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Functional characterization of the GPCR interactome has been
focused predominantly on intracellular interactions, yet GPCRs are
increasingly found in complex with extracellular proteins. Extracel-
lular leucine-rich repeat fibronectin type III domain containing 1
(ELFN1) was recently reported to physically anchor mGluR6 and
mGluR7 across retinal and hippocampal synapses, respectively;
however, the consequence of transsynaptic interactions on proper-
ties and pharmacology of these receptors are unknown. In the
current study, we explore the effects of ELFN1 on mGluR signaling
and pharmacology. First, we established the binding specificity of
ELFN1 and found it to be recruited selectively to all group III mGluRs
(mGluR4, mGluR6, mGluR7, and mGluR8), but not other mGluR
species. Using site-directed mutagenesis we mapped binding deter-
minants of this interaction to two distinct sites on the ELFN1
ectodomain. To evaluate functional aspects of the interaction, we
developed a transcellular signaling assay in reconstituted HEK293 cells
which monitors changes in mGluR activity in one cell following its
exposure to separate ELFN1-containing cells. Using this platform, we
found that ELFN1 acts as an allosteric modulator of class III mGluR
activity in suppressing cAMP accumulation: altering both agonist-
induced and constitutive receptor activity. Using bioluminescence
resonance energy transfer-based real-time kinetic assays, we estab-
lished that ELFN1 alters the ability ofmGluRs to activate G proteins. Our
findings demonstrate that core properties of class III mGluRs can be
altered via extracellular interactions with ELFN1 which serves as a
transsynaptic allosteric modulator for these receptors. Furthermore, our
unique assay platform opens avenues for exploring transcellular/trans-
synaptic pharmacology of other GPCR transcomplexes.
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The meticulous coordination of neurotransmission involving a
myriad of mediators requires precise spatial organization and

matching of neurotransmitter release machinery with cognate
receptors across compatible synapses (1–3). This structural or-
ganization must be further coupled to the temporally synchronous
release of many neurotransmitters at diverse synapses endowed with
distinct properties (4). The importance of intricate spatial and
temporal coordination of neurotransmission is emphasized by cor-
relations between dysfunction in these elements of neural circuitry
and the manifestation of neuropsychiatric disease (5–7). However,
how the structure–functional organization of transsynaptic matching
is achieved and modulated remains poorly understood.
G protein-coupled receptors (GPCRs) constitute the largest

family of neurotransmitter receptors and represent one of the
most common targets of current pharmaceutical treatment
strategies (8). Functional characterization of GPCRs and the
GPCR interactome has focused predominantly on intracellular
transducers and regulators (9–11). However, it is becoming in-
creasingly clear that GPCRs also associate with extracellular
partners in trans, and that these interactions play an important
role in their biology. Perhaps the best known example of trans-
synaptic complexes involving GPCRs is provided by the adhesion
GPCRs latrophilins (LPHNs) whose interactions in extracellular

space with teneurin-2/4 (12–14), fibronectin leucine-rich trans-
membrane protein (FLRT) 2/3 (15), and neurexin1–3 (16) play
important roles in synapse formation and function. However,
examples of such interactions are scarce and our knowledge of
the functional implications, as well as the extent in which dif-
ferent GPCRs engage in transcellular complexes, is very limited.
Metabotropic glutamate receptors (mGluRs) represent a

prominent family of GPCRs that participate in the neuro-
modulation of synaptic transmission (17, 18). mGluRs are sub-
typed into three groups largely based on sequence homology.
Prototypically, group I mGluRs (mGluR1/5) are Gαq-coupled
and localized predominantly postsynaptically in the brain where
they modulate neuronal excitability in response to excitatory
inputs. Conversely, group II (mGluR2/3) and group III mGluRs
(mGluR4/6/7/8) are Gαi/o-coupled and predominantly localized
presynaptically in the brain where they participate in the auto-
regulation of neurotransmitter release (17). Although this spatial
organization is fairly conserved, there are exceptions at distinct
synapses, most notably with group III mGluR6 in retinal syn-
apses that functions as a postsynaptic neurotransmitter receptor
integral for the ON bipolar response to light stimulation (19). Of
the remaining group III mGluRs, mGluR4, -7, and -8 can be
found in a plethora of different brain regions where they have
been implicated in the manifestation and/or treatment of a
myriad of neurological and neuropsychiatric diseases, including
Parkinson’s disease, neuropathic pain, epilepsy, anxiety, depression,
and autism-like symptoms, among others (20–26). Therefore, a
thorough understanding of group III mGluR function and phar-
macology is prerequisite for the development of new therapeutic
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strategies for the treatment of an extensive array of neurological
and neuropsychiatric diseases.
Recently, two members of the group III mGluRs were found

to interact with extracellular leucine-rich repeat and fibronectin
type III domain-containing 1 (ELFN1): an understudied protein
that has been implicated in neurological diseases such as epi-
lepsy, attention deficit hyperactivity, and autism spectrum dis-
orders (27, 28). ELFN1 belongs to a large family of leucine-rich
repeat (LRR) neuronal adhesion proteins that have been sug-
gested to play an integral role in synapse formation and differ-
entiation via the coordination of both pre- and postsynaptic
machineries (2, 3, 29, 30). In the hippocampal synapse, ELFN1
was first reported as a postsynaptic retrograde regulator of
presynaptic release probability acting on fine-tuning properties
of select neural circuits (31). Subsequent studies determined
postsynaptic ELFN1 to be an essential transsynaptic scaffolding
protein for the recruitment of presynaptic metabotropic gluta-
mate receptor 7 (mGluR7): known for its role as an autoreceptor
capable of altering presynaptic release (28). In the retinal syn-
apse, ELFN1 is targeted to the presynaptic terminal of rod
photoreceptors via an association with neurotransmitter release
machinery (32, 33). There, it transsynaptically binds to post-
synaptic receptor mGluR6 and this interaction plays an essential
role in the retention of mGluR6 at the synapse, synaptic trans-
mission, and the physical wiring of rods (32, 33). Taken together,
transsynaptic ELFN1-mGluR6/7 complexes have been demon-
strated to be spatially organized across distinct synapses where
they contribute to key synaptic properties. However, our un-
derstanding of functional aspects of ELFN1-mGluR interaction,
and transsynaptic complexes involving GPCRs in general, at the
mechanistic level remains in its infancy: creating a void in our
knowledge of GPCR function and pharmacology.
To advance our understanding of transsynaptic GPCR com-

plexes, in the current study we have developed a unique assay
platform to study the functional consequence of transcellular
interactions on GPCR signaling and pharmacology. We docu-
ment that ELFN1 is a global extracellular adaptor for all group
III mGluRs that critically changes the pharmacological proper-
ties of these receptors by promoting constitutive activity and
constraining agonist-mediated signaling. We suggest these ac-
tions fine tune ELFN1-positive synapses by endowing synapses
with distinct functional properties while stabilizing the optimal
spatial localization of group III mGluRs.

Results
ELFN1 Interacts with Multiple mGluRs with Selectivity for All Members
of Group III. Given that ELFN1 has been reported to interact with
more than one mGluR, we began by defining its interaction selec-
tivity across members of the mGluR family from groups I–III.
Following transfection into HEK293 cells, ELFN1 was immuno-
precipitated with specific antibodies and incubated with lysates of
separate cells expressing mGluRs (Fig. 1A). We found that ELFN1
effectively coimmunoprecipitated with mGluR4, mGluR6, and
mGluR7, which belong to group III, but not mGluR5 or mGluR2,
which belong to groups I and II, respectively (Fig. 1B). To de-
termine whether ELFN1 ectodomain mediates these interactions,
the extracellular portion of ELFN1 sequence was fused with an Fc
tag, thereby directing its secretion. Following its capture from the
culture media by protein G beads, it was incubated with separate
cell lysates expressing various mGluRs (Fig. 1C). In agreement with
full-length ELFN1 coimmunoprecipitations, these pull-down assays
revealed retention of group III mGluR4 and mGluR8, but not
group I mGluR5 or group II mGluR2 by ELFN1 ectodomain,
demonstrating sufficiency for the interaction (Fig. 1D). Together,
these experiments identify mGluR4 and mGluR8 as unique inter-
acting partners of ELFN1 and establish ELFN1 as a selective
binding partner of all group III mGluRs.

Multiple Structural Elements Within ELFN1 Ectodomain Mediate Its
Interaction With mGluRs. ELFN1 contains several structural do-
mains within the extracellular region (Fig. 2A), including multi-
ple leucine-rich repeats (LRRs) and a fibronectin type III (FN3)
domain. To investigate the structural requirements of ELFN1 for
mGluR interactions, we performed site-directed mutagenesis on
the ELFN1 ectodomain. After performing a multiple sequence
alignment across 165 species of ELFN1 proteins, we identified
the invariant residues within the ectodomain that show 100%
conservation (Fig. 2A, orange) and engineered several deletional
Fc-tagged constructs omitting the following conserved regions:
the ectodomain carboxyl terminus (EctoΔCT), FN3 domain
(EctoΔFN3), the amino terminal (EctoΔNT), and signal peptide
cleavage sites (EctoΔSP-pHL and EctoΔSP-Caspr2) (Fig. 2A).
Following incubation of culture media from various ectodomain-
expressing HEK293 cells with lysates containing mGluR6, we
observed that EctoΔCT retained mGluR6 as well as intact ecto-
domain. However, EctoΔFN3 was unable to pull down mGluR6
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(Fig. 2B), suggesting the FN3 domain of ELFN1 is important for
the interaction with mGluRs.
We next probed the contribution of the highly conserved

ELFN1 distal amino terminus to binding. For these experiments,
we cloned the ELFN1 ectodomain construct into a pHLsec vector
for optimized expression of extracellular ectodomains (34), which
incidentally entailed changing the signal peptide. We found that
deletion of a small part of the distal N-terminal sequence
(ELFN1ΔNT) completely abolished ELFN1 interactions with
mGluR6 (Fig. 2C). Surprisingly, we further observed that even
ELFN1 with presumably intact N-terminal sequence expressed
from the pHLsec vector (EctoΔSP-pHL) was also completely de-
ficient in mGluR6 binding, suggesting that the identity of the signal

peptide may be important for binding. To test this hypothesis, we
supplied ELFN1 with yet another signal peptide (derived from
protein Caspr2), while maintaining the N-terminal sequence intact
(Fig. 2A). Curiously, EctoΔSP-Caspr2, like EctoΔSP-pHL, was
completely deficient in mGluR6 binding (Fig. 2D).
This led us to experimentally determine the identity of the

ELFN1 N-terminal sequence and cleavage site directed by the
native signal peptide to determine the required posttranslational
processing necessary for mGluR interactions. The Fc-tagged
ectodomain of ELFN1 construct (ELFN1-Ecto-Fc) carrying na-
tive signal peptide was purified with protein G beads from cul-
ture media following secretion, yielding protein of the expected
molecular weight as detected by Coomassie staining (Fig. 2E). N-
terminal sequencing by Edman degradation of the corresponding
band at two separate facilities independently identified the first
five amino acids to match the DCWLI sequence in ELFN1 (Fig.
2F), which perfectly matched the prediction by Phobius software
(phobius.sbc.su.se/) (Fig. 2G), thus defining the cleavage site and
pinpointing aspartic acid to be the first amino acid of the mature
ELFN1 capable of interacting with mGluRs. We next used the
same software to predict cleavage sites and identities of N-terminal
amino acids in nonbinding constructs with transplanted Caspr2 and
pHLsec signal peptides. This analysis revealed that predicted
cleavage sites of these signal peptides alter the sequence upstream
of the aspartic acid, adding 10 and 3 amino acids to the amino
terminus, respectively (Fig. 2G). This suggests that the exact se-
quence identity of the extreme N terminus of ELFN1 is essential
for its interaction with mGluRs, and neither additions nor deletions
are tolerated. Together, our mapping experiments identify that
ELFN1 interaction with mGluRs are dependent on two determi-
nants: the ELFN1 distal amino terminus initiated with aspartic acid
and the FN3 domain.

ELFN1 Modulates Pharmacological Properties of Group III mGluRs in
Trans. To address the functional consequences of ELFN1 in-
teraction with group III mGluRs, we developed a unique assay
platform for probing effects of transcellular protein–protein in-
teractions on GPCR signaling (Fig. 3A). The assay takes ad-
vantage of measuring the suppression of cAMP by mGluR
expressed in one set of cells in the presence of another set of
cells providing ELFN1 as a binding partner in trans. We utilized
the -22F cAMP pGloSensor to monitor forskolin-induced in-
creases in cAMP levels in HEK293 cells expressing mGluRs
activated by various levels of agonists. Dose dependence studies
show that, similar to previous reports (35), stimulation of mGluR
with increasing concentrations of L-glutamic acid led to pro-
gressive reduction in forskolin-mediated cAMP response, which
we used as a measure of mGluR activation (Fig. 3B). By design,
cAMP response originated only from the mGluR-expressing
cells, and identical cell populations were then exposed to ei-
ther mock-transfected control cells or ELFN1-expressing cells to
reconstitute transcellular interactions (Fig. 3A).
We observed that exposure to ELFN1-expressing cells corre-

lated with a very modest but reproducible elevation of the
baseline mGluR6 activity in the absence of agonist (SI Appendix,
Fig. S1A). Exposure to ELFN1 significantly decreased the max-
imum efficacy (Emax) (Fig. 3 C and D) and increased the half
maximal effective concentration (EC50) of mGluR6 activation by
L-glutamic acid (Fig. 3 C and E) as demonstrated by the right-
ward shift in the concentration–response curve (Fig. 3C), re-
sembling the effects of negative allosteric modulators (24). We
observed a similar decrease in the Emax (SI Appendix, Fig. S2 A
and B) and an increase in the EC50 (SI Appendix, Fig. S2 A and
C) when stimulating mGluR6 with the group III-selective
orthosteric agonist L-2-amino-4-phosphonobutyric acid (L-AP4)
in the presence of transcellularly supplied ELFN1.
We further tested the effects of ELFN1 on mGluR4, another

member of group III, which we found to also be interacting with
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ELFN1, and observed very similar effects. Exposure to ELFN1
transcellularly similarly correlated with very modest increases in
basal activity of mGluR4 (SI Appendix, Fig. S1B) and also caused
a decrease in the Emax (Fig. 3 F and G) and an elevation of the
EC50 for both L-glutamic acid (Fig. 3 F and H) and L-AP4 (SI
Appendix, Fig. S2 D–F). To test whether this effect can be spe-
cifically attributable to ELFN1–mGluR interactions, we per-
formed a control experiment with a group II receptor mGluR2,
which does not bind ELFN1. Like mGluR4 and mGluR6,
mGluR2 couples to Gαi/o and causes substantial inhibition of
cAMP production (Fig. 3I). However, we found that exposure to
the same level of transcellular ELFN1 had no effect on basal
activity (SI Appendix, Fig. S1C), Emax (Fig. 3 I and J), or EC50
(Fig. 3 I and K). Additionally, mutant transmembrane ELFN1
constructs ELFN1ΔFN3 and Caspr2-ELFN1 deficient in mGluR
binding had no effect on mGluR6 Emax or EC50 (SI Appendix,

Fig. S3). Together, these data indicate that the transcellular in-
teraction of group III mGluRs with its extracellular binding
partner ELFN1 modulates key pharmacological properties of
these GPCRs.

Reduction of Group III mGluRs Efficacy by ELFN1 Is Not a Consequence
of Altered Desensitization. To probe whether ELFN1 modulation
of group III mGluR efficacy was a consequence of altered re-
ceptor activity over time, we evaluated acute receptor desensi-
tization. Due to limitations with longitudinal desensitization
experiments with the luciferase-based pGloSensor platform, we
modified our transcellular assays to monitor changes in cAMP
by the genetically encoded bioluminescence resonance energy
transfer (BRET)-based cAMP sensor that permits longitudinal
evaluation of signaling in real time (Fig. 4A). This sensor reports
increased cAMP accumulation as a decrease in BRET ratio and
the activity of group III mGluRs was assessed by their inhibition
of forskolin-mediated cAMP accumulation, which suppressed
BRET signal change. In congruence with measurements using
the -22F cAMP pGloSensor platform, transcellular ELFN1 in-
teractions constrained the maximal efficacy of L-glutamic acid, as
evidenced by a lower extent of mGluR6-mediated suppression of
forskolin-driven cAMP production (Fig. 4 B and C). Once
established, we began longitudinal measurements following
stimulation of mGluR6 with 300 μM L-glutamic acid for 5, 30, or
60 min in the presence of either control cells (Fig. 4D) or cells
expressing ELFN1 (Fig. 4E). Conditions reported previously to
facilitate group III mGluR desensitization were successful in
producing moderate but significant desensitization of mGluR6
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centration (EC50) for L-glutamic acid. (F) Dose–response curves for mGluR4- and
biosensor-expressing cells exposed to control or ELFN1-expressing cells. (G)
Quantification of Emax and (H) EC50 for L-glutamic acid. (I) Dose–response curves
for mGluR2- and biosensor-expressing cells exposed to control or ELFN1-
expressing cells. (J) Quantification of Emax and (K) EC50 for L-glutamic acid.
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Fig. 4. Reduction of group III mGluRs efficacy by ELFN1 is not a consequence
of altered desensitization. (A) Schematic representation of transcellular GPCR
signaling assay involving coculture of control cells or ELFN1-expressing cells
with mGluR6-expressing cells coexpressing BRET-based Nluc-EPAC-VV cAMP
biosensor. (B) Change in BRET ratio measurements over time of cells pre-
treated with buffer or 300 μM L-glutamic acid for 5 min and then stimulated
with 1 μM forskolin, with increased cAMP equating to decreased BRET ratio.
mGluR activation was quantified as a decrease in forskolin response. (C)
Quantification of mGluR6 activation following coculture with control or
ELFN1-expressing cells. (D) Change in BRET ratio readings following adaptation
of assay to accommodate longitudinal prestimulations with 300 μM L-glutamic
acid. The solid control line corresponds to no prestimulation/baseline in the
presence of control cells, followed by 5, 30, or 60 min of L-glutamic acid
prestimulation, with 5 min providing the maximum (Max) response. (E)
Change in BRET ratio under the same parameters in parallel in the presence of
ELFN1-expressing cells. (F) Quantification of mGluR6 activation normalizing for
Max response (5 min).
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(Fig. 4F) (36). However, we observed no significant alterations in
the rate of mGluR desensitization in the absence or presence of
ELFN1, with equal loss of efficacy after 30 or 60 min of L-glutamic
acid stimulation in both conditions (Fig. 4F). Furthermore, bio-
tinylation experiments confirm mGluR6 was found at similar
levels at the membrane in both control and ELFN1 conditions (SI
Appendix, Fig. S4). Thus, these data suggest that modulation of
group III mGluR efficacy by ELFN1 is not simply a consequence
of altered receptor desensitization or membrane localization.

Transcellular Interaction with ELFN1 Alters G Protein-Coupling Efficiency
of Group III mGluRs. To dissect the mechanism of group III mGluR
modulation of secondary messenger accumulation by transcellular
ELFN1, we directly evaluated the ability of mGluRs to activate G
proteins by adapting a highly sensitive BRET-based real-time ki-
netic assay (37) to a transcellular format (Fig. 5A). This assay
monitors guanine nucleotide exchange factor (GEF) activity of a
GPCR that triggers release of the Gβγ subunits upon agonist
stimulation on a millisecond scale, while evaluating both maximal
efficacy of response and the catalytic rate. We first studied ELFN1
impact on the ability of mGluR6 to activate its physiological sub-
strate Gαo. We found that transcellular interaction with ELFN1
substantially decelerated the rate of Gαo activation (1/τ) in response
to mGluR6 activation by L-glutamic acid (Fig. 5 B and C). Fur-
thermore, the maximal extent of Gαo mobilization was diminished
as evidenced by reduced maximum response amplitude (Emax) (Fig.
5 B and D). Similar negative modulation of agonist-mediated Gαo
coupling by ELFN1 was observed with mGluR4 (Fig. 5 F–I). We
next studied the activity of mGluR6 on Gαi, which likely was re-
sponsible for driving changes in cAMP in our initial experiments.
Again, ELFN1 also reduced both activation rate and maximal
amplitudes of Gαi activation by mGluR6, leading to a similar effect
on net G protein activation, indicating that transcellular ELFN1 can
alter both Gαo and Gαi activation (SI Appendix, Fig. S5). Notably,
our control experiments with group II mGluR2, which does not
bind ELFN1, showed no effect on its ability to activate Gαo, yielding
identical efficacies (Fig. 5 J and K) and activation rates (Fig. 5 J and
L), thereby demonstrating that observed effects were indeed driven
by the interaction of group III mGluRs with ELFN1.
To evaluate the net G protein response, we calculated an in-

tegrative activation constant that combines effects of G protein-
coupling rate and efficacy (Emax/τ) to better approximate downstream
signaling consequences of transcellular ELFN1 interactions. ELFN1
reduced the integrated activation constant of both mGluR6 (Fig. 5E)
and mGluR4 (Fig. 5I), but not mGluR2 (Fig. 5M), in good agree-
ment with effects seen when measuring cAMP dynamics. Thus, we
conclude that the mechanism for ELFN1’s transcellular regulation of
group III mGluR downstream signaling involves allosteric modula-
tion of receptor properties that lead to altered G protein activation.

Discussion
The intricate mechanisms guiding synaptic connectivity and dif-
ferentiation of synaptic properties have increasingly been focused
on extracellular neuronal adhesion molecules (2, 3, 29, 30, 38);
however, the recent discovery of transsynaptic GPCR complexes
provides an added complexity (12–16, 28, 32). The seminal
transsynaptic GPCR complexes have been predominantly de-
scribed for the adhesion GPCR family of LPHNs in transcomplex
with teneurin-2/4 (12–14), FLRT2/3 (15), or neurexin1–3 (16). It is
now evident from our study and others that the entirety of group
III mGluRs can form transcomplexes with ELFN1 (28, 32), sug-
gesting the large ectodomains of group III mGluRs can share
some conserved signaling logic with organization of adhesion
GPCRs like LPHNs.
Following identification of the extracellular transsynaptic in-

teractions, one critical question pertains to their functional role
which has been completely undefined. Addressing such a ques-
tion is fundamental for our understanding of GPCR signaling

mechanisms. However, it requires the development of assay
platforms focused beyond defining mechanisms of intracellular
modulators of GPCR signaling by traditional approaches. One
strategy to achieve this goal was purification and administration
of soluble ectodomain peptide fragments, which was successfully
employed to define effects of teneurin-2–mediated induction of
presynaptic Ca2+ release via LPHN1 (12). This strategy takes
advantage of the inherent proteolytic cleavage and extracellular
release of teneurin-2 ectodomain (14). However, it was sub-
sequently demonstrated that soluble neurexin ectodomain was
biologically ineffective and failed to drive synapse formation, an
effect that was only observed when the neuronal adhesion
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molecule was membrane tethered (39). With these caveats in
mind, we developed a unique assay platform for defining trans-
cellular interactions involving GPCR signaling in living cells. We
hope that such a platform will be useful for defining functional
effects emanating from interactions of full-length GPCRs with
native transmembrane adhesion molecules across intact cells,
thereby recapitulating a more natural structural environment
and constraints of these transcomplexes.
Using this platform, we provide a unique example of transcellular

modulation of a GPCR’s pharmacological properties whereby
ELFN1 selectively regulates group III mGluR-mediated signaling.
Notably, transcellular interactions with ELFN1 may stabilize these
receptors in a conformation amenable for constitutive activity
as suggested by very modest heightening of basal signaling for
mGluR6 and mGluR4. Upon stimulation with orthosteric ago-
nists, ELFN1 constrains the efficacy and potency of the response,
thereby acting in the capacity of an allosteric modulator. These
observations are mirrored across multiple biosensors and are not
simply a consequence of altered mGluR desensitization or mem-
brane expression, but rather a direct modulation of conforma-
tional state that leads to G protein activation. We propose that
this modulation of group III mGluRs may contribute to the ability
of ELFN1 to fine tune synaptic properties and alter presynaptic
release (31). In this model, postsynaptic ELFN1 could act as both
a transsynaptic scaffold (28, 32) and a retrograde allosteric modu-
lator of presynaptic group III mGluR autoreceptors to control pre-
synaptic release probabilities and differentiate synaptic properties.
The recent observations for transcomplexing of neuronal ad-

hesion proteins with GPCRs, and the present demonstrations that

such interactions are functionally important, open an enormous
void in our understanding of GPCR function in synaptic modu-
lation. It is possible that extracellular interactions of many
GPCRs, particularly those with large extracellular domains like
adhesion and class C GPCRs, could be a common mechanism for
regulating their signaling in native systems. It is foreseeable that
analogous complexes could also be observed at other cell–cell
junctions. The current study provides a unique framework for
dissecting the consequence of identified transcomplexes on GPCR
function and pharmacology and broadens our understanding of
one of the most common pharmaceutical targets to date (8).

Materials and Methods
Methods performed in the current study involved generation of cDNA
constructs, cell culture, coimmunoprecipitations, protein G pull-downs,
ectodomain purification, amino terminal sequencing by Edman degradation,
bioinformatic analysis, and the development of a unique GPCR signaling
platform capable of probing functional consequences of transcellular binding
partners across intact cells. Using this platform, we utilized numerous lumi-
nescence- and bioluminescence resonance energy transfer (BRET)-based
biosensors to probe GPCR signaling, including -22F pGloSensor, Nluc-EPAC-
VV, and real-time kinetic Gαi/o activation assays, as well as biotinylation
membrane expression assays. Extensive details pertaining to these tech-
niques are available in SI Appendix.
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