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Finger-like protrusions that form along fluid−fluid displacement
fronts in porous media are often excited by hydrodynamic insta-
bility when low-viscosity fluids displace high-viscosity resident flu-
ids. Such interfacial instabilities are undesirable in many natural
and engineered displacement processes. We report a phenomenon
whereby gradual and monotonic variation of pore sizes along the
front path suppresses viscous fingering during immiscible displace-
ment, that seemingly contradicts conventional expectation of en-
hanced instability with pore size variability. Experiments and pore-
scale numerical simulations were combined with an analytical
model for the characteristics of displacement front morphology
as a function of the pore size gradient. Our results suggest that
the gradual reduction of pore sizes act to restrain viscous fingering
for a predictable range of flow conditions (as anticipated by gra-
dient percolation theory). The study provides insights into ways
for suppressing unwanted interfacial instabilities in porous media,
and provides design principles for new engineered porous media
such as exchange columns, fabric, paper, and membranes with
respect to their desired immiscible displacement behavior.
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The unstable growth of fluid−fluid interfacial perturbations
has been the subject of a large literature owing to its many

applications: for example, fluid mixing in microfluidics (1), chro-
matographic separation of solvents (2), infiltration of water into
soils (3), oil recovery from underground reservoirs (4, 5), carbon
dioxide sequestration (6, 7), and the formation of plumes in
midocean ridges (8), to list a few. For viscously dominated flows,
Hill (9) and Saffman and Taylor (10) were the first to quantify
the highly ramified morphology of an interface resulting from
displacement of a viscous fluid by a fluid of lower viscosity and so
document the emergence of finger-like invasion patterns [viscous
fingering (VF)]; Hill (9) investigated the process using a packed
bed, while Saffman and Taylor (10) employed fluid-filled Hele-
Shaw cells to study VF. An excellent review on VF is provided by
Homsy (11). Although the fundamental principles governing
interfacial instability are relatively well understood, their mani-
festation in porous media with rich morphologies of displace-
ment fronts remains an active field of research.
Fluid VF during immiscible displacement in porous media is

relevant to a variety of applications. In oil recovery from geologic
reservoirs, VF can result in early breakthrough of the invading
fluid (often water or brine), thus diminishing the efficiency of oil
recovery and at times rendering it uneconomical (4, 5). In en-
vironmental applications, VF has been implicated in the poten-
tial for early arrival of pollutants to underlying groundwater
resources. The technological challenges presented by VF have
prompted numerous theoretical and experimental studies (12–
20). Some of the studies have shown that the use of non-
Newtonian fluids (13) or nonlinear control of injection rate
(17) stabilize the fluid−fluid interface. Other studies (14–16)
suggest that alteration of wetting properties of the porous

medium offers a potential remedy for eliminating VF. However,
for many applications, the alteration of wetting characteristics of
the porous medium is not trivial; hence other solutions must be
developed to control VF.
In this research, we demonstrate the influence of regular pore

size variations in a porous medium as a means for suppressing
the growth of viscous fingers during immiscible displacement.
Such a statement may appear counterintuitive at first glance,
because, in the literature, pore size variations are considered to
be a factor that enhances the frequency of fluid front tip splitting
and thus intensifies the fingering phenomenon (15). We report a
structure in the form of an “ordered porous medium” in which
pore size varies monotonically along the direction of flow. From
the physical point of view, such an ordered porous medium al-
lows simultaneous control over viscous and capillary forces in the
same direction, which is otherwise rare in random porous media
and has not been studied before. The prescribed structure of the
porous media is inspired by the theory of percolation under a
gradient introduced by Wilkinson (21) which has been used to
describe displacement patterns in porous media (22–24). The
work of Xu et al. (23) combines gradient percolation with con-
ventional invasion percolation to derive the now classic phase
diagram of Lenormand et al. (25) for the fluid front stability in
random porous media. In addition, Yortsos et al. (24) extended
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the approach to model flow profiles in spatially correlated pore
networks. In the studies above, a percolation gradient was in-
troduced in the form of an externally applied pressure drop using
a set of local pore filling rules. In particular, Yortsos et al. (24)
conjectured that a gradient of pore network correlations could
act to trigger or suppress VF, yet, to date, no experimental or
theoretical evidence supports this conjecture. Although recent
studies (18, 19) have indicated that gradual variation in the
thickness of a Hele-Shaw cell can significantly restrain VF, no
studies have shown how gradual pore size variation would affect
VF in porous media (which is a more complicated system than a
Hele-Shaw cell).
In this study, we combine experiments, numerical simulations,

and theoretical analysis to demonstrate how a porous medium
with ordered pore sizes controls (i.e., triggers or suppresses) VF
during immiscible flow in porous media. We begin with a porous
medium (uniform and ordered) saturated with high-viscosity
defending fluid where low-viscosity invading fluid displaces the
defending fluid at various flow rates. Our results show that fluid
fronts traversing a porous medium where the pore size is gradually
reduced along the flow direction results in a velocity-dependent
morphological transformation of the front from unstable to stable.
Moreover, we show that stabilization of the invasion front at high
injection rates requires an increase in the pore size gradient along
the flow path. These results provide a means for inhibiting or
triggering VF and interfacial instability in engineered porous
materials. The insights gained from this study pave the way to new
designs of chromatographic columns, membranes, sensors, and
other porous media such that the displacement front morphology
is unconditionally stable (under prescribed operations conditions),
and improve fundamental understanding of VF in porous media.
This study is limited to drainage conditions only.

Results and Discussion
Experiments. We conducted fluid displacement experiments in
micromodels of ordered porous media [Fig. 1A; all four sides
were made from polydimethylsiloxane (PDMS)]. We first filled
the device with silicone oil (viscosity μ2 = 200 mPa·s), and then
injected water (colored with red dye, viscosity μ1  = 1 mPa·s) at a
constant flow rate Q to displace the silicone oil, which wetted the
surface. The experimental results for two different capillary
numbers Ca = 7.5 × 10−6 and 1.4 × 10−5 are shown in Fig. 1B.
The capillary number is defined as Ca= μ1U=σ, where U is the
area-averaged (Darcy) velocity, and σ = 28.2 mN/m is the in-
terfacial tension between the two fluids. The displacement is
unstable at both Ca for a uniform porous medium (λ= 0), as
expected according to the traditional VF criterion. Note that

λ= ðro − riÞ=l represents the pore size gradient where 2ro = 520 μm
is the pore width at the outlet, 2ri = 880 μm is the pore width at
the inlet, and l= 29.5 mm is the length of the ordered region.
However, for a nonuniform porous medium (λ= −6.1 × 10−3),
stable displacement is achieved at the lower Ca, and becomes
unstable at higher Ca. These results suggest that there is a capil-
lary number range where the reduction in pore size along the flow
direction can stabilize the displacement of a fluid with higher
viscosity during injection of a fluid with lower viscosity. We next
turn to numerical simulations to develop more understanding of
the macroscopic and microscopic features of these observations.

Numerical Simulations. Details about the numerical setup and
boundary conditions are presented inMaterials and Methods. Fig. 2
shows the morphology of the displacement patterns obtained from
the numerical simulations at different values of Ca and λ. Note
that, in the present study, capillary fingering is absent and there-
fore does not play a role in controlling the displacement patterns.
The morphology of the invading fluid−fluid interface reflects

the combined effects of Ca and λ, as shown in Fig. 2. Results
show that, at high displacement rates with Ca = 3.2 × 10−5, there
is no stabilizing effect of negative λ on VF (for the range of λ
values considered), resulting in almost similar displacement
patterns for all cases. However, at lower capillary numbers, there
exists a critical capillary number (Cac) that indicates a transition
in front propagation from VF to compact displacement (CD) for
a prescribed value of the pore size gradient λ. The simulation
results in Fig. 2 suggest that λ is related to Cac approximately as
Cac ≈ λ2 (we will expand upon this in Theoretical Analysis).
The experiments and simulations shown in Figs. 1 and 2, re-

spectively, highlight the interplay of capillary and viscous forces
on multiphase flow (immiscible) displacement in porous media
and the role of the pore size gradient that may affect both forces
simultaneously and the resulting front morphology. To provide
additional insights, we performed simulations where all of the
properties are kept constant except for changing the sign of λ (in
essence, reversing the direction of fluid injection). Typical ex-
amples in Fig. 3 A and B depict displacement front patterns in
porous media with λ = −5.6 × 10−3 and λ = 5.6 × 10−3, re-
spectively. Based on its definition, positive and negative values of
λ correspond to cases where, respectively, either smaller or larger
pores are present at the injection location. Inspection of the
patterns in Fig. 3 A and B illustrates the dramatic effect of dis-
placement front flow direction with respect to the pore size
gradient. Although the pore size distribution, porosity, wetting,
and fluid properties were identical in the two cases, Fig. 3 A and

Fig. 1. (A) Design of the microfluidic device. The lengths of the ordered medium l and the pore radius r are indicated. (B) Experimental results for Ca = 7.5 ×
10−6 and 1.4 × 10−5 for a uniform porous medium with λ = 0 and a nonuniform medium with λ = −6.1 × 10−3. The invading fluid is water with red dye, and the
displaced fluid is transparent silicone oil; the flow is from the bottom to the top.
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B shows that the gradient in pore size relative to the front flow
direction resulted in significantly different displacement pat-
terns. For the scenario where λ = 5.6 × 10−3 with continuously
increasing pore sizes along the direction of flow, VF is accen-
tuated as the lower viscosity fluid preferentially flows through the
least resistant pathway. In contrast, when the flow direction is
reversed and λ = −5.6 × 10−3, the fluid−fluid interface becomes
more stable (compact), and the front spans the entire width of
the domain. For a range of negative λ, we observe local short
fingers on the order of pore sizes (an example is presented in Fig.
3A), which is referred to as “microfingering” in this study.
To systematically quantify front behaviors observed in Fig. 2,

we computed four metrics aimed to characterize front dis-
placement patterns as functions of the prescribed Ca and λ: (i)
front fractal dimension Df (Fig. 3C), computed using the box-
counting method following Shokri et al. (26), which measures the
interface roughness; (ii) the fluid−fluid interface length Lf (Fig.
3D) spanning the length of the interface between invading and
defending fluids normalized with respect to ri; (iii) displacement
efficiency Ef (%), defined as the ratio of the recovered volume
of the defending fluid relative to its initial volume (Fig. 3E); and
(iv) normalized fingertip velocity V (Fig. 3F). To calculate Lf

and Ef , each image shown in Fig. 2 was segmented in ImageJ (27)
and used to calculate these parameters. The fingertip velocity was
directly measured as the ratio of the distance traveled by the interface
over time, and then normalized with respect to the injection velocity.
As shown qualitatively in Fig. 2, all metrics corresponding to

Ca = 3.2 × 10−5 remained insensitive to λ for λ< 0, while, for
other values of Ca, the pore size gradient λ< 0 exerted a signif-
icant impact on each of the metrics presented in Fig. 3 C–F.
Closer inspection of the results displayed in Figs. 2 and 3 reveals
that the maximum value of Df as a function of λ corresponds
to the case when a transition from a stable to an unstable

displacement pattern is observed. This maximum value is used to
classify the observed patterns as stable or unstable, with the
corresponding critical capillary number denoted Cac.

Theoretical Analysis. Our experimental and numerical results
confirm that a prescribed gradient in pore size (λ< 0) along the
fluid displacement flow direction can significantly affect the
onset of VF. In this section, we develop a generalized capillary
number Cap that incorporates the contribution of the pore size
gradient λ and quantifies the relative importance of viscous and
capillary forces. Furthermore, using linear stability analysis, we
derive a criterion for the conditions that separate stable and
unstable displacement patterns. Such a stability criterion can aid
in the design of structured porous media to achieve desired re-
sults (fingering or stability, depending on the application) under
given boundary conditions. A schematic of the porous medium
used to formulate the theoretical framework is presented in Fig.
S1. Note that, while inertia was considered in the direct nu-
merical simulations (DNSs) using computational fluid dynamics
(CFD), following Saffman and Taylor (10) and Al-Housseiny
et al. (18), in the analytical analysis presented below, effects of
inertia on two-phase displacement were neglected (justified by
the relatively slow flows in porous materials). It should be noted
that the gravitational force is included in the theoretical analysis.
The generalized capillary number Cap is derived by applying a

force balance (28–30) as the interface moves from position a to
position b (see Fig. S1). The stress balance is expressed as (the
subscripts correspond to the positions a and b)

τva + τvb + τg = τca + τcb [1]

where τv is the viscous stress over a unit interfacial length, τg is
the gravitational stress that drives the interface forward, and τc
is the local resistive capillary stress. Viscous stresses over a

Fig. 2. Simulation results demonstrating displacement fluid front morphologies for different values of the capillary number Ca and the pore size gradients λ
at the time where the invading fluid reaches the outlet (the direction of displacement is from bottom to top). The white, orange, and black colors represent
invading fluid, defending fluid, and the interface, respectively. The viscosities of the invading fluid μ1 and defending fluid μ2 were kept constant at 10−3 Pa·s
and 10−1 Pa·s, respectively. The viscosity ratio of defending fluid over invading fluid M = 100. The results illustrate that fingering is suppressed as λ becomes
more negative. Moreover, for λ = −1.0 × 10−3, −3.0 × 10−3, and −4.7 × 10−3, the critical capillary numbers CaC at which the crossover from VF to CD takes place
are 3.2 × 10−7, 3.2 × 10−6, and 9.6 × 10−6, respectively.
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characteristic length lx can be evaluated as τv ≈ μvlx=rðxÞ2, while
capillary stresses are described by the Young−Laplace equation as
τc ≈ 2σ cosðθÞ=rðxÞ and gravitational stresses τg ≈ ðρ1 − ρ2Þðl− laÞg.
Expressing v=U=ω (with ω being the porosity), ρ1 − ρ2 =Δρ, and
implementing the boundary conditions la = 0, lb = l, ra = ri, and
rb = ro enabled us to develop an equation for a generalized cap-
illary number Cap that quantifies the relative importance of
each stress.
The generalized capillary number Cap is defined as

Cap =
�

μ1Ul
2σr2o   cosðθÞω

+
Δρgl

2σ   cosðθÞ
��

riro
ri + ro

�
. [2]

Substituting μ1U=σ and Δρgriro=2σ cosðθÞ, respectively, with the
capillary number Ca and Bond number Bo (ratio of gravitational
to capillary forces) in the derived expression for Cap and using
ro = ri + λl gives rise to

Cap =
Ca  ril

cosðθÞω�4r2i + 6riλl+ 2λ2l2
�+ Bol

2ri + λl
. [3]

Eq. 3 represents the generalized capillary number Cap in the form
of the conventional capillary number Ca and Bond number Bo.
Furthermore, using linear stability analysis, we derived an an-

alytical solution capable of distinguishing between the stable and
unstable displacement patterns that takes into account the gradient

of pore size λ along the flow direction (among other parameters).
The approach we adopted to derive the stability criterion is similar
to that described by Saffman and Taylor (10). However, we have
modified the dynamic boundary conditions to include the effect of λ
on VF; see Supporting Information for further details about the
derivation of the stability criterion represented by Eq. 4. This is an
analytical tool that enables us to predict the critical value of the
generalized capillary number Ca*c that distinguishes stable and un-
stable displacement patterns. In particular, we find

Ca*c =
2λril

n
�
2r2i + 3riλl+ λ2l2

�½1−M −G�+
Bol

2ri + λl
[4]

where G= 2ωλΔρrðxÞgh’=nUμ1 represents the ratio of gravita-
tional to viscous forces, M = μ2=μ1, indicating viscosity ratio of
defending fluid over invading fluid, and n is the number of pores
perpendicular to the displacement direction (transverse direction).
When Cap <Ca*c, the displacement pattern is stable and Cap >Ca*c
is unstable. It is important to note that, although contact angle θ is
not included in Eq. 4, it will strongly influence Cap (Eq. 3) and
therefore whether Cap <Ca*c or Ca

p >Ca*c will be dependent upon
θ. The theoretical results illustrating how Cap varies as a function
of λ (both positive and negative) under different capillary numbers
Ca along with the stability criterion Ca*c are presented in Fig. 4.
Fig. 4 illustrates that the analytically predicted Ca*c agrees well

with the numerical results in distinguishing between stable and

Fig. 3. (A and B) Effects of the sign of λ on the morphology of displacement patterns (white) in porous media. Negative (A) and positive (B) values of λ
correspond to the cases when the large and small pores, respectively, are placed at the injection point. In both cases, the capillary number was kept constant
at Ca = 3.2 × 10−6, and the viscosities of the invading and defending fluids were constant at 10−3 Pa·s and 10−1 Pa·s, respectively. The direction of displacement
is from bottom to top. The white, orange, and black colors represent invading fluid, defending fluid, and interface, respectively. The observed contrast in the
displacement patterns indicates the substantial impact of the sign of λ on the interface morphology and dynamics and the resulting macroscopic response. (C)
Fractal dimension Df, (D) interface length Lf normalized with respect to ri, (E) displacement efficiency Ef (%) defined as the ratio of the recovered volume of
the defending fluid to its initial volume, and (F) normalized fingertip velocity V.
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unstable displacement fronts for all combinations of the capillary
number Ca and pore size gradient λ. The validation of Eq. 4 at
different viscosity ratio M, contact angle θ, and length scale l is
also presented in Figs. S2–S4 respectively. The slight discrepancy
in the classification of some points is attributed to the simplifying
assumptions made for the derivation of the analytical stability
criterion [e.g., ignoring thin wetting films (18) and trapped fluids
behind the displacement front]. Examination of Eqs. 3 and 4
suggests that during imbibition (the displacement of a non-
wetting phase by a wetting phase), a positive λ would delay the
onset of VF, whereas unstable fronts would always persist for
negative λ; such a conclusion is experimentally supported by the
results of Al-Housseiny et al. (18).
An important result of our simulations is that, for the same

capillary number, when λ> 0, the competition between capillary
and viscous forces remains the same (as reflected in the constant
value of Cap for λ> 0 in Fig. 4); therefore, VF continues. How-
ever, for λ< 0 and the same capillary number, Cap increases,
which results in a stable displacement front. The results pre-
sented in Fig. 4 further show that there is an analogy between
viscosity of the invading fluid μ1 and negative λ. According to the
phase diagram introduced by Lenormand et al. (25), increasing
μ1 transforms the invasion behavior from VF to a stable regime.
Similarly, our results indicate that increasing the gradient of pore
size λ (more negative values) stabilizes the displacement front.
Therefore, the overall trend observed in Fig. 4 suggests that it is
the viscous dissipation that governs stability of the displacement
front (due to increase in Cap as λ gets more negative), in agree-
ment with the previous investigation (20). Negative λ (meaning
decreasing pore size along the flow) enhances the viscous forces.
This further promotes lateral growth in disturbances and results
in development of a smooth invasion pattern.

Conclusion
Our results demonstrate the impact of λ on the nature of im-
miscible displacement in porous media. We show that the VF,

which is traditionally considered as a function of flow rate, vis-
cosity ratio, and wetting properties of porous media, is controlled
by the pore size gradient λ as well. Depending upon the wetta-
bility of the porous medium, for a given Ca of the invasion
process, both positive and negative λ can inhibit or trigger the
growth of viscous fingers. Our numerical and experimental
analyses at the pore scale enabled us to identify two pore-scale
invasion mechanisms responsible for suppressing VF. More de-
tailed discussions are presented in Supporting Information.
In this research, we have employed a design of a porous me-

dium in the form of an ordered structure to suppress VF. This
study has implications in a number of industrial applications,
from the design of stable exchange porous columns for analyses
and separation science to designing new membranes and porous
products for suppression of spurious VF. We envision potential
applications related to optimization of reactant transport and
phase distribution in fuel cells, sensors and control of fluid flow
in spacecraft under microgravity (31), and more. In addition, this
research may also contribute toward reconciling pore-scale flow
behavior with capillary dispersion phenomena observed during
immiscible displacement at the continuum scale (6).

Materials and Methods
Experimental Setup. The PDMS microfluidic device was made by photoli-
thography. Positive photoresist and plasma etching were used to make the
silicone mold for the PDMS to obtain uniform height of the channels. The ratio
between the cross-linker and the elastomeric base was chosen as 1.5:10 to
enhance the stiffness of the channels. The finished channel was hydrophobic
and oleophilic. The triangular area at the inlet (Fig. 1) was designed for sta-
bilizing the interface before it reached the porous medium. The displaced fluid
was phenylmethylsiloxane oligomer (PDM-7050) purchased from Gelest Inc.
The invading fluid was deionized water mixed with 0.1 wt % food dye for
visualization. Considering the small weight ratio of the dye, its effects on the
water viscosity and the water−oil interfacial tension were negligible.

The microfluidic device consists of pillar arrays with height H = 160 μm and
variable pillar diameter spanning the width of the ordered regionw = 30 mm.
The pillar diameters and pores were ordered along the direction of the flow,
with a pore size gradient λ=−6.1× 10−3. We denote by λ< 0 a reduction in
pore size along the flow path, and vice versa for λ> 0. The capillary number is
defined as Ca= μ1U=σ, where U=Q=ðHwÞ is the area-averaged (Darcy) ve-
locity and σ = 28.2 mN/m is the interfacial tension between the two fluids. We
started the experiment at a low capillary number Ca= 6.1 × 10−7 until a stable
interface reached the first row of the pillars. Then, the flow rate was increased
to a specified value, and the time evolution of the displacement process was
recorded by a Nikon camera.

Numerical Setup. DNS where volume-of-fluid method (interface tracking ap-
proach) is coupled with a Navier−Stokes equation has emerged as a powerful
tool for diagnosing pore-scale multiphase flow problems with complex boundary
conditions (32–35), enabling parameterization of macroscopic quantities
(36). In the present study, we utilized DNS within a CFD framework to in-
vestigate how the proposed pore size arrangement influences the general
dynamics of two-phase flow in porous media and stability of the displace-
ment front. Additional details regarding the numerical algorithm employed
in this study are provided in Deshpande et al. (37) and Rabbani et al. (35).

For the 2D simulations performed in the present study, we assumed an
invading fluid of viscosity μ1 = 10−3 Pa·s, displacing an immiscible fluid
(defending fluid) of viscosity μ2 = 10−1 Pa·s. The resulting viscosity ratio of
defending fluid with respect to invading fluid was M = 100. The contact
angle θ between interface and the solid surface measured along the
defending fluid was kept uniform at 30° (i.e., the defending fluid acts as the
wetting phase). The values of l and ri were kept constant at 8 mm and
0.17 mm, respectively, while ro was allowed to vary based on the simulated λ
value. In the case of simulations, the width of ordered region w is equal to l.
The simulations were performed at several capillary numbers Ca ranging from
3.2 × 10−7 to 3.2 × 10−5 and the pore size gradients λ ranging from 6.5 × 10−3

to −6.5 × 10−3, respectively. The data, code, and materials used in this analysis
will be available freely via sending a request to the corresponding author.
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Fig. 4. Semilog plot showing the relationship between the generalized
capillary number Ca* and λ. The solid line indicates the analytically predicted
critical value of the generalized capillary number, which is a solution of the
stability criterion derived from linear stability analysis. The symbols are the
results obtained by the direct numerical simulations, where filled, half-filled,
and open symbols represent the stable front, critical value of the generalized
capillary number, and unstable front, respectively. Yellow and red regions
mark analytically predicted stable and unstable regions, respectively, sepa-
rated by the solid line predicted by Eq. 4. Insets illustrate the displacement
front morphology at Ca = 3.2 × 10−6 computed by the direct numerical
simulation.
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