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Abstract

Objective—Dyslipidemia (DL) is closely related to osteoporosis (OP) while the exact common 

genetic mechanisms are still largely unknown. We proposed to use novel genetic analysis methods 

with pleiotropic information to identify potentially novel and/or common genes for the potential 

shared pathogenesis associated with OP and/or DL.

Methods—We assessed the pleiotropy between PL (plasma lipid) and FNK BMD (femoral neck 

bone mineral density). We jointly applied the conditional false discovery rate (cFDR) method and 

the genetic analysis incorporating pleiotropy and annotation (GPA) method to the summary 

statistics provided by GWASs (genome-wide association studies) of FNK BMD (n = 49,988) and 

PL (n = 188,577) to identify potentially novel and/or common genes for BMD/PL.

Results—We found strong pleiotropic enrichment between PL and FNK BMD. 245 PL SNPs 

were identified as potentially novel SNPs by cFDR and GPA. The corresponding genes were 

enriched in GO (gene ontology) terms “phospholipid homeostasis” and “chylomicron remnant 

clearance“. Three SNPs (rs2178950, rs9939318 and rs9368716) might be the pleiotropic ones and 

the corresponding genes NLRC5 (rs2178950) and TRPS1 (rs9939318) were involved in NF-κB 
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signaling pathway and Wnt signaling pathway as well as inflammation and innate immune 

processes.

Conclusion—Our study validated the pleiotropy between PL and FNK BMD and corroborated 

the reliability and high-efficiency of cFDR and GPA methods in further analyses of existing 

GWASs with summary statistics. We identified potentially common and/or novel genes for PL 

and/or FNK BMD, which may provide new insight and direction for further research.
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Introduction

Osteoporosis (OP) is the most common metabolic bone disease, mainly characterized by low 

bone mineral density (BMD) and deterioration of bone microstructure (Philip and Cyrus 

2006). It is a major cause of osteoporotic fracture (OF) in the elderly (Philip and Cyrus 

2006). OF may occur with slight collision or even happen spontaneously and lead to severe 

decrease of life quality, with increased morbidity, mortality, and disability (Porter and 

Bhimji 2017). Only 33% of elderly women who suffered hip OF will be able to return to 

independence (Porter and Bhimji 2017). OP is highly prevalent worldwide, over 200 million 

people suffer from OP (Sözen et al. 2017). In USA, about 8 million women and 2 million 

men had OP in 2010 (Willson et al. 2015). In China, the prevalence of OP ranged from 6.6% 

to 19.3% (Wang et al. 2009).

Dyslipidemia (DL) is a condition with abnormal levels of plasma lipid (PL), including 

abnormally elevated levels of triglyceride (TG), total cholesterol (TC) and low density 

lipoprotein cholesterol (LDL), and descended levels of high density lipoprotein cholesterol 

(HDL) (Giner-Galvan et al. 2016). Presence of DL increases the risk of suffering coronary 

heart disease (CHD) and future cardiovascular (CV) diseases (Fox et al. 2016), which are 

ranked as the top two causes of premature death and decreased disability-adjusted life-years 

(DALYs) worldwide (Murray et al. 2015). In US, 36.7% adults were on or suit for lipid-

lowing therapy during 2005–2012 (Mercado et al. 2015). In China, the prevalence of DL 

was 41.9% among adults (Huang et al. 2014).

Experimental and clinical studies have demonstrated that DL is closely related to OP (Wong 

et al. 2016). In clinic, patients with DL are often diagnosed with OP (Ibrahim et al. 2013). A 

study with 279 either pre- or post-menopausal women demonstrated that high TC level was 

associated with low BMD (Jeong et al. 2014). High cholesterol might influence cellular 

functions of bone tissue, such as increased osteoclast activity and decreased osteoblast 

function (Mandal 2015). Bone metabolism and lipid metabolism might interact with each 

other by some molecules, such as osteoprotegerin (OPG) (Maser et al. 2015), apolipoprotein 

E (APOE) (Singh et al. 2011), peroxisome proliferators-activated receptor γ (PPARγ) (Ren 

et al. 2016) and vitamin D receptor (VDR) (Hajj et al. 2016). For example, OPG can reduce 

the production of osteoclasts and regulate the resorption of osteoclasts. Meanwhile, elevated 

OPG levels have been reported in heart diseases, which may be a link between bone and 

atherosclerosis - a main complication of DL (Maser et al. 2015). Furthermore, medication 
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for DL therapy, such as statins, can decrease PL and increase BMD simultaneously (Gotoh 

et al. 2011).

OP and DL both are complex human diseases, which are affected by multiple genes. Both 

BMD and PL are highly heritable. For BMD, its heritability was about 50%–80% (Videman 

et al. 2007), and for PL it was 40–60% (Asselbergs et al. 2012). Previous GWASs (Genome 

wide Association Studies) have identified about 200 loci associated with BMD and about 

500 loci associated with PL (https://www.ebi.ac.uk/gwas, Aug 1, 2017). However, these 

identified SNPs (single nucleotide polymorphisms) only explained a small part of the 

heritability. Further explorations were required for the missing heritability (Asselbergs et al. 

2012; Richards et al. 2012). Considering the multiple genes which might affect OP and DL 

as well as the high missing heritability, we would like to carry out more studies to explore 

the potentially novel genetic mechanisms and the potentially shared genetic relationship for 

OP and/or DL.

Novel pleiotropy informed analytical methods have emerged in recent years, such as 

conditional false discovery rate (cFDR), ccFDR (conjunction cFDR) (Andreassen et al. 

2013) and genetic analysis incorporating pleiotropy and annotation (GPA) (Chung et al. 

2014). These methods could incorporate summary statistics from independent GWASs to 

capture polygenic effects and identify more potentially novel loci for the interested 

phenotypes. Recently, Andreassen et al. have identified pleiotropy between BMD and PL 

and found some novel BMD-associated SNPs conditioned on PL by cFDR method (Reppe et 

al. 2015). Encouraged by their initial study, in this study, we will apply not only the cFDR 

method but also the complementary GPA method to larger and newer GWAS datasets of PL 

(Willer et al. 2013) and BMD (Zheng et al. 2015). We hope to validate the pleiotropy 

between BMD and PL and identify potential common genes as well as potentially novel DL-

associated genetic variants, with the results to be obtained from newer and larger datasets 

and with different analytical approaches for robustness. In our previous studies, we have 

successfully implemented cFDR analyses on GWAS datasets of femoral neck (FNK) BMD, 

height, birth weight, type 2 diabetes and coronary artery disease (CAD) and identified 

potentially novel and pleiotropic genetic variants for these phenotypes simultaneously and 

respectively (Zeng et al. 2016; Greenbaum et al. 2017; Peng et al. 2017). These experiences 

would contribute to better implementation of this study.

Materials and Methods

GWAS datasets

We obtained GWAS results of FNK BMD and PL (HDL, LDL, TC, TG) in the form of 

summary statistic p-values. FNK BMD GWAS dataset contained more than 10 million SNPs 

from 49,988 subjects, and PL GWAS recruited 188,577 subjects and used GWAS array and 

Metabochip array to genotype/impute more than 2 million SNPs. Both datasets are the 

largest for FNK BMD and PL so far. FNK BMD dataset was published online by Genetic 

Factors for Osteoporosis (GEFOS) (http://www.gefos.org/), and PL dataset was published by 

Global Lipids Genetics Consortium (GLGC) (http://csg.sph.umich.edu/abecasis/public/

lipids2013/). Detailed inclusion criteria and phenotype characteristics for the two GWASs 

were demonstrated in the original respective papers (Willer et al. 2013; Zheng et al. 2015).
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SNP pruning

We performed SNP pruning on FNK BMD and PL datasets respectively before further 

analysis. Since most of the individuals of the original GWASs were European ancestry, we 

used the CEU HapMap 3 genotype data for the SNP pruning. First, we merged common 

SNPs between FNK BMD and each kind of PL. After merging, there were about 2 million 

SNPs remained in each PL type. According to HapMap3 information, we calculated LD 

(linkage disequilibrium) values between each pair of SNPs by PLINK 1.9 software. We 

selected default value of the software (50, 5, 0.2) as parameters, which meant the calculation 

of LD was performed in a window containing 50 SNPs. And the SNP in each pair with 

smaller minor allele frequency (MAF) was removed when the LD value (r2) was greater than 

0.2. Then the calculation window slid forward with 5 SNPs and repeated the above process 

until no pairs of SNPs that were in high LD. After SNP merging and pruning, the remaining 

SNPs were prepared for subsequent analysis.

Statistical analysis

Pleiotropic enrichment estimation—We used “ggplot2” package in R software to 

construct fold-enrichment plots to estimate the pleiotropic enrichment between FNK BMD 

and PL. The plots were formed by nominal −log10(p) values at different stratifications. 

Stratification was divided by p-value of conditional phenotype with the cut-offs as p < 1 

(expected base line, all SNPs), p < 0.1, p < 0.01 and p < 0.001. Nominal p-values (−log10 

(p)) were plotted on x-axis and fold enrichments were plotted on y-axis. In each cutoff 

group, for all possible -log10(p-values) on the x axis (between 0 and 10), we compute the 

fold enrichment values,

En[i] =
Ni
N0

where En is the enrichment values. Ni is the proportion of SNPs with −log10(p-values) ≧ x. 

N0 is the number of all SNPs in each cutoff group, and the i is from 1 to N0. Presence of 

pleiotropy can be visually observed as an upward shift from the expected base line. And 

there would be separation between different stratification. The greater separation indicated 

the stronger pleiotropy.

As a complement for pleiotropic enrichment estimation, we performed a hypothesis testing 

procedure by GPA. In this testing, likelihood ratio test (LRT) was used to assess statistical 

significance and show statistical evidence for pleiotropic enrichment. Here we set threshold 

as p value = 0.05. We downloaded and ran “GPA” package in R software (http://

dongjunchung.github.io/GPA/), then we fit GPA model to test the hypothesis for pleiotropy.

Calculation of cFDR, ccFDR and GPA—We set PL as the principal phenotype and 

FNK BMD as the conditional phenotype. Summary statistic p-values of PL and FNK BMD 

GWAS datasets were incorporated by common SNPs for calculation of cFDR, ccFDR and 

GPA. Detailed procedures and formulas were described by Greenbaum and Chung D 

respectively (Chung et al. 2014; Greenbaum et al. 2017).
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The cFDR method (Andreassen et al. 2013) was developed from standard FDR framework 

(Benjamini et al. 2001). The cFDR value represented a random SNP associated with PL 

conditioned on FNK BMD. And ccFDR value referred to the possibility of a given SNP that 

had association with both FNK BMD and PL simultaneously. Both cFDR and ccFDR 

thresholds were set to 0.05, which meant that the SNP reached this threshold achieved 

significant association with the corresponding phenotype and the false discovery rate was 

5%.

GPA method was performed by “GPA” package in R software. We fit a GPA model with 

summary statistic p-values of SNPs and performed the analysis. fdr.GPA was used to 

represent the SNP that was associated with one of the two phenotypes, and fdr11.GPA was 

used to represent the SNP that was associated with both phenotypes. According to the 

criterion set in the original paper (Chung et al. 2014), we adopted the same significance 

threshold of GPA to 0.2. Over this threshold meant that a SNP might not be associated with 

the corresponding phenotype.

Annotation of potentially novel SNPs for PL—If a SNP met the thresholds (cFDR < 

0.05 and fdr.GPA < 0.2) for PL, we conferred it as a significant one. To verify whether the 

identified PL significant SNPs with p-values > 5E-08 were potentially novel ones, we 

compared these SNPs to the other previous GWAS results by querying GWAS web site 

(https://www.ebi.ac.uk/gwas, Aug 1, 2017). After comparison, we input non-repeat SNPs 

(including the significant SNPs with cFDR < 0.05, fdr.GPA < 0.2 and p values > 5E-8 in the 

original PL GWAS dataset (Willer et al. 2013), and the previously confirmed SNPs which 

were reported in the other PL GWASs) into the SNP Annotation and Proxy Search (SNAP, 

http://archive.broadinstitute.org/mpg/snap/) for LD analysis. In the search options of the 

website, we chose suitable SNP data set and population panel based on the original GWASs 

(SNP data set was HapMap3 and population panel was CEU) for pairwise LD calculation. 

Then we used the default values (r2 threshold = 0.8, distance limit = 500, where distance 

means the maximum number of kilobase between query and proxy SNP (Johnson et al. 

2008)) as the criteria to determine whether the identified novel SNPs were in same LD block 

with previous GWAS signals. Among these SNPs, only the SNP that had not been identified 

in other previous GWASs and was not clustered in the same LD block with those previously 

GWAS confirmed SNPs would be regarded as a potentially novel SNP, otherwise it was 

regarded as a replication of the previous GWAS results.

Conditional and conjunction Manhattan plots—We used information including SNP 

number, chromosome position and cFDR or ccFDR value to construct Manhattan plots by R 

software to visualize the localization of the significant SNPs (Fig. 2 and Fig. 4). The 

Manhattan plots consist of conditional and conjunction Manhattan plots, marking the 

significant SNPs and their chromosomal locations. In the conjunction Manhattan plot (Fig. 

2), the SNPs with significant −log10(ccFDR) values more than 1.3 (corresponding to a 

ccFDR value less than 0.05) were shown in the plot. Only those SNPs with fdr11.GPA less 

than 0.2 were highlighted with SNP numbers. These SNPs were defined as being associated 

with both phenotypes in the conjunction Manhattan plot. In the conditional Manhattan plot 
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(Fig. 4), the SNPs with −log10(cFDR) values more than 1.3 were determined as being 

associated with the principal phenotype.

Gene ontology enrichment analysis and protein-protein interaction analysis of 
the identified SNPs and genes—We mapped the identified SNPs to corresponding 

genes by the online tool SNP and CNV Annotation Database (SCAN, http://scandb.org/

newinterface/about.html). To evaluate the function of these genes and to partially validate 

our results, we performed Gene Ontology (GO) Enrichment analysis (http://

geneontology.org/page/go-enrichment-analysis). Meanwhile, using the online tool STRING 

10.0 (http://string-db.org/), we further explored the functional interaction between the 

proteins produced by the corresponding genes. Protein-protein interaction analysis enabled 

us to identify the potential associations between the corresponding genes.

Results

Pleiotropy between FNK BMD and PL

As shown in fold-enrichment plots (Fig. 1), each type of PL was the principal trait while 

FNK BMD was the conditional trait. When restricting the subset of SNPs with a stronger 

level of association in the conditional trait, we observed an obvious upward shift from the 

expected base line. It well demonstrated the pleiotropy between FNK BMD and each type of 

PL (HDL | FNK BMD, LDL | FNK BMD, TC | FNK BMD and TG | FNK BMD). Among 

the four plots, HDL conditioned on FNK BMD (HDL | FNK BMD) achieved the most 

significant pleiotropic enrichment, as a 9.5 fold enrichment was observed in Y axis while 

comparing the most stringent subset to the all SNPs subset (Fig. 1 a). LRT-p values acted as 

statistical evidence for pleiotropic enrichment through hypothesis testing of GPA and the 

results were presented in Table 1. The pleiotropy between FNK BMD and HDL with a LRT-

pvalue of 5.92E-03 was still the strongest, suggesting the highest level of pleiotropy between 

FNK BMD and HDL among all the PL traits.

Potentially pleiotropic SNPs/genes for both FNK BMD and PL

According to the thresholds of ccFDR < 0.05 and fdr11.GPA<0.2, three SNPs (rs2178950, 

rs9939318 and rs9368716) were identified to be associated with both FNK BMD and PL 

(Fig. 2). All of the three SNPs’ p-values were higher than 5E-08 in the original FNK BMD 

and PL GWAS datasets. They were mapped to chromosomes 6, 8, 16 and corresponded to 

C6orf10/LOC101929163, TRPS1 and NLRC5 genes respectively (Table 2). TRPS1 
(rs2178950) gene was involved in autosomal dominant skeletal disorder, encoding a GATA-

type transcription factor (Gai et al. 2011). TRPS1 was associated with HDL and CAD in a 

meta-analysis of 46 GWASs of lipids (Teslovich et al. 2010). NLRC5 (rs9939318) was a 

member of the NLR family. It acted as a transcriptional activator of MHC class I genes. 

Meanwhile, it contributed to inflammatory and type I interferon responses in vitro (Benko et 

al. 2017). According to protein-protein interaction information from “STRING Interaction 

Network” (Fig. 3), we found these pleiotropic genes interacted with many other bone and/or 

PL associated genes indirectly. For example, NLRC5 interacted with IKBKB, CHUK, 

DDX58, IFIH1 and RNF135, while TRPS1 interacted with JUN family and WDR family.
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Potentially novel PL loci identified by cFDR and GPA

According to the thresholds of cFDR < 0.05 and fdr.GPA < 0.2, we identified totally 395 

significant SNPs associated with PL variation conditioned on FNK BMD (Supplemental 

Table 1). Among the 395 SNPs, 144 SNPs achieved p values lower than 5E-8 in the original 

PL GWAS datasets (Willer et al. 2013), 1 SNP (rs12708980) in HDL was confirmed before 

to be GWAS-associated with PL (Kim et al. 2011), and 5 SNPs had high LD values 

(according to the default value of the SNAP website, r2 > 0.8) with previous PL GWAS 

findings (Teslovich et al. 2010; Willer et al. 2013), including 2 SNPs (rs5754467 and 

rs9930506) in HDL (Teslovich et al. 2010; Willer et al. 2013), 1 SNP (rs2699429) in LDL 

(Willer et al. 2013), 1 SNP (rs2178950) in TC (Teslovich et al. 2010) and 2 SNPs 

(rs12751742 and rs9930506) in TG (Willer et al. 2013) (Table 3). These SNPs were regarded 

as replications of the original PL GWAS. The remaining 245 SNPs with p-values higher than 

genome-wide significance threshold of 5E-08 were potentially novel SNPs for PL, among 

which 71 SNPs were identified for HDL, 67 SNPs for LDL, 92 SNPs for TC and 54 SNPs 

for TG (Table 3). These significant SNPs were mapped to 21 chromosomes (1–20, 22) and 

the positions were showed in the conditional Manhattan plots (Fig. 4).

Gene annotation and function enrichment analysis for potentially novel PL SNPs

We mapped the 245 potentially novel SNPs to their corresponding genes by SCAN and 

performed the GO term enrichment analysis. The strongest enriched GO term and associated 

genes/SNPs for PL were listed in Table 4. For HDL, the most enriched GO term was 

“phospholipid homeostasis”, with a fold enrichment value over 100 (p-value = 6.53E-05). 

The significant genes in this GO term included HNF4A (rs2071197), LIPG (rs2097055, 

rs883218 and rs4556888), CETP (rs17369163) and GPAM (rs10787429). For TC, the most 

enriched GO term was “chylomicron remnant clearance“, with fold enrichment as over 100 

(p-value = 2.12E-02). The significant genes in this GO term included LDLR (rs2738456), 

APOB (rs6733447) and LIPC (rs792902, rs1652519, rs6494007, rs4775046 and 

rs12324517). Both of the most enriched GO terms play key roles in PL metabolism 

(Cabezas et al. 1993; Lim et al. 2011). No enriched GO terms were found for LDL and TG. 

The other enriched GO terms were presented in Supplemental Table 2.

Discussion

In this study, we combined the summary statistics from two independent GWAS datasets and 

jointly implemented cFDR and GPA methods to validate the pleiotropy between FNK BMD 

and PL (HDL, LDL, TC, and TG). Potentially common genes were identified between FNK 

BMD and PL, which could lead to a further and novel understanding of the shared genetic 

mechanisms for both OP and DL, and potentially have a positive impact on future clinical 

treatment and prevention. A number of potentially novel SNPs associated with PL were also 

identified, which provided new directions for future studies of molecular pathogenesis for 

DL.

To explore more missing heritability, traditional ideas included recruiting more participants 

and genotyping larger samples, but these were difficult and impractical in many cases and 

costly. The advantages of cFDR and GPA methods were that they could leverage the power 
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of pleiotropy by using current GWAS datasets, they virtually increased the existing sample 

size and enhanced statistical power to explore more potential genetic variants. They also 

lessened the burden of multiple testing by controlling the false discovery rate, which meant 

that the cFDR and GPA methods could leverage pleiotropy information and also provide less 

conservative control of type I errors compared to Bonferroni correction (Shaffer 1995; 

Benjamini et al. 2001). cFDR method was the first approach which statistically addressed 

the issue of pleiotropy between GWASs of two different traits based on Bayesian formula. 

GPA method could systematically integrate pleiotropy and annotate information based on 

LRT. In this study, if a SNP was identified by the two methods simultaneously, it meant that 

the SNP was validated virtually by two different approaches, which might further reduce 

false positive findings for more robust results. It should be noted that GPA method could be 

used to analyze GWAS results with or without annotation information. Meanwhile, summary 

statistic p-values of GWAS was more important than functional annotation information in 

GPA (Chung et al. 2014). Therefore, in this study we chose not to use annotation 

information, which not only rendered efficient analysis in terms of computation but more 

importantly also matched the cFDR results better since cFDR method could use only 

summary statistics information.

Andreassen et al. had identified pleiotropy between FNK BMD and PL by cFDR method in 

a previous study (Reppe et al. 2015). They had identified 65 novel BMD loci by 

conditioning on cardiovascular disease (CVD) related phenotypes, including PL (HDL, 

LDL, TC and TG). Unlike their initial study, we hope to explore more relationships between 

FNK BMD and PL from different/novel aspects, such as to identify common genes to both 

PL and BMD, and novel PL-associated SNPs. These study aspects were not covered in the 

Andreassen’s findings (Reppe et al. 2015). Hence, on one hand, we validated the pleiotropy 

first. In our pleiotropic enrichment analysis, we used GPA method together with cFDR 

method based on larger and newer GWAS datasets and successfully validated the pleiotropy. 

We further quantified the degree of pleiotropy by enrichment plot and LRT. On the other 

hand, based on the validated pleiotropy, we focused on identifying potentially novel SNPs 

for PL conditioned on FNK BMD and identified common genes for FNK BMD and PL. 

These findings were novel compared to the Andreassen’s results (Reppe et al. 2015).

By leveraging the pleiotropy, we could integrate PL and FNK BMD GWAS datasets and 

virtually increase the existing sample size. Then we could use cFDR method and GPA 

method to enhance the statistical power to explore potentially novel PL associated SNPs. In 

this study, we identified 395 significant SNPs for PL, of which 150 SNPs had reached p < 

5E-8 in the original GWAS or were identified in other previous PL GWASs. These results 

reflected the reliability of the cFDR method and GPA method. Meanwhile, we identified 245 

potentially novel SNPs for PL. Several genes corresponding to these potentially novel SNPs 

were enriched in plasma metabolism related GO terms, such as “phospholipid homeostasis” 

and “chylomicron remnant clearance“. This functional enrichment analysis result suggested 

that these potentially novel SNPs might be associated with PL metabolism.

We identified 3 pleiotropic SNPs (rs2178950, rs9939318 and rs9368716) that were 

associated with both FNK BMD and PL. rs2178950 was located in TRPS1. TRPS1 gene 

was confirmed to be associated with HDL in a previous GWAS meta-analysis (Teslovich et 
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al. 2010). Meanwhile, TRPS1 was associated with BMD (Gai et al. 2011) and Wnt signaling 

pathway (Fantauzzo and Christiano 2012). Protein produced by TRPS1 was a transcription 

factor and played an important role in skeletal development by influencing osteoblast cell 

differentiation and osteocalcin expression (Piscopo et al. 2009). Deletion of TPRS1 could 

cause skeletal abnormalities called skeletal abnormalities of tricho-rhino-phalangeal 

syndrome type I, characterized by craniofacial abnormalities and disturbances in formation 

and maturation of bone matrix (de Barros and Kakehasi 2016).

The pleiotropic SNP rs9939318 was located in NLRC5, which was related to inflammation 

and immunity (Benko et al. 2017). Interestingly, PL was also involved in the pathological 

procedure of inflammation and immunity (Rao et al. 2015). Cholesterol could induce 

immune response and inflammation during the progression of atherosclerosis (Rao et al. 

2015), and impact on the circulating monocytes and bone marrow (Bernelot Moens et al. 

2017). So we inferred that NLRC5 might be involved in DL through the process of 

inflammation and immunity. Meanwhile, NLRC5 could regulate bone mineralization by 

stimulating Wnt signal pathway to promote osteoblast differentiation (Peng et al. 2016), and 

it could also inhibit nuclear factor kappa B (NF-κB) (Benko et al. 2017) to decrease 

osteoclast. Wnt signaling could stimulate generation of osteoblasts by promoting 

mesenchymal stem cells (MSCs) towards osteoblast lineage, and decrease osteoclast 

differentiation by inducing OPG secretion and production (Manolagas 2014). NF-κB is a 

transcriptional factor which regulates the bone remodeling processes and inflammatory 

response in both bone resorption cells and bone forming (Benko et al. 2017). As mentioned 

above, NLRC5 was associated with OP through Wnt signal pathway (Peng et al. 2016) and 

NF-κB (Benko et al. 2017).

“STRING Interaction Network Analysis” offered information about protein-protein 

interaction and allowed us to explore the indirect interactions between genes. As shown in 

Fig. 3, TRPS1 and NLRC5 were found to interact with many genes, such as IKBKB, 
CHUK, DDX58, IFIH1, RNF135, JUN family and WDR family. Among them, IKBKB and 

CHUK were related to NF-κB, which was a regulating factor to the inflammatory response 

and bone-remodeling processes (Benko et al. 2017). CHUK was an important paralog of 

IKBKB. The protein encoded by IKBKB phosphorylated the inhibitor in the NF-κB 

complex, causing activation of NF-κB. The encoded protein of CHUK was an inhibitor of 

the essential transcription factor NF-κB complex (Schmid and Birbach 2008; Solt and May 

2008). DDX58, IFIH1 and RNF135 were involved in pro-inflammatory cytokines and/or 

immune system (Oshiumi et al. 2009; Ovsyannikova et al. 2010; Smyth et al. 2006). These 

information indicated that TRPS1 and NLRC5 might be the potential common genes 

associated with both OP and DL. NF-κB signaling pathway, Wnt signaling pathway, 

inflammation and innate immune might be the shared mechanisms underlying the 

relationship between OP and DL.

Although we successfully improved the identification of potentially novel SNPs for PL and 

pleiotropic SNPs for PL and FNK BMD, there were still some limitations in our study. First, 

the contribution of our findings to the proportion of the phenotypes’ variability could not be 

evaluated, since we only had access to summary statistics of GWAS without raw data to 

analyse. If we could get the raw genotype data in future, we are willing to perform linear 
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regression with the novel SNPs and those earlier identified SNPs so that we could analyse 

how much our findings would contribute to the whole heritability. Second, neither cFDR 

method nor GPA method had the ability to identify causal variants for the interested 

phenotype. The aim of our study was to identify more potentially novel SNPs and provide a 

new direction for further functional studies to be performed by molecular and cellular 

biologists, thus follow-up studies should be conducted for replication and biological 

functional validation, and further elucidate the overall genetic mechanisms. However, under 

the experimental conditions of our group and time restriction, we could not carry out the 

functional validation experiments at present. We hope that this limitation could be partially 

addressed in the future by follow-up fine mapping studies and functional mechanistic studies 

of the GWAS associated regions by our own and/or other groups which are more specialized 

in functional studies. Meanwhile, considering the racial and population differences of 

heritability (Musani et al. 2017), in the future we could study other populations in the same 

way to identify the relationship between FNK BMD and PL among different populations.

In summary, by performing cFDR and GPA methods on current GWAS datasets, we 

validated pleiotropy between PL and FNK BMD and identified more potentially novel SNPs 

for PL. NLRC5 and TRPS1 might be the potentially common genes for PL and FNK BMD. 

NF-κB, Wnt, inflammation and immune may be involved in the common pathogenesis of 

DL and OP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Fold-enrichment plots of enrichment versus nominal −log10(p-values) in each type of PL 
conditioned on FNK BMD
Each type of PL was as a function of significance of association with FNK BMD. 

Stratifications were divided by p-values of FNK BMD with the cut-offs as p < 1 (expected 

base line, all SNPs), p < 0.1, p < 0.01 and p < 0.001. Nominal PL p-values (−log10 (p)) were 

plotted on x-axis and fold enrichments were plotted on y-axis.
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Fig. 2. Conjunction Manhattan plot of −log10(ccFDR) values for each type of PL and FNK BMD
The black line marking the −log10(ccFDR) value of 1.3 corresponded to a ccFDR < 0.05. 

The figure showed the genomic locations of pleiotropic SNPs. Only the significant SNP 

(ccFDR < 0.05 and fdr11.GPA < 0.2) was highlighted with SNP number. Further details 

were presented in Table 2.
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Fig. 3. Protein-protein interaction networks for significant genes NLRC5 and TRPS1
a) Genes interacted with NLRC5. b) Genes interacted with TRPS1. Connections were based 

on evidence with “STRING Interaction Network Preview”. Network nodes represented 

proteins produced by the corresponding genes. Edges between nodes indicated protein-

protein associations. Edge color indicated the type of interaction and was specified on the 

bottom of the figure.
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Fig. 4. Conditional Manhattan plot of −log10(cFDR) values for each type of PL conditioned on 
FNK BMD
The black line marking the −log10(cFDR) value of 1.3 corresponded to a cFDR < 0.05. The 

figure marked the chromosomal locations of potentially novel SNPs. Details about all 

significant SNPs were offered in Supplemental Table 1.

Lin et al. Page 18

Mol Genet Genomics. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lin et al. Page 19

Table 1

Pleiotropy estimated between FNK BMD and PL by GPA

LRT FNK BMD & HDL FNK BMD & LDL FNK BMD & TC FNK BMD & TG

test statistics 7.573 2.382 2.595 1.869

p value 5.92E-03 1.23E-01 1.07E-01 1.72E-01

π00 9.82E-01 (2.5E-03) 9.82E-01 (2.4E-03) 9.81E-01 (2.4E-03) 9.83E-01 (2.4E-03)

π01 1.55E-02 (2.5E-03) 1.52E-02 (2.4E-03) 1.48E-02 (2.4E-03) 1.49E-02 (2.4E-03)

π10 2.33E-03 (2.8E-04) 2.45E-03 (2.6E-04) 3.38E-03 (3.1E-04) 1.99E-03 (2.3E-04)

π11 4.73E-04 (2.0E-04) 2.45E-04 (1.6E-04) 2.88E-04 (1.7E-04) 1.71E-04 (1.3E-04)

Column definition: LRT - likelihood ratio test; FNK BMD - femoral neck bone mineral density; HDL - high density lipoprotein cholesterol; LDL - 
low density lipoprotein cholesterol; TC - total cholesterol; TG - triglyceride. The two rows provided LRT statistics and p-values of hypothesis 
testing respectively; π00 indicates the proportion of the SNP associated with neither of the two phenotypes; π01 and π10 indicate the proportion 

of the SNP associated with only one of the two phenotypes; π11 indicates the proportion of the SNP associated with both of the two phenotypes; 

The values in the brackets are standard errors of the estimates.
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