Skip to main content
. 2018 Mar 21;18(4):930. doi: 10.3390/s18040930

Table 9.

Model validation with various neurons based on original dataset as input and PCA extracted components as input.

Model Characteristics No. of Hidden Nodes MAE RMSE RAE RSE R2
Original parameters 8 0.2060 0.2876 0.6790 0.5828 0.4371
9 0.1904 0.2776 0.6649 0.5877 0.4372
10 0.1885 0.2727 0.6601 0.5936 0.4463
11 0.1897 0.2688 0.6579 0.6112 0.4737
12 0.1769 0.2633 0.6586 0.6149 0.4850
13 0.1734 0.2628 0.6444 0.6184 0.5165
14 0.1725 0.2576 0.6425 0.6228 0.5371
15 0.1704 0.2541 0.6396 0.6273 0.5526
16 0.1692 0.2506 0.6393 0.6365 0.5584
17 0.1691 0.2448 0.6340 0.6339 0.5806
18 0.1647 0.2430 0.6317 0.624 0.5862
19 0.1768 0.2568 0.6457 0.6250 0.5749
20 0.1859 0.2618 0.6333 0.6300 0.5849
PCA extracted components 3 0.182423 0.250838 0.78808 0.701039 0.608961
4 0.169745 0.233575 0.775804 0.696784 0.633216
5 0.161998 0.223779 0.763809 0.687294 0.652706
6 0.1519 0.2104 0.7619 0.6818 0.6654
7 0.157451 0.228864 0.762694 0.695096 0.624904
8 0.16392 0.243648 0.786798 0.702337 0.597663