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Abstract

The development of the PAP smear test by Dr. George Nicholas Papanicolaou (1883–1962) is one 

of the most significant achievements in screening for disease and cancer prevention in history. The 

PAP smear has been used for screening of cervical cancer since the 1950s. The test is technically 

straightforward and practical and based on a simple scientific observation: malignant cells have an 

aberrant nuclear morphology that can be distinguished from benign cells.

Here, we review the scientific understanding that has been achieved and continues to be made on 

the causes and consequences of abnormal nuclear morphology, the basis of Dr. Papanicolaou’s 

invention. The deformed nuclear shape is caused by the loss of lamina and nuclear envelope 

structural proteins. The consequences of a nuclear envelope defect include chromosomal 

numerical instability, altered chromatin organization and gene expression, and increased cell 

mobility because of a malleable nuclear envelope.

HPV (Human Papilloma Virus) infection is recognized as the key etiology in the development of 

cervical cancer. Persistent HPV infection causes disruption of the nuclear lamina, which presents 

as a change in nuclear morphology detectable by a PAP smear. Thus, the causes and consequences 

of nuclear deformation are now linked to the mechanisms of viral carcinogenesis, and are still 

undergoing active investigation to reveal the details.

Recently a statue was installed in front of the Papanicolaou’s Cancer Research Building to honor 

the inventor. Remarkably, the invention nearly 60 years ago by Dr. Papanicolaou still exerts 

clinical impacts and inspires scientific inquiries.
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A statue was recently constructed and placed in front of the Papanicolaou’s Cancer Research 

Building at the University of Miami Miller School of Medicine campus to commemorate 

“Dr. PAP” --- George Nicholas Papanicolaou (1883–1962), the inventor of the PAP smear 

test that was first used to screen for cervical and uterine cancer more than 60 years ago (1,2) 

(Figure 1). The cancer-screening test has been widely applied to the general population and 

is still in clinical use today. For the invention and its broad impact on public health, Dr. 

Papanicolaou received many awards and recognitions, including the Albert Lasker Award 

(1950) and the Medal of Honor from the American Cancer Society (1952).

Today, looking back on Dr. Papanicolaou’s achievement, the PAP smear test seems to base 

on an overtly simple idea: neoplastic cells are distinct from benign one and contain an 

aberrant, deformed nucleus. The PAP Smear test is still used in the clinical setting today, and 

aberrant nuclear morphology is still recognized as a universal indicator of malignancy. Over 

the decades, scientific research has brought new biological details and understanding to 

explain Dr. Papanicolaou’s concept of the deformed nuclear morphology of neoplastic cells. 

The cause of cervical cancer by persistent infection of Human Papilloma Virus (HPV) has 

been established and new screening methods and vaccines for prevention are available. 

Nevertheless, the concepts and effects on clinical practice of Dr. Papanicolaou’s discovery 

are still relevant today, and we will discuss the scientific issues pertinent to the concept that 

a deformed nuclear morphology can serve as a hallmark of malignant cells.

Deformed nuclear morphology and loss of nuclear structural proteins in 

malignant cells

Normal cells usually have a smooth and oval shaped nucleus, and malignant cells present an 

aberrantly shaped/deformed, often enlarged nucleus (3), as shown by an illustration of 

nuclear shapes comparing normal cervical epithelial cells and neoplastic cells (Figure 2). 

Compared to largely round and oval shaped nucleus of normal cervical epithelial cells, 

malignant cervical cancer cells show a wide variety of nuclear shapes, which are often 

larger, irregular, multilobular, and contain micronuclei. An altered nuclear shape is the basis 

for the PAP smear in distinguishing malignant versus benign cells collected from scraping 

the cervix (1,2).

The molecular reasons underlying the deformed nuclear shape have not been clearly defined, 

likely because multiple mechanisms may cause the abnormalities (3). Early reports indicate 

that activation of oncogenes or inactivation of tumor suppressor genes leads to nuclear 

morphological changes (4–6). More recent studies suggest that loss or reduction of structural 

proteins of the nuclear envelope and lamina, such as Lamin A/C (7–9), Emerin (10), and the 

LINC (Linker of Nucleoskeleton and Cytoskeleton) complex components such as nesprins 

(11), may explain the nuclear shape changes in cancer cells. In a study of ovarian cancer, it 
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was estimated that 55% of ovarian carcinomas lack Lamin A/C expression, and about 30% 

of tumors show heterogeneous staining in the cancer cell population (7). From studies of the 

basic cell biology of these proteins, Lamin A/C, emerin, nesprins, etc, have been shown to 

function in maintaining a smooth and oval shaped nuclear envelope structure (12–14). 

However, no genetic deletion or gene mutations have been reported for these nuclear 

structural proteins in cancer (3). Additionally, the loss of Lamin A/C expression occurs at 

the protein but not the mRNA level (7), and protein degradation stimulated by 

phosphorylation during interphase may be a major cause of the loss/reduction of Lamin A/C 

(15,16). Furthermore, the loss of Lamin A/C appears to be heterozygous within a cancer cell 

population (7). These reasons may account for why the loss of reduced nuclear envelope and 

lamina structural proteins have not previously been exclusively and definitively linked to the 

misshaped nucleus of malignant cells.

The collaboration between Lamin A and microtubules facilitates the nuclear shape (17), and 

likely the loss or reduction of nuclear lamina allows the nuclear envelope to be malleable 

and deformed from the force through the LINC bridges and the associated microtubule 

cytoskeleton (Figure 3). Partial disruption of nuclear lamina produces local perturbation of 

the nuclear envelope, and complete loss of nuclear lamina results in a malleable and 

deformed nuclear envelope from pulling by force from the microtubule cytoskeleton (Figure 

3), producing the various nuclear morphology of carcinomas.

Specifically, recent studies indicate that the loss of Lamin A/C proteins occurs in cervical 

cancer and may account for the nuclear shape changes (18). In a preliminary investigation of 

50 archived human cervical carcinomas by immunohistochemistry, Lamin A/C was found 

lost in 70% of the cancer tissues, and abnormal distribution and patchy staining of Lamin 

A/C were seen in the other 30% (18). Furthermore, this preliminary report indicates the loss 

of Lamin A/C can be detected in PAP sampling (18). Thus, loss or greatly reduced nuclear 

envelope and lamina proteins likely account for significant nuclear deformation, the 

underlying principle for the PAP smear test (1,2).

Expression and roles of Lamin A/C in development and diseases

The biological functions of Lamin A/C may provide clues for why Lamin A/C expression is 

commonly lost/reduced in malignant cells including those of cervical cancer, leading to the 

aberration of nuclear morphology observed by Dr. Papanicolaou. Lamin A/C expression is 

low/absent in embryonic stem cells and early embryos, and is progressively expressed in 

nearly all tissues in later developmental stages (19,20). The initiation of Lamin A/C 

expression is associated with cell differentiation, suggesting that Lamin A/C expression may 

serve as a limit on the plasticity of cells for further developmental events (19–22). 

Additionally, the cell types that seem to lack Lamin A/C, such as embryonic carcinoma cells 

and some cells of the spleen, thymus, bone marrow and intestine in the adult mouse may fall 

into the “stem cell” category (19,20,22).

Lamin A/C mutations are the causes of several human diseases known as laminopathies, 

including muscular dystrophy, lipodystrophy, and progeria (23–25). Loss or reduction of 

Lamin A/C expression is often found in cancer cells (9), including breast (8), colon (26), 
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gastric (27,28), leukemia (29,30), lung (31), prostate (5), and serous ovarian carcinomas (7). 

Additionally, emerin expression is lost in 38% of ovarian cancer (10).

The cell biology of the nuclear envelope and lamina has been well studied (32–35). Lamin 

A/C, but not Lamin B1/2, is critical for the maintenance of a smooth and oval shaped 

nucleus (14). Mutations or loss-of-function in several nuclear envelope structure proteins, 

including emerin and Man1, Baf, and Lamin in C. elegans, cause similar nuclear and mitotic 

phenotypes such as an enlarged and deformed nucleus, defective chromosome segregation, 

and the formation of chromatin bridges between divided nuclei, suggesting a critical role for 

the nuclear envelope and lamina in cytokinesis and mitosis (32,36–38).

Mutations in Lamin A/C gene (lmna) interfere with mitosis and cell cycle progression in 

mammalian cells (39,40), indicating to be an evolutionally conservative role. These findings 

are consistent with roles for these nuclear envelope proteins in both maintaining the nuclear 

structure and mediating cytokinesis/mitosis across species. Another major role of Lamin 

A/C is to bind heterochromatin and to influence gene expression (33,41–44). Because of 

their roles in chromatin organization and mitosis, defects of nuclear envelope proteins 

generate genomic instability due to aberrant gene expression and chromosomal numerical 

instability (45,46), leading to several human diseases such as muscular dystrophy and 

progeria (23–25). Lamin A/C null mice die at 4–6 weeks of age due to cardiac degeneration, 

a phenotype of muscular dystrophy in humans (24).

For relevance to cancer biology, we discuss below the effects of the loss of Lamin A/C and 

resulting nuclear envelope defects on genomic instability (specifically, chromosomal 

numerical instability), epigenetic dysregulation, cell malleability, and cancer metastasis.

Nuclear deformation and chromosomal numerical instability of carcinomas

Enlarged and deformed nuclei are characteristics of cancer cells, and the aberrant nuclear 

morphology correlates with malignancy and is a diagnostic and prognostic indicator, 

referred to as “nuclear grade” and is used universally for diagnostic and prognostic 

prediction of malignancies of tumor cells (3) such as in the PAP smear (1,2). In the last 5 

decades, many investigators have attempted to decipher the reason behind the deformed and 

enlarged nuclei of cancer cells, but the molecular basis of nuclear deformation in malignant 

cells or its mechanistic link with malignancy are not well defined (3).

Another hallmark of cancer cells, first recognized over one hundred years ago by Boveri 

(47,48), is aneuploidy, or an abnormal and unbalanced number of chromosomes compared to 

normal cells. The majority of human ovarian and other cancer cells are aneuploid and 

possess a hyperdiploid (>46) to subtetraploid (< 96) chromosome number (49). 

Chromosome instability and aneuploidy may provide an unbalanced global expression 

profile of increases and decreases in gene dosages that create the cancer cell properties (50–

52). Thus, aneuploidy or chromosomal numerical instability likely plays important roles in 

cancer initiation and progression, and possibly resistance to therapeutic drugs (53–55), but 

the causes and consequences in human cancer are not clear.
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Aneuploidy in cancer is commonly thought to be caused by chromosome mis-segregation 

(nondisjunction) in mitosis (56–60). However, recent studies lead to a proposal that mitotic 

failure and breakage of a malleable nuclear envelope to form micronuclei is the key 

mechanism for chromosomal numerical instability and aneuploidy in ovarian carcinogenesis 

(7,8,61) (Figure 4). Early experimental results led to the conclusion that cells with lost or 

reduced Lamin A/C have frequent mitotic failure to form tetraploid cells, which then often 

undergo multipolar division to form aneuploid cells. Additionally, the Lamin A/C-deficient 

cells produce extensive nuclear buddings/protrusions, which often break off as micronuclei, 

leading to chromosome losses at non-mitotic cell cycle phases (61). Such frequent transient 

ruptures of nuclear envelope during interphase have been observed in cancer cells (62). 

Thus, one relevant consequence of nuclear deformation observed in PAP smear test is the 

development of aneuploidy, a potential driving force in carcinogenesis.

Roles of nuclear lamina in chromatin organization and epigenetic 

regulation

Another possible contributing factor for a deformed nuclear morphology is the impact on 

epigenetics: the role of lamina on chromatin organization and gene expression (33,41–44). 

Consequently, loss or reduction of Lamin A/C in cancer cells likely will contribute to 

deregulation of gene expression and deviant differentiation of a malignant phenotype.

A connection between nuclear morphological irregularities and nuclear DNA profiles in 

various disease states was recognized previously, dating back to the late 1960’s (63,64). An 

earlier notion is that the nuclear deformations are secondary to the changes in DNA and 

chromatins, and in neoplasia the portions of the genome are irregularly activated or 

suppressed, and the resulted genomic instability is proportional to the degree of nuclear 

deformation (63,64). However, the current hypothesis is that the changes in nuclear 

structural protein come first, causing alterations in both DNA contents (aneuploidy) (7,60) 

and conformation (epigenetics) (33,41–44).

One recent study used Lamin A/C and/or emerin deleted embryonic stem cells as a model to 

investigate the association between lamina and nuclear envelope structural proteins on 

nuclear shape and gene expression (65). The study found that the nuclear envelope structural 

proteins Lamin A/C and/or emerin mediate changes in nuclear size and shape. Additionally, 

the Lamin A/C and/or emerin deficient ES cells co-express both pluripotent and 

differentiation markers (such as Oct3/4 and Gata4, respectively), indicating an infidelity in 

the regulation of gene expression, and are compromised to undergo proper lineage 

differentiation (62). The effect of alterations in nuclear envelope proteins on gene regulation 

is thought to be mediated through the roles of nuclear lamina in binding and organizing 

chromatin (33,41–44). Although not yet thoroughly investigated in cancer cells, loss of 

nuclear envelope proteins in cancer cells presumably alters chromatin organization, the 

fidelity of gene regulation, and allows clonal selection of cells with a gene expression profile 

of malignant cells.
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Nuclear deformation and metastatic potential of cancer cells

Furthermore, recent investigations suggest another mechanism for a deformed nuclear shape 

contributing to malignancy: a malleable nuclear envelope and increased potential for 

mobility and cancer metastasis (12,66).

Cell shape is determined by a network of cytoskeleton under plasma membrane. The nucleus 

serves as a central point to organize the actin, intermediate filament, and microtubule 

networks (67,68). These cytoskeleton networks are anchored on nuclear envelope and lamina 

through the LINC complexes composed of nesprins and SUN proteins (69). The loss or 

reduction of Lamin A/C, emerin, and/or nesprins likely would transform and corrupt the 

normally rigid cell cytoskeleton into a less organized and malleable shape. Additionally, the 

nuclei are deformable, which would allow cancer cells to penetrate narrower space and 

increase invasive and metastatic ability.

Chronic HPV infection in the disruption of nuclear lamina

Cervical cancer has an established viral etiology, and is caused by persistent infection of 

human papillomavirus (HPV) (70–74). The work linking cervical cancer to HPV infection 

was honored with a Nobel Prize in 2008 (75–78). High risk HPVs such as HPV-16 and 

HPV-18 transform cells following chronic infection, and the viral genes, E6 and E7, are 

known to be critical for transformation as the encoded proteins interfere with the functions 

of Rb and p53 and affect signaling pathways and the cell cycle (79,80). However, though 

essential, the infection by the virus is insufficient to induce malignant transformation, and 

our knowledge of viral oncogenesis remains incomplete (70,72,73,81). Chromosomal 

instability is thought to be important for progression to malignancy (82,83).

DNA virus including HPV replicates in nuclei and requires the disruption of nuclear lamina 

for egress of viral particles (84–91). However, the mechanism has not yet been established 

for HPV in the disruption of nuclear lamina and viral egress. A provocative hypothesis that 

viral disruption of the nuclear envelope is a mechanism contributing to chromosomal 

numerical instability and malignant transformation in viral carcinogenesis, especially for 

HPV-induced cervical cancer (Figure 4).

A hallmark of cervical carcinomas is the morphological deformation of the cancer nucleus, 

which is the basis of the PAP smear diagnostic test (3). In infections by many DNA viruses 

including HPV, the viral genome is replicated in the nucleus and the partially assembled 

capsids escape from the nucleus, in a process known as nuclear egress (92). In doing so, the 

nuclear lamina is disrupted following phosphorylation and degradation of Lamin A/C by 

viral or host kinases. Likely, the disruption of nuclear lamina by persistent HPV infection 

and replication accounts for the characteristic changes in nuclear morphology. Furthermore, 

we speculate that infection of cells by HPV may promote neoplastic transformation by the 

disruption of nuclear envelope and subsequent chromosomal numerical instability/

aneuploidy and chromatin changes (Figure 4). Indeed, cytological distinction between high-

risk and low-risk HPV infections is recognizable, and perturbation of nuclear lamina is 

associated with cell transformation by high-risk HPV (93).

Smith et al. Page 6

Diagn Cytopathol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mechanisms in the disruption of nuclear lamina have been established in several 

oncogenic DNA virus such as KS-associated herpesvirus (KSHV) (also known as human 

herpesvirus-8 (HHV-8)) (91), herpes simplex virus (HSV) (84–90), Simian virus 40 (89), 

and Epstein–Barr virus (EBV) (86,89) (Figure 5). Disruption of nuclear envelope by these 

oncogenic viruses likely is an important mechanism to promote neoplastic transformation. 

However, extensive nuclear envelope disruption or distortion may prohibit efficient viral 

replication or may be an early event in establishing infection (92). Efficient virus replication 

found in high-risk HPV infection may be more efficient if nuclear envelope disruption 

occurs at a limited site (92).

For viruses such as KSHV (or, HHV-8), HSV, or EBV, following infection of cells, the viral 

genome is replicated in the nucleus and the partially assembled capsids escape by disrupting 

the nuclear envelope and the lamina lying underneath, and forming a viral envelope from the 

inner nuclear membrane (Figure 5) (70,88). The disruption of the nuclear lamina is 

accomplished by phosphorylation of the structural protein Lamin A/C, which leads to 

nuclear lamina disassembly and degradation as that occurs during mitosis. Viral encoded 

kinases, BGLF4 in EBV and ORF36 in KSHV, function to disrupt Lamin A/C (84–91). We 

speculate that infection of cells by KSHV or EBV may promote neoplastic transformation 

by the disruption of the nuclear envelope and subsequent aneuploidy and chromatin changes. 

HPV viral particles also need to disrupt nuclear lamina for nuclear egress to progress; 

however, the mechanism and host or viral gene(s) required to mediate nuclear lamina 

disruption has not yet been identified. The proposal that this disruption of the nuclear lamina 

following HPV infection contributes to cell transformation provides a plausible mechanism 

in cervical cancer development (Figure 4), which can be tested.

Therefore, a nuclear defect may cause chromosomal instability and aneuploidy, and also 

result in epigenetic changes, which promote the neoplastic transformation of cervical 

epithelial cells. Additionally, the malleable nuclear envelope allows the cancer cells to be 

invasive and metastatic. PAP test is able to identify the pre-neoplastic cells with a deformed 

nuclear morphology, and thus to predict cervical cancer risk.

Summary and Reflection

It is amazing that Dr. Pap’s discovery (1,2) of a simple method for cancer diagnosis more 

than half a century ago is still relevant today. Furthermore, the scientific community is still 

making discoveries to explain the causes and consequences of an altered nuclear shape 

characteristic of neoplastic cells, which the PAP test is based.

It seems to be apparent now that the loss or reduction of nuclear envelope and lamina 

structural proteins such as Lamin A/C, emerin, nesprins, etc, is the reason for an apparent 

changed nuclear shape of malignant cells, distinct from smooth and oval shape of benign 

cells. The causes may be phosphorylation and subsequent degradation of Lamin A/C or 

other nuclear envelope structural proteins persistent viral infection. The nuclear structural 

changes leading to a malleable nuclear envelope then promote malignancy by mechanisms 

of chromosomal instability, epigenetic dysregulation, and ability for cell mobility and 
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metastasis. A big picture of the scientific connections underneath the principle of PAP smear 

test has emerged, but details warrant further investigation.

Currently, the PAP smear (94,95) and the detection of high risk HPV DNA (96–99) are 

common screening and diagnostic approaches. Special efforts have been targeted to the most 

at risk populations for education and screening (100–102). Vaccination to HPV has been 

developed and applied to prevention of HPV-induced cervical and other neoplasms (98). 

Although a large number of adults are infected with high-risk HPV in their lifetime, only a 

small fraction of women will develop cervical cancer following persistent chronic infection 

(70,73,81), and virus-induced cytological abnormality is a key predictor (81). Our study that 

defective nuclear lamina caused by HPV infection may provide a possible enhanced method 

than just morphology alone as used in the PAP smear. Potential method may be the analysis 

of nuclear lamina integrity using immunofluorescence microscopy to detect the loss or 

reduction of Lamin A/C, emerin, and additional nuclear envelope proteins, which may be 

more predictive for risk of cancer progression (17).

Dr. Papanicolaou never knew that his discovery, based on such a simple observation of a 

deformed nuclear shape present in malignant cells, would develop such long lasting clinical 

applications and inspired such wide spread scientific inquiries. The newly installed statue of 

Dr. Papanicolaou (Figure 1) in front of the Papanicolaou Cancer Research Building signifies 

our continual gratitude to his insight.
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Figure 1. A new statue of Dr. George Nicholas Papanicolaou (1883–1962)
In June 2017, a statue of Dr. George Nicholas Papanicolaou was placed in front of the 

Papanicolaou Cancer Research Building on the University of Miami Miller School of 

Medicine campus to commemorate the invention of PAP smear test.

Here in 1961, Dr. Papanicolaou became the head of the Cancer Institute of Miami, which 

was renamed the Papanicolaou Cancer Research Institute to honor Dr. Papanicolaou who 

died at 78 years of age, soon after his arrival in Miami.
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Figure 2. Nuclear shape changes in cervical cancer
Outlines of nuclei were traced from images of sections of normal cervical epithelium and 

representative cervical carcinomas. Most nuclei in carcinoma specimens are larger and 

exhibit various irregular shapes. Additionally, micronuclei and nuclear fragments often 

associate with the cancer nuclei.
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Figure 3. Illustration of nuclear envelope perturbation following lamina disruption
The nuclear envelope (thin blue line) is supported by a layer of nuclear lamina (orange line). 

The nuclear envelope is anchored by binding to microtubules (green lines) through the 

Nesprin-SUN LINC bridge (yellow lines). Partial disruption of nuclear lamina produces 

local perturbation of the nuclear envelope. Complete loss of nuclear lamina results in a 

malleable nuclear envelope that deforms from pulling by force through the LINC bridges 

and the microtubule cytoskeleton that is organized by a centrosome (“V” like symbol).
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Figure 4. Consequences of viral disruption of nuclear envelope
A cartoon illustrates our hypothesis on the consequences of viral infection and a nuclear 

envelope defect. We reason that loss of a nuclear envelope structural component such as 

Lamin A/C resulting from viral infection causes a misshapen nucleus. The Lamin A/C-

deficient cells frequently fail to complete cytokinesis, and thus tetraploid and subsequently 

aneuploid cells are generated. Formation of micronuclei is another mechanism for the loss of 

individual chromosomes. Additional genetic and epigenetic changes may allow the 

aneuploid cells to survive and undergo clonal selection. Most aneuploid cells will die, but 

ultimately, a population of cells with a unique chromosomal composition is selected and 

expanded to form cancer.

Prior study suggests that a nuclear envelope defect caused by the loss of nuclear lamina 

structural protein such as Lamin A/C causes chromosomal numerical instability and 

aneuploidy in ovarian cancer (61). Here, we postulate a provocative hypothesis that loss of 

Lamin A/C proteins caused by persistent HPV infection and replication promotes cervical 

cancer by inducing aneuploidy and epigenetic alteration (since Lamin A/C have key roles in 

chromatin organization and impacts gene expression). Additionally, loss of lamina proteins 

allows cells to be malleable and harbor metastatic potential. Our hypothesis links the two 

hallmarks of cancer: nuclear envelope defects and chromosomal instability.
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Figure 5. Disruption of nuclear envelope in viral infection and egress
A cartoon illustrates the process of the escape of viral capsids from the nucleus of cells 

infected with DNA viruses such as HPV. Phosphorylation of the Lamin A/C proteins by viral 

or activated host kinase leads to the disassembly and degradation of the nuclear lamina, 

allowing the escape of viral capsids into the cytoplasm. Viral encoded kinases, BGLF4 in 

EBV and ORF36 in KSHV, function to disrupt the nuclear lamina by phosphorylation Lamin 

A/C. The viral coat proteins are produced and incorporated into the inner nuclear membrane 

(inm). The viral nucleocapsid uses the inm to produce a viral membrane, and breaks 

through the outer nuclear membrane (onm) into the cytoplasm.
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