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Abstract

We investigated an Amish family in which three siblings presented with an early-onset childhood 

retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis 

identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and 

a multi-point LOD score of 3.76. Whole exome sequencing was then performed for three affected 

individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin 

and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 

2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were 

performed before the clinical delineation of Jalili syndrome. Another assessment was made after 

the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome 

were retrospectively identified. The p.R605X mutation represents the first and probably founder 

Jalili mutation identified in the Amish community. The molecular mechanism underlying Jalili 
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syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber 

Congenital Amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 

significantly increased the rate of apoptosis, and significantly increased the interaction between 

CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated 

decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first 

time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important 

insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.
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Introduction

The presence of poor vision, nystagmus and light sensitivity from birth is suggestive of a 

retinal dystrophy (Traboulsi 2010). Achromatopsia, Leber congenital amaurosis (LCA), and 

Alström syndrome are all associated with this constellation of clinical findings (Michaelides 

et al. 2006; Traboulsi 2010). Electroretinography is helpful in making the probable clinical 

diagnosis and reveals evidence of cone and rod dysfunction in LCA and in Alström 

syndrome, and absent cone, but normal rod responses in achromatopsia (Vedantham et al. 

2007; Goodwin 2008; Malm et al. 2008). The presence of systemic abnormalities 

differentiates LCA from conditions in which the retinal dystrophy is only one sign of a 

systemic disease resulting from the underlying genetic mutation (Fazzi et al. 2005; Wang et 

al. 2011; Drivas et al. 2013; Khan et al. 2014; Kumaran et al. 2017).

We studied a two-generation Amish family initially diagnosed with LCA by genome-wide 

linkage analysis and whole exome sequencing (WES). We identified linkage at chromosome 

2p14-2q14 and found a homozygous mutation in the CNNM4 gene encoding a protein 

referred to as cyclin and CBS domain divalent metal cation transport mediator 4 (c.C1813T, 

p.R605X) that causes Jalili syndrome. Re-examination of affected family members more 

than a decade after initial ascertainment uncovered the dental anomalies which had been 

overlooked on initial assessment.

Methods

Subjects

The study subjects are 11 members of a family from an Amish community in Ohio. The 

parents were free of symptoms, but three out of their nine children presented typical clinical 

features of a neonatal form of retinal dystrophy, judged at the time to be compatible with 

LCA. Ocular examinations were conducted in 2001 on all members of the family, including 

three children with evidence of retinal dystrophy. Examinations included Snellen visual 

acuity testing, slit lamp biomicroscopy, and examination of the lens and fundus after 

pupillary dilation. Fundus photography was obtained on selected affected individuals. Two 
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of the affected siblings were reexamined 15 years later and after the identification of the 

responsible genetic mutation.

This study was approved by the Institutional Review Boards (IRB) on Human Subject 

Research at the Cleveland Clinic and the Ethics Committee on Human Subject Research at 

Huazhong University of Science and Technology. Written informed consent was obtained 

from all study subjects.

Genotyping and linkage analysis

Genomic DNA samples were isolated from peripheral blood samples using standard 

protocols as described previously (Tian et al. 2004). Genotyping was carried out using either 

fluorescence or 32P-labeled polymorphic markers as previously described (Wang et al. 

2003).

Linkage analysis was performed as described previously (Chen et al. 2004). Two point and 

multi-point LOD scores were calculated with the Linkage Package (version 5.2) assuming a 

disease gene frequency of 0.00001, 99% penetrance, a phenocopy rate of 0.0001 and the 

allele frequencies of markers were 1/n, where n is the number of allele observed.

Whole exome sequencing

WES was carried out using SOLiD 5500XL as described by us previously (Wang et al. 

2016). In brief, DNA library preparation and exome capture were performed according to a 

protocol based on the Fragment Library Preparation 5500 Series SOLiD Systems (Part 

Number 4460960 Rev. A) and TargetSeq Exome Enrichment System (Part Number 

MAN0004396). The successfully captured DNA was measured with Invitrogen Qubit 

dsDNA HS Assay Kit and subjected to standard sample preparation procedures for 

sequencing with the SOLiD 5500XL platform as recommended by the manufacturer. First, 

emulsion PCR was performed on an E120 scale using a concentration of 0.6 pM of enriched 

captured DNA. About 2.2 billion template beads were enriched by SOLiD® EZ Bead 

Enricher. After modifying the 3’ ends of DNA on the template beads, about 280 million 

enriched template beads were sequenced per lane on a six-lane SOLiD 5500XL FlowChip.

The data generated by SOLiD 5500xl are in eXtensible SeQuence (XSQ) files. The XSQ 

files were analyzed by LifeScope Genomic Analysis Software, which contains analysis 

modules with default parameters. SOLiD® Accuracy Enhancement Tool was used to 

improve color call accuracy before mapping. Reads were aligned against the human genome 

reference (UCSC assembly hg19, NCBI build 37) only to a unique position in the reference 

genome. The aligned reads were converted into the BAM format. Targeted resequencing 

mapping analysis was used to enrich for reads within whole exon regions. The targeted 

regions included the exons of 19,911 genes and total 37,262,779 bases in the human 

genome. We successfully sequenced 93.57%–95.13% of targeted regions to an average depth 

per individual of 50–55 fold. Variants calls were performed with the SNPs module by taking 

the mapped and processed SOLiD® System reads, quality values, the reference sequence, 

and error information of each SOLiD® System slide as its input. Exome sequencing yielded 

38,133-40,877variants in the LCA family.
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DNA sequence analysis

Sanger sequencing was carried out using Big-Dye v1.0 (ABI) and used to screen for 

mutational analysis as described previously (Wang et al. 2003).

Plasmids

The expression plasmids for CNNM4 (pCMV-Tag4A- CNNM4-WT) and IQCB1 (pCBF-

Flag-IQCB1) were described previously (Barbelanne et al. 2013; Yamazaki et al. 2013) and 

kindly provided by Dr. Hiroaki Miki and Dr. William Y. Tsang, respectively. The CNNM4 
coding region was amplified by PCR analysis using pCMV-Tag4A- CNNM4-WT as the 

template. The PCR product was digested using restriction enzymes Hind III and BamH I 

(TAKARA, Dalian, China) , then sub-cloned into the multiple cloning site of the pEGFP-N1 

vector, generating pEGFP-N1-CNNM4-WT. PCR primers were as follows: F- Hind III: 5′-

CCCAAGCTTATGGCGCCGGTGGGCGGG-3’and R- BamH I:5′-

CGCGGATCCGAGATGGCATTCTCGTGGGAGG-3′. The p.R605X sequence was 

introduced into pCMV-Tag4A- CNNM4-MUT by PCR amplification. PCR primers 

mutagenesis included: F- BamH I 5 ′-CGCGGATCCATGGCGCCGGTGGGCGGG-3 ′, R- 

Hind III 5 ′-CCCAAGCTTGGTGTACAGGTAATGGCGGG-3′. The p.R605X sequence 

was introduced into pEGFP-N1-CNNM4-MUT by PCR amplification. PCR primers 

mutagenesis included F-Hind III 5′-CCCAAGCTTATGGCGCCGGTGGGCGGG-3 ′ and 

R- BamH I 5′-CGCGGATCCGAGGTGTACAGGTAATGGCGGGC-3′. The IQCB1 coding 

region was isolated from pCBF-IQCB1 by digested with restriction enzymes Sal I and 

BamH I and sub-cloned into the multiple cloning site of the p3×FLAG-CMV vector, 

resulting in p3×FLAG-CMV-IQCB1.

Analysis of apoptosis

Apoptosis assays were carried out with an Annexin V-FITC apoptosis analysis kit (keyGEN, 

BioTECH, China) using the Beckman Coulter Cytomics FC 500 as described (Luo et al. 

2017). Each experiment was repeated at least three times.

Co-immunoprecipitation (Co-IP) analysis

Co-IP analysis was performed as described previously (Huang et al. 2016). The 293T cells 

were cultured to 80% confluence, and transiently co-transfected with 4 μg of pEGFP-N1-

CNNM4-WT or pEGFP-N1-CNNM4-MUT and 4 μg of p3×FLAG-CMV-IQCB1 using 

Lipofectamine 2000 according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, 

USA). After 48 h of transfection, cells were harvested and lysed in ice cold cell lysis buffer 

(Beyotime biotechnology, China) containing 1X cocktail of protease inhibitors. The lysate 

was centrifuged for 15 min at 13,500 g at 4 °C. Cell extracts were mixed with 2 μg of mouse 

polyclonal anti-Flag antibody (IgG as negative control) and incubated for 12 h at 4 °C with 

rotation, followed by another 4 h of incubation with addition of 30 μl of Protein A/G-

Sepharose 4B beads (Thermo Scientific, Rockford, IL, USA). The bound proteins complexes 

were centrifuged at 1000 g for 10 min, and washed 10 times with lysis buffer. The washed 

pellets were re-suspended in 40 μ1 SDS loading buffer, incubated for 15 min at 100 °C, and 

electrophoresed through SDS-PAGE as previously described (Zhou et al. 2013). Proteins 

were transferred onto a PVDF membrane (Millipore, Billerica, MA, USA), and probed with 
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a goat anti-GFP antibody (1:2000 dilution, ProteinTech, China). After three washes, 

membranes were incubated with a rabbit anti-goat HRP-conjugated secondary antibody 

(1:20,000 dilution, Thermo Fisher Scientific, USA) for 2 h at room temperature. Membranes 

were then imaged using SuperSignal West Pico Chemiluminescent Substrate (Pierce 

Chemical Co., Rockford, IL, USA) using a ChemiDoc XRS (Bio-Rad Laboratories, 

Richmond, CA, USA). Each experiment was repeated at least three times.

Results

Clinical findings

Table 1 summarizes the clinical findings on the three affected individuals with typical 

clinical features of a neonatal form of retinal dystrophy, diagnosed at the time as a form of 

LCA. Fundus photos are given in Fig. 1. Representative OCTs from patients II-5 and II-8 on 

their latest visit are shown in Fig. 2. An ERG was not initially obtained in these patients 

because the retinal degeneration was so advanced that the waveforms were predicted to be 

severely attenuated.

There are 11 family members (Fig. 3A). Both parents have normal vision and normal teeth. 

Three children, II-2, II-5 and II-8, were initially diagnosed with LCA, whereas the other six 

children had normal retinal appearance and vision. The trait in the family appeared to be 

inherited in an autosomal recessive fashion.

Identification of linkage to 2p14-2q14

Genome-wide linkage analysis with 408 polymorphic markers spanning the whole human 

genome by every 10 CM identified one chromosomal region around marker D2S2216 linked 

to the disease in the Amish family (Fig. 3B). Assuming a recessive inheritance model, the 

highest LOD score of 1.95 was obtained at markers D2S2216 and D2S2972. The peak multi-

point LOD score reached 3.76 with D2S2216, which passed the threshold for statistically 

significant linkage (Fig. 3B). The data suggest that the retinal dystrophy in the Amish family 

be linked to chromosome 2q11 (Fig. 3B). Haplotype analysis further defined the boundary 

of the newly identified retinal dystrophy linkage. As shown in Fig. 3A, analysis of 

recombinant events between the disease trait and each marker at the locus defined the 

disease locus between markers D2S1772 and D2S1328, which spans a region of about 50 

Mb on chromosome 2p14-2q14.

Candidate gene analysis at the 2p14-2q14 locus

The locus between D2S1772 and D2S1328 on 2p14-2q14 contains about 600 genes. Among 

these genes, ALMS1 and MERTK became candidate genes based on their physical position 

and functional characteristics. ALMS1 is the gene responsible for Alström syndrome, whose 

clinical features include a cone-rod retinal degeneration, with severe light sensitivity 

(Alstrom et al. 1959). Mutations in MERTK have been identified in patients with early-onset 

retinitis pigmentosa, and can simulate LCA (Gal et al. 2000). All exons and exon-intron 

boundaries of ALMS1 and MERTK were analyzed by Sanger sequencing and no disease-

causing mutation was identified in either gene.
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Identification of homozygous mutation p.R605X in CNNM4 by WES

Since the genome-wide linkage analysis and follow-up candidate gene analysis did not 

identify the pathogenic mutation responsible for the retinal dystrophy in this family, we 

performed WES on two affected family members (II-2 and II-5 in Fig. 3A) and one 

unaffected family member (II-9 in Fig. 3A) using our SOLID 5500xl next generation 

sequencing platform. Exome sequencing yielded 38,133-40,877 variants in the LCA family 

(Table 2). Further analysis was then performed by wANNOVAR, a web interface to the 

ANNOVAR software (http://wannovar.usc.edu/), to annotate all single nucleotide variants 

(SNVs) (Chang and Wang 2012). Homozygous SNVs were then filtered by excluding the 

variants which are not shared by the two affected individuals (II-2and II -5), but present in 

the unaffected individual (II -9) (Table 3). We filtered out SNVs which are present in the 

dbSNP132 database. We filtered out SNVs which are present in public databases such as the 

1000 Genomes Project database (www.1000genomes.org/) and the ExAC database (http://

exac.broadinstitute.org/) with a minor allele frequency (MAF) higher than 1‰ (Table 3). 

The analysis yielded only one variant. By Sanger sequencing verification and co-segregation 

analysis, we identified the responsible mutation in exon 4 of the CNNM4 gene 

(NM_020184; encoding a member of the ancient conserved domain containing protein 

family) (c.C1813T, p.R605X) that co-segregated with the retinal dystrophy phenotype in this 

family (Fig. 4A and 4B). The p.R605X mutation does not exist in the ExAC database. The 

p.R605X was found to be located in the cyclic nucleotide-monophosphate (CNMP) domain 

of CNNM4, which is highly conserved across species during evolution (Fig. 5).

Follow-up investigation

After the discovery of the CNNM4 mutation and suspicion of Jalili syndrome, contact was 

made with the family and examination of the available affected female patients II-5 and II-8 

was undertaken. The clinical findings are given in Table 1 and Figures 1 and 2. All three 

affected siblings but none of the six non-affected ones had severe dental abnormalities that 

necessitated removal of all of their teeth in their early teens and the fitting of dentures. There 

were no other systemic abnormalities or diseases. A final diagnosis of Jalili syndrome was 

hence given to the affected members with homozygous mutations in the CNNM4 gene.

CNNM4 interacts with IQCB1

The molecular mechanism underlying Jalili syndrome is unknown. Identification of a protein 

that interacts with the CNNM4 protein will provide novel insights into the molecular 

mechanism of Jalili syndrome. The NCBI database listed 9 candidate proteins which may 

interact with CNNM4 (ARL15, CUL3, IQCB1, LRRC39, MBLAC2, PTCH1, PTP4A1, 

PTP4A2, PTPRO: www.ncbi.nlm.nih.gov/gene/26504). These candidates were identified by 

affinity capture mass spectrometry (Boldt et al. 2016), but their interactions with CNNM4 

were not biochemically confirmed yet. Interestingly, one of the 9 candidates, IQCB1, was 

associated with LCA (Estrada-Cuzcano et al. 2011; Wang et al. 2011). To demonstrate the 

interaction between CNNM4 and IQCB1, we transfected 293T cells with p3×FLAG- CMV-

IQCB1 together with either pEGFP-N1-CNNM4-WT or pEGFP-N1-CNNM4-MUT, and 

performed Co-IP analysis. An anti-Flag antibody (recognizing Flag-IQCB1) was used to 

pull down the potential protein-protein interaction complex, and the complex was detected 
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using an anti-EGFP antibody recognizing EGFP-CNNM4. The interaction between wild 

type CNNM4 and IQCB1 was weak, but detectable (Fig. 6A–D). However, robust 

interaction between the mutant CNNM4 protein with a truncation starting with R605 

(missing the C-terminal 170 amino acids) and IQCB1 was easily detected (Fig. 6A–D). 

These data suggest that the truncation mutant CNNM4 significantly increases the interaction 

between CNNM4 and IQCB1.

Mutant CNNM4 with a truncation starting at R605 increases apoptosis

We examined the effect of the mutant CNNM4 protein with a truncation starting with codon 

R605 on apoptosis. Due to difficulties in transfection of retinal pigment epithelial cell lines 

such as ARPE19 with plasmid DNA, we studied apoptosis in 293T cells. Cells were 

transfected with the expression plasmids for wild type CNNM4, mutant CNNM4 or empty 

vector control. Annexin-APC/PI double staining flow cytometry analysis showed that 

mutant CNNM4 with the truncation significantly increased the rate of apoptosis compared 

with wild type CNNM4 or vector control (P<0.05) (Fig. 7).

Discussion

In the present study of a large Amish family with an infantile-onset retinal dystrophy, 

genome-wide linkage analysis identified the disease locus on chromosome 2p14-2q14 with a 

multipoint LOD score of 3.76. Analysis of extended haplotypes localized the gene to about 

50 Mb in this region. An initial diagnosis of LCA had been made because the dental 

abnormalities were overlooked. The affected children had all their teeth pulled and dentures 

fitted in their teens. The absence of other systemic problems initially supported a diagnosis 

of LCA, a genetically heterogeneous autosomal recessive retinal dystrophy phenotype, with 

at least twenty-five causative genes identified to date (Perrault et al. 1996; Marlhens et al. 

1997; Freund et al. 1998; Dharmaraj et al. 2000; Sohocki et al. 2000; den Hollander et al. 

2001; Dryja et al. 2001; Keen et al. 2003; Janecke et al. 2004; Bowne et al. 2006; den 

Hollander et al. 2006; Senechal et al. 2006; Mataftsi et al. 2007; Henderson et al. 2009; Ng 

et al. 2010; Sergouniotis et al. 2011; Wang et al. 2011; Preising et al. 2012; Abu-Safieh et al. 

2013; Asai-Coakwell et al. 2013; Wang et al. 2013; Khan et al. 2014; Lazar et al. 2015; 

Soens et al. 2016) The use of next generation sequencing in the present family identified a 

homozygous mutation (p.R605X) in the CNNM4 gene, with strong evidence of 

pathogenicity, establishing the more precise diagnosis of Jalili syndrome. The mutation 

p.R605X is located in a functionally important domain of CNNM4, the CNMP binding 

domain which is highly conserved across species during evolution (Fig. 5). Highly 

significant linkage with a multipoint LOD score of 3.76 (Fig. 3B) coupled with the results of 

WES provides strong genetic evidence that mutation p.R605X in CNNM4 is causing Jalili 

syndrome in this Amish family.

A total of twenty-four CNNM4 mutations have been documented to cause Jalili syndrome 

(OMIM #217080), a rare condition consisting of cone-rod dystrophy and amelogenesis 

imperfecta (AI) (http://jalili.co/CNNM4/cnnm4_muts&stats.htm; Michaelides et al. 2004; 

Parry et al. 2009; Polok et al. 2009; Jalili 2010; Zobor et al. 2012; Abu-Safieh et al. 2013; 

Doucette et al. 2013; Luder et al. 2013; Coppieters et al. 2014; Gerth-Kahlert et al. 2015; 
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Wang et al. 2015; Prasad et al. 2016; Rahimi-Aliabadi et al. 2016; Topcu et al. 2016; 

Cherkaoui Jaouad et al. 2017). While our initial evaluation of the present family did not 

identify the AI, reassessment uncovered the severe dental abnormalities that necessitated 

extraction of all teeth and the fitting of dentures in affected, but not in unaffected siblings or 

parents.

The molecular mechanism by which CNNM4 mutations cause retinal dystrophy in Jalili 

syndrome remains to be identified. CNNM4 is a transporter for Mg2+. It can extrude Mg2+ 

and exchange intracellular Mg2+ with extracellular sodium. CNNM4 knockout mice develop 

hypomagnesemia. Mutations in CNNM4 are expected to decrease Mg2+ extrusion, which 

can lead to hypomagnesemia (Yamazaki et al. 2013). Arfuzir et al. (2016) showed that 

magnesium acetyltaurate (MgAT) significantly reduced ET1-induced retinal cell apoptosis, 

caspase-3 activation and retinal oxidative stress. Therefore, hypomagnesemia associated 

with CNNM4 mutations may cause oxidative stress and retinal cell apoptosis, leading to 

retinal degeneration and the retinal phenotype of Jalili syndrome. The data presented in Fig. 

7 demonstrated that the mutant CNNM4 protein with truncation of the 170 C-terminal amino 

acids (with p.R605X mutation) induces apoptosis, suggesting that CNNM4 is involved in 

apoptosis.

One important finding from this study is that CNNM4 interacts with IQCB1 (Fig. 6). 

Mutations in IQCB1 cause LCA (Estrada-Cuzcano et al. 2011; Wang et al. 2011; Downs et 

al. 2016). IQCB1 is expressed in the photoreceptor connecting cilia (Otto et al. 2005) and is 

required for mouse photoreceptor outer segment formation (Ronquillo et al. 2016). IQCB1 

was shown interact with RPGR and CEP290, which are involved in the pathogenesis of RP 

and LCA, respectively (Otto et al. 2005; Barbelanne et al. 2015). For the first time, our study 

functionally links CNNM4 to IQCB1 together, which may explain why some mutations in 

CNNM4 cause retinal dystrophy in Jalili syndrome.

The molecular mechanism by which CNNM4 mutation p.R605X causes Jalili syndrome 

needs to be studied in detail in the future. Nonsense-mediated mRNA decay (NMD) by p.

605X is a potential mechanism. If p.R605X does not cause NMD or NMD is partial, a 

truncated CNNM4 may also cause the disease by affecting the interaction between CNNM4 

and IQCB1 and apoptosis as shown in Figs. 6 and 7. Due to lack of tissue samples form the 

patients in the Amish family, future knock-in studies with CRISPRA-Cas9 genome editing 

in cells may be needed to clarify whether p.R605X causes Jalili syndrome by NMD, 

truncation of CNNM4 or both.

We are aware of another Amish infant with an identical mutation and retinal dystrophy 

(Schmitt, M., personal communication). While the latter infant does not have teeth yet, it is 

presumed to have Jalili syndrome. It is probable that that p.R605X in CNNM4 is a founder 

mutation in the Amish and should be tested for in patients with retinal dystrophy and severe 

dental abnormalities. Although the exact frequency of the p.R605X in the Amish population 

is unknown, population-wide study of the p.R605X mutation may identify other carriers in 

the Amish population.
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In summary, this study identifies the first mutation and potentially founder mutation in 

CNNM4 that causes Jalili syndrome in the Amish population. Most importantly, our study 

demonstrates the interaction between CNNM4 and IQCB1, which provides the first link 

between CNNM4 and IQCB1 that causes LCA and retinal dystrophy when mutated, 

providing important insights into the molecular pathogenic mechanisms of retinal dystrophy 

in Jalili syndrome.
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Fig. 1. 
Fundus photos of three siblings with Jalili syndrome. Right a and left b eyes of patient II-2 

at age of 20 years. Note the large area of atrophy occupying the macula in both eyes with a 

pigmented edge. The optic nerve head is pale and the retinal blood vessels are attenuated; 

there appears to be an area of vitreous condensation inferior to the left optic nerve head. c 
and d are from the right and left eyes of patient II-8 at age of 24 years. The optic nerve is 

atrophic and there is macular atrophy and pigment mottling as well as diffuse atrophic 

lesions along the vascular arcades and into the periphery; the very white appearance of the 

nerve head is a photographic artefact. E and F are the posterior pole views of patient II-5 at 

age of 17 years. The findings appear to represent more advanced stages of what her younger 

sister’s fundus shows in c and d.
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Fig. 2. 
Representative OCT. a OCT of macular area in the left eye of patient II-8 at age of 24 years. 

There is almost total loss of the photoreceptor layer. The retinal thickness is reduced. b OCT 

of the macular area of the right eye of patient II-5. Note the presence of a staphyloma as well 

as the absence of the photoreceptor layer throughout the scanned area.
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Fig. 3. 
Linkage analysis. a Pedigree of the Amish family. Individuals affected with Jalili syndrome 

are indicated by solid symbols; unaffected family members are shown with open symbols. 

The data from Haplotype analysis are shown under each symbol. The disease locus is 

defined between markers D2S1772 and D2S1328. b Multi-point linkage analysis. The 

maximum LOD of 3.72 was obtained around D2S2216 (2q11).
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Fig. 4. 
Identification of a CNNM4 mutation co-segregating with the disease in the Amish family. a 
Sanger sequencing chromatograms depicting the c.C1813T mutation in CNNM4 in family 

members. b Mutation (C/T) co-segregates with the disease in the Amish family.
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Fig. 5. 
Schematic drawing and multiple sequence alignment of the CNNM4 protein. a Schematic 

representation of CNNM4 p.R605X mutation within the CNMP domain (Human Protein 

Reference Database, http://www.hprd.org/). TM, Transmembrane; CBS, Cystathionine Beta-

synthase; CNMP, Cyclic nucleotide-monophosphate binding. b Alignment of amino acid 

sequences of CNNM4 from several vertebrate species, highlighting that amino acid residue 

R605 and the flanking residues are highly conserved.
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Fig. 6. 
The CNNM4 protein interacts with IQCB1 encoded by an LCA-causing gene. a Co-IP 

analysis was performed with extracts from 293T cells co-transfected p3×FLAG-CMV-

IQCB1 with pEGFP-N1-CNNM4-WT or pEGFP-N1-CNNM4-MUT. An anti-Flag tag 

mouse antibody or anti-mouse IgG was used for immunoprecipitation. An anti-EGFP rabbit 

antibody was used for recognizing EGFP-CNNM4. b and c shows the data from two other 

independent Co-IP experiments. d The data from a, b and c were scanned, quantified, and 

plotted. Data were shown as mean ± SEM (error bars).
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Fig. 7. 
A truncated CNNM4 protein at R605 increases apoptosis. a Representative flow cytometry 

images for analysis of apoptosis for control empty vector in 293T cells. b The level of 

apoptosis for wild type CNNM4, CNNM4-WT. c The level of apoptosis for a mutant 

CNNM4 protein with truncation starting with codon R605, CNNM4-MUT. d The data from 

a, b and c were scanned, quantified, and plotted. Data were shown as mean ± SEM (error 
bars).
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Table 2

Sequencing Details of 3 individuals of LCA family

Sequencing Details II-2 II-5 II-9

Total target bp 37,262,779 37,262,779 37,262,779

Target bp covered at 1× 95.13% 94.06% 93.57%

Average depth of coverage within targets 50× 55× 52×
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