisson–Gaussian
noise; (b) original image; (c–f) denoising results; (c) Du’s method [29] + hard threshold; (d) proposed method
+ hard threshold; (e) Du’s method [29] + soft threshold; (f) proposed method + soft threshold.



Sensors 2018, 18, 1019 18 of 22

(a) (b)

(c) (d)

(e) (f)

Figure 15. Partially magnification of Figure 14. (a) image with Poisson–Gaussian noise; (b) original
image; (c–f) denoising results; (c) Du’s method [29] + hard threshold; (d) proposed method + hard
threshold; (e) Du’s method [29] + soft threshold; (f) proposed method + soft threshold.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Denoising experiments for real noisy image. (a) low-dose X-ray noisy image; (b) noiseless
image; (c–f) denoising results; (c) Du’s method [29] + hard threshold; (d) proposed method + hard
threshold; (e) Du’s method [29] + soft threshold; (f) proposed method + soft threshold.
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(a) (b)

(c) (d)

(e) (f)

Figure 17. Partially magnification of Figure 16. (a) low-dose X-ray noisy image; (b) noiseless image;
(c)–(f) denoising results; (c) Du’s method [29] + hard threshold; (d) proposed method + hard threshold;
(e) Du’s method [29] + soft threshold; (f) proposed method + soft threshold.

6. Conclusions

In this paper, the Poisson–Gaussian noise of low-dose X-ray images in the NSCT domain has
been analyzed. X-ray image sensor noise comprises Poisson noise originating from X-ray photons
and Gaussian noise generated in the sensor. In a preliminary theoretical analysis, Poisson and
Poisson–Gaussian noise were analytically generated and assessed. Noise in the NSCT domain has
been analyzed by first analyzing the noise in the NSP domain and then passing the results to the
NSCT domain for stepwise analysis. The results reveal that the noise in the NSCT subband also
has a Poisson–Gaussian distribution comprising multiscale, low-band dependent Poisson noise and
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signal-independent Gaussian noise. Subsequent analysis of actual low-dose X-ray noise confirmed
the consistency of the real noise in the NSCT domain with the theoretical analysis results. The noise
parameters in the NSCT subband were then estimated using these noise analysis results. To do this,
the Poisson–Gaussian noise was divided by the ratio of the energy of each decomposition filter in
the NSP detail layer, with the noise of the NSP detail layer evenly distributed among the NSDFB
direction levels as it passed through this filter. Using the proposed and an existing noise estimation
method with both hard and soft thresholding techniques, the Poisson–Gaussian noise was removed in
the multiscale domain, and the results based on qualitative and quantitative evaluation were found
to be similar. The similarity of the noise removal results indicates that the proposed noise analysis
and estimation method is accurate and has been properly developed. In the multiscale transform
domain, the conventional noise estimation method can robustly obtain only median values, while the
proposed method can quickly obtain both Poisson and Gaussian noise parameters. Based on our
analysis findings that the subband noise depends on the low-band signal, we believe that our proposed
method will be applicable to other noise elimination methods, including noise reduction methods
based on multiscale transform.
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