Table 9.
Model validation with various neurons based on original dataset as input and PCA extracted components as input.
| Model Characteristics | No. of Hidden Nodes | MAE | RMSE | RAE | RSE | R2 |
|---|---|---|---|---|---|---|
| Original parameters | 8 | 0.2060 | 0.2876 | 0.6790 | 0.5828 | 0.4371 |
| 9 | 0.1904 | 0.2776 | 0.6649 | 0.5877 | 0.4372 | |
| 10 | 0.1885 | 0.2727 | 0.6601 | 0.5936 | 0.4463 | |
| 11 | 0.1897 | 0.2688 | 0.6579 | 0.6112 | 0.4737 | |
| 12 | 0.1769 | 0.2633 | 0.6586 | 0.6149 | 0.4850 | |
| 13 | 0.1734 | 0.2628 | 0.6444 | 0.6184 | 0.5165 | |
| 14 | 0.1725 | 0.2576 | 0.6425 | 0.6228 | 0.5371 | |
| 15 | 0.1704 | 0.2541 | 0.6396 | 0.6273 | 0.5526 | |
| 16 | 0.1692 | 0.2506 | 0.6393 | 0.6365 | 0.5584 | |
| 17 | 0.1691 | 0.2448 | 0.6340 | 0.6339 | 0.5806 | |
| 18 | 0.1647 | 0.2430 | 0.6317 | 0.624 | 0.5862 | |
| 19 | 0.1768 | 0.2568 | 0.6457 | 0.6250 | 0.5749 | |
| 20 | 0.1859 | 0.2618 | 0.6333 | 0.6300 | 0.5849 | |
| PCA extracted components | 3 | 0.182423 | 0.250838 | 0.78808 | 0.701039 | 0.608961 |
| 4 | 0.169745 | 0.233575 | 0.775804 | 0.696784 | 0.633216 | |
| 5 | 0.161998 | 0.223779 | 0.763809 | 0.687294 | 0.652706 | |
| 6 | 0.1519 | 0.2104 | 0.7619 | 0.6818 | 0.6654 | |
| 7 | 0.157451 | 0.228864 | 0.762694 | 0.695096 | 0.624904 | |
| 8 | 0.16392 | 0.243648 | 0.786798 | 0.702337 | 0.597663 |