Skip to main content
. 2018 Mar 16;235(6):1711–1726. doi: 10.1007/s00213-018-4875-y

Fig. 2.

Fig. 2

a Modifications that compose the “epigenetic code.” DNA methylation adds methyl groups onto the cytosine residues on the CpG islands of the DNA strand. Another group of modifications are histone modifications, which make up the tails of histone molecules around which the DNA strand wrap. There are four well-established types of histone modification, which are acetylation, methylation, phosphorylation, and ubiquitination, that can increase or decrease transcription, depending on the site, the number, and the type of modification. The sum of these modifications determines the net effect on gene transcription. b DNA methylation is believed to silence or repress the transcription of DNA information. On the other hand, histone acetylation generally promotes gene transcription. Top diagram: Methylation (M) of the DNA and a lack of acetylation (A) on histone tails usually causes condensation of chromatin, blocking gene transcription (a). Bottom diagram: DNA demethylation (open red ovals) and histone acetylation (A) can lead to opening of the chromatin and gene transcription (b). Histone methylation can have a more complex effect on transcription. The number and location of sites on the histone that are methylated (note different sites methylated and demethylated on the histone tail in the top and bottom diagrams) can exert different influences on the chromatin structure. Histone phosphorylation and ubiquitination are also complex mechanisms, and the effects of alcohol on these processes are not well understood