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Correspondence should be addressed to Dominik Gaweł; dominik.gawel@gmail.com

Received 25 October 2017; Revised 14 March 2018; Accepted 19 March 2018; Published 29 April 2018

Academic Editor: Volker Rasche

Copyright © 2018 Dominik Gaweł et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The study introduces a novel method for automatic segmentation of vertebral column tissue from MRI images. The paper
describes a method that combines multiple stages of Machine Learning techniques to recognize and separate different tissues
of the human spine. For the needs of this paper, 50 MRI examinations presenting lumbosacral spine of patients with low back
pain were selected. After the initial filtration, automatic vertebrae recognition using Cascade Classifier takes place. Afterwards
the main segmentation process using the patch based Active Appearance Model is performed. Obtained results are interpolated
using centripetal Catmull–Rom splines. The method was tested on previously unseen vertebrae images segmented manually by
5 physicians. A test validating algorithm convergence per iteration was performed and the Intraclass Correlation Coefficient was
calculated. Additionally, the 10-fold cross-validation analysis has been done. Presented method proved to be comparable to the
physicians (FF = 90.19 ± 1.01%). Moreover results confirmed a proper algorithm convergence. Automatically segmented area
correlated well with manual segmentation for single measurements (𝑟 = 0.8336) and for average measurements (𝑟 = 0.9068) with
𝑝 = 0.05. The 10-fold cross-validation analysis (FF = 91.37 ± 1.13%) confirmed a good model generalization resulting in practical
performance.

1. Introduction

Pathology of the intervertebral disk is one of the common
causes of pain in the lumbar spine. In 40% of cases, pain of
the lumbosacral spine is diagnosed as a discogenic [1]. What
is more, 80% of the general population will have or already
have had pain of the lumbosacral spine [2–4], in 5–10% of
them a chronic pain develops [1, 5].

In contemporary diagnostics Magnetic Resonance Imag-
ing (MRI) is the modality of choice for intervertebral disc
visualization. Magnetic Resonance Imaging, for almost all
spinal disorders, provides robust images of the spine [6] with
high quality soft-tissue visualization, much more detailed
than results obtained with other modalities [7]. The addi-
tional advantage of the MRI is the lack of radiation.

Automatic tissue segmentation from Magnetic Reso-
nance Imaging data is a challenging task, because the quality

of the data affects the process; what is more, the differences
between medical facilities, used protocols, and imaging
machines force the necessity of universality.

Till now multiple approaches have been presented. Dong
andZheng in [8] divided the common solutions intomethods
that rely on graphical model [9], probabilistic model [10],
watershed algorithm [11], atlas registration [12], graph cuts
[13], Statistical Shape Model [14], anisotropic oriented flux
[15], and random forest regression and classification [16].

The methods mentioned above are based on discrete
classification returning a limited and inaccurate information
about the tissue.The paper describes amethod that combines
multiple stages of Machine Learning (ML) [17] techniques to
recognize and separate different tissues of the spine.

The objective of this study is to introduce a novel method
for automatic segmentation of vertebral column tissue from
MRI images.
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2. Materials and Methods

2.1. The Data. For the needs of this paper 50 MRI exami-
nations presenting lumbosacral (LS) spine of patients with
low back pain were selected. The examinations were made
with Siemens MAGNETOM Spectra 3T MR device. For
vertebral body recognition T1 TSE (Turbo Spin Echo) Sagittal
sequences, with Echo Time 9.3ms and Repetition Time
ranging from 550ms to 700ms, were chosen. The image sets
consisted of 17 to 31 images with 4mm slice thickness, 4.8mm
slice distance, and 384 × 384 px resolution.

2.2. General Procedure for Segmentation. Presented solution
is based on well-known Machine Learning (ML) [18] tech-
niques combining Cascade of Boosted Classifiers [19–21]
with patch based Active Appearance Model (AAM) [22, 23]
algorithm and Principal Component Analysis (PCA) [24]
(Figure 1).

At the beginning DICOM images are read. After that
initial filtration is made to increase the quality of the data.
Afterwards automatic vertebrae recognition using Cascade
Classifier [21, 25] takes place. After the initial recognition
the main tissue segmentation process is made using the
patch based Active Appearance Model [22, 23]. Combined
information about location, shape, and appearance provides
a high quality model used for search and extraction of
desired tissue. The results are afterwards interpolated using
centripetal Catmull–Rom splines [26–28].

2.3. Initial Filtration. Due to low quality of the data (low
resolution, intensity inhomogeneity, and high noise), initial
filtration is needed. At the beginning the images are being
resized to increase resolution. For the needs of presented
method a high-resolution cubic spline has been chosen [29]
(Figure 2).

After that the developed intensity inhomogeneity (IIH)
correction method is performed. The method is based on
recalculating local intensities in such a way to fit the global
exponential function defined from the boundary fat-skin
tissue intensity contrast. After calculations a nonlinear selec-
tive Gaussian Blur [30] using the same global exponential
function for parameterization is performed to remove the
noise amplified through the correction process. As a result
of this method, an intensity inhomogeneity correction is
achieved (Figure 3).

2.4. Preliminary Vertebrae Recognition. At the beginning, to
achieve accurate segmentation results and reduce number of
MRI examinations needed for training, vertebrae recognition
is made. The goal of this action is to extract each vertebra
from the whole image containing spineMRI examination. To
achieve this theMachine Learning [18] training of Cascade of
Boosted Classifiers [19–21] based on extended set Haar-like
features [31] was made.

The vertebrae recognition consists of two major stages:
training the classifier and vertebrae detection. Both were
done using OpenCV library [25]. For the training two types
of information are needed: positive examples presenting

desired object that one is looking for and negative examples
presenting background. To prepare the data, special software
allowing fast cutting, artificial data generation, and automatic
background reconstruction was developed. For the training
process 50 MRI examinations were used. From those exami-
nations over 1000 vertebrae images were extracted manually
and used for automatic creation of 10,000 artificial positive
examples with Thin Plate Splines (TPS) transformations
[32, 33]. Afterwards negative examples were reconstructed
from the same examinations by covering previously cut out
vertebrae using Image Inpainting method [34].

Both positive and negative examples are afterwards used
for classifiers training based on the AdaBoost algorithm [35].
Multiple weak classifiers are then combined in a cascade
resemblingDecisionTree [36] creating a strong classifier [37].
To achieve best performance, after the recognition, additional
size constraints were introduced, removing the false positive
hits. Obtained model allows proper vertebrae recognition
(Figure 4).

2.5. Tissue Segmentation. After the vertebrae recognition the
main tissue segmentation is made. The solution is based
on Active Appearance Model (AAM) [22, 23, 38] algorithm
and combines a Statistical Shape Model based on Principal
Component Analysis [39], with a gray-level Appearance
Model. The method focuses on recognizing the predefined
characteristic features from previously extracted vertebrae
images by combining the information about each pretrained
characteristic feature appearance with the information about
features’ mean position, their arrangement, and possible
deviation. Similarly to preliminary vertebrae recognition, the
tissue segmentation procedure consists of two stages: train-
ing and detection; however, contrary to previously trained
classifiers, the built model is used for recognition of small
patches instead of a whole vertebra. Each image used for the
training originates from the prepared vertebrae database and
was previously manually labeled by the group of five experts
(physicians trained in MRI images assessment) with 16 char-
acteristic points corresponding to vertebra features. Intro-
duced information is used for building Point Distribution
Model and creating training examples for the Appearance
Model. The Point Distribution Model is used in a PCA [39]
analysis to obtain the Shape Model containing information
about the mean shape, eigenvectors, and eigenvalues. The
positive and negative training examples are used for training
to obtain the Appearance Model. Trained AAM model is
afterwards used for spine tissue detection and classification.
The detection procedure starts with an initial guess based on
a perturbed ground truth shape. For this study a patch based
AAM approach [22, 23, 38] has been chosen, representing
the appearance of features as a rectangular patches distincted
around each landmark. Finally optimization of the cost
function is solved by Lucas–Kanade Optimization [40, 41]
method with Wiberg Inverse Compositional algorithm [42–
44] (Figure 5).

2.6. Shape Interpolation. Automatically extracted 16 feature
points for each vertebra image visible in theMRI examination
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Figure 1: Flow chart of presented method. The solution is based on Machine Learning techniques combining Cascade of Boosted Classifiers
with patch based Active Appearance Model and Principal Component Analysis.
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(a) (b)

Figure 2: (a) Magnified image presenting sagittal slice of a single vertebra extracted from the input data. (b) The same image after initial
resizing using a high-resolution cubic spline.

(a) (b)

Figure 3: Initial filtration by recalculating local intensities to fit the global exponential function defined from boundary fat-skin tissue
intensity contrast. (a) Image before IIH compensation. (b) Image after IIH compensation.

(a) (b)

Figure 4: Vertebrae recognition using Cascade of Boosted Classifiers based on extended set of Haar-like features. Classifiers training based
on the AdaBoost algorithm. (a) Initial image. (b) Positively detected vertebrae marked with bounding boxes for visualization.
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(a) (b) (c)

Figure 5: Example of landmark localization results for three different slices. (a–c) Ground truth shape, initial guess, and final result.

(a) (b) (c)

Figure 6: Information between the points interpolated with centripetal Catmull–Rom splines, ensuring C1 continuity, proper tightness
with no self-intersubsubsections, and knot parameterization, leaving an area for further curve optimization. (a–c) Examples of a lateral,
intermediate, and central part of the vertebral body.

are afterwards used for spine tissue segmentation. The infor-
mation between the points is interpolated with centripetal
Catmull–Rom Splines [26–28] (Figure 6), ensuring C1
continuity, proper tightness with no self-intersubsubsections,
and knot parameterization, leaving an area for further curve
optimization.

3. Results

The method was tested on a set of 50 previously unseen ver-
tebrae images. The spine tissue was manually segmented by 5
physicians and compared withMachine Learning results. For
the numerical evaluation three measures were used [45–47]:
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Table 1: Comparison (percentage) of True Positive Fraction, False Negative Fraction, and False Fraction values and their standard deviations
for automatically segmented data (significance level 𝛼 = 0.05). 𝜎TPF: standard deviation for True Positive Fraction, 𝜎FNF: standard deviation
for False Negative Fraction, 𝜎FF: standard deviation for False Fraction.

Algorithm TPF FNF FF 𝜎TPF 𝜎FNF 𝜎FF
WIC 92.46 ± 1.11 7.54 ± 1.11 90.04 ± 1.20 4.02 4.02 4.31
SIC 92.07 ± 1.23 7.93 ± 1.23 89.99 ± 1.30 4.45 4.45 4.69
POIC 89.51 ± 1.93 10.49 ± 1.93 85.89 ± 1.95 6.97 6.97 7.04
AIC 92.47 ± 1.10 7.53 ± 1.10 90.06 ± 1.21 3.95 3.95 4.37
MAIC 92.33 ± 1.10 7.67 ± 1.10 90.00 ± 1.20 3.97 3.97 4.33

True Positive Fraction (TPF) (1), False Negative Fraction
(FNF) (2), and False Fraction (FF) (3):

TPF (True Positive Fraction) = 𝐴TP
𝐴𝑇
󳨀→ Sensitivity, (1)

where true positive area 𝐴TP = 𝐴𝑆 ∩ 𝐴𝑇, 𝐴𝑇 is a
manually segmented (by an expert) tissue area and 𝐴𝑆 is an
automatically segmented (by a computer) area.

FNF (False Negative Fraction) = 𝐴FN
𝐴𝑇
󳨀→

Specificity,
(2)

where false negative area 𝐴FN = 𝐴𝑇 − 𝐴𝑆.

FF (False Fraction) = 1 − 𝐴FP + 𝐴FN
𝐴𝑇

󳨀→ Accuracy, (3)

where false positive area 𝐴FP = 𝐴𝑆 − 𝐴𝑇.
To achieve better performance five different optimization

algorithms, available in Menpo Framework [22, 38], were
tested.

Only certain Inverse Compositional algorithms [38, 41–
43, 48–52] were chosen to be tested: Wiberg Inverse Compo-
sitional (WIC) [38, 53–55] algorithm, Simultaneous Inverse
Compositional (SIC) [49, 52] algorithm, Project-Out Inverse
Compositional (POIC) [41] algorithm, Alternating Inverse
Compositional (AIC) [42, 48] algorithm, andModifiedAlter-
nating Inverse Compositional (MAIC) [42, 48] algorithm.
Three algorithms (WIC, AIC, and MAIC) achieved almost
identical results (Table 1) (Figures 7, 8, and 9). Because of the
best stability and lowest standard deviation (Table 1) Wiberg
Inverse Compositional algorithm was chosen for further
calculations.

What is more, to achieve reliable results, a mean value
obtained from 100 procedure passes with 25 algorithm iter-
ations each was computed and compared to results obtained
manually by five experts (Table 2). The False Fraction is
a general segmentation evaluation measure and is defined
by the difference between manually segmented area and
automatically segmented area, divided by the total area
resulting from the manual segmentation. In this case the
AAM algorithm (FF = 90.19 ± 1.01%) proved to be almost
identical to expert 5, has almost the lowest standard deviation
(𝜎FF = 3.64%), and is almost unnoticeably worse than other

0 5 10 15 20 25
Iteration

WIC
SIC
POIC

MAIC
AIC

76

78

80

82

84

86

88

90

92

Fa
lse

 F
ra

ct
io

n 
(%

)

Figure 7: Comparison (percentage) of False Fraction mean values
for subsequent interactions of automatic segmentation for different
optimization algorithms.
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values for subsequent interactions of automatic segmentation for
different optimization algorithms.
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Table 2: Comparison (percentage) of True Positive Fraction, False Negative Fraction, and False Fraction for automatically segmented data
using presented method andmanually segmented data from each expert (significance level 𝛼 = 0.05). To achieve reliable results a mean value
obtained from 100 procedure passes with 25 algorithm iterations each is presented. 𝜎TPF: standard deviation for True Positive Fraction, 𝜎FNF:
standard deviation for False Negative Fraction, 𝜎FF: standard deviation for False Fraction.

TPF FNF FF 𝜎TPF 𝜎FNF 𝜎FF
Computer 92.28 ± 0.95 7.72 ± 0.95 90.19 ± 1.01 3.42 3.42 3.64
Expert 1 96.17 ± 0.92 3.83 ± 0.92 91.67 ± 1.27 3.32 3.32 4.58
Expert 2 95.13 ± 0.83 4.87 ± 0.83 92.11 ± 1 2.98 2.98 3.60
Expert 3 97.74 ± 0.43 2.26 ± 0.43 91.09 ± 1.33 1.56 1.56 4.78
Expert 4 97.56 ± 0.37 2.44 ± 0.37 91.49 ± 1.47 1.33 1.33 5.32
Expert 5 92.46 ± 1.33 7.54 ± 1.33 90.22 ± 1.31 4.81 4.81 4.74
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Figure 9: Comparison (percentage) of False Negative Fraction
mean values for subsequent interactions of automatic segmentation
for different optimization algorithms.

experts. False Negative Fraction provides information about
percentage of nonselected pixels classified by the investigators
as a spine tissue and is an amount of manually segmented
area not indicated by the automatic segmentation, divided by
the total area resulting from the manual segmentation. The
AAM has the highest False Negative Fraction (FNF = 7.72 ±
0.95%, 𝜎FNF = 3.42%) of all investigators. The True Positive
Fraction provides information about percentage of properly
segmented pixels and is an amount of automatically seg-
mented area consistent with manual segmentation, divided
by the total area resulting from the manual segmentation.
The AAM method has the True Positive Fraction value of
TPF = 92.28±0.95%and standard deviation of 𝜎TPF = 3.42%.

What is more, a test validating algorithm convergence
by comparing automatic segmentation per iteration results
with manual segmentation results was performed. A single
algorithm pass with 25 iterations for a set of 50 previously
unseen vertebrae images was executed and a change of
TPF, FNF, and FF values for each iteration was calculated
(Table 3).The True Positive Fraction increases every iteration
(Figure 10), while the False Negative Fraction decreases
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Figure 10: Comparison of True Positive Fraction for every iteration
of automatic segmentation using presented method and manually
segmented data from each expert. The True Positive Fraction pro-
vides information about percentage of properly segmented pixels.
The TPF increases every iteration confirming proper functioning of
presented algorithm—its convergence to manually segmented data.

(Figure 11) simultaneously leading the False Fraction to
increase per iteration (Figure 12), confirming proper func-
tioning of presented algorithm—its convergence to manually
segmented data.

The Intraclass Correlation Coefficient (ICC) was calcu-
lated to evaluate the consistency of the vertebral bodies area
determined by the experts and the computer (Tables 4 and 5).
The high ICC results for single measurements (𝑟 = 0.8336)
and for average measurements (𝑟 = 0.9068) with the 𝑝 =
0.05 confirmed that the automatically andmanually obtained
segmentation results are comparable.

Additionally, the 10-fold cross-validation [56–58] analysis
has been done. The database of 1000 training images was
divided into equal parts and tested iteratively 10 times by
training the model from 90% of images and performing a
test on the remaining 10% with ground truth annotations.
The ground truth landmarks have been used for shape
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Table 4: The Intraclass Correlation Coefficient (ICC) of the vertebral bodies area determined by experts and computer, for single
measurements with the 𝑝 = 0.05.

Computer Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Computer 0.8815 0.9153 0.7368 0.7210 0.9134
Expert 1 0.8815 0.9442 0.8761 0.8622 0.8685
Expert 2 0.9153 0.9442 0.8721 0.8695 0.9266
Expert 3 0.7368 0.8761 0.8721 0.9586 0.7830
Expert 4 0.7210 0.8622 0.8695 0.9586 0.7670
Expert 5 0.9134 0.8685 0.9266 0.7830 0.7670

Table 5: The Intraclass Correlation Coefficient (ICC) of the vertebral bodies area determined by experts and computer, for average
measurements with the 𝑝 = 0.05.

Computer Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Computer 0.9370 0.9558 0.8485 0.8379 0.9547
Expert 1 0.9370 0.9713 0.9339 0.9260 0.9296
Expert 2 0.9558 0.9713 0.9317 0.9302 0.9619
Expert 3 0.8485 0.9339 0.9317 0.9789 0.8783
Expert 4 0.8379 0.9260 0.9302 0.9789 0.8681
Expert 5 0.9547 0.9296 0.9619 0.8783 0.8681
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Figure 11: Comparison of FalseNegative Fraction for every iteration
of automatic segmentation using presented method and manually
segmented data from each expert. The FNF provides information
about percentage of nonselected pixels classified by the investigators
as a spine tissue. The FNF decreases every iteration confirming
proper functioning of presented algorithm—its convergence to
manually segmented data.

interpolation usingCatmull–Rom splines and comparedwith
automatic segmentation results using TPF, FNF, and FF
measures (Table 6). The False Fraction mean value of 91.37 ±
1.13%with standard deviation𝜎FF = 5.76%confirmed a good
model generalization to an independent dataset and resulting
practical performance.
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Figure 12: Comparison of False Fraction for every iteration of
automatic segmentation using presented method and manually
segmented data from each expert. The FF is a general segmentation
evaluation measure. The FF increases every iteration confirming
proper functioning of presented algorithm—its convergence to
manually segmented data.

4. Discussion

Low resolution of presented data, high noise, and non-
homogeneous information about the tissues enforced the
increasing of the quality of input data by initial filtration.
From multiple interpolation methods [29, 59] widely used
for image resampling, a high-resolution cubic spline has been
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Table 6: 10-fold cross-validation comparison (percentage) of True Positive Fraction (TPF), False Negative Fraction (FNF), and False Fraction
(FF) for automatically segmented data using presented method and ground truth annotations (significance level 𝛼 = 0.05). 𝜎TPF: standard
deviation for True Positive Fraction, 𝜎FNF: standard deviation for False Negative Fraction, 𝜎FF: standard deviation for False Fraction.

𝑘-fold TPF FNF FF 𝜎TPF 𝜎FNF 𝜎FF
1 95.72 ± 1.27 4.28 ± 1.27 90.12 ± 1.38 6.50 6.50 7.02
2 97.39 ± 0.77 2.61 ± 0.77 91.29 ± 1.07 3.91 3.91 5.47
3 95.73 ± 0.86 4.27 ± 0.86 91.18 ± 1.72 4.41 4.41 8.75
4 95.13 ± 0.85 4.87 ± 0.85 91.98 ± 0.98 4.35 4.35 5.00
5 95.00 ± 0.85 5.00 ± 0.85 91.32 ± 1.01 4.32 4.32 5.14
6 96.18 ± 0.76 3.82 ± 0.76 90.87 ± 0.94 3.88 3.88 4.80
7 96.35 ± 0.82 3.65 ± 0.82 92.13 ± 1.06 4.17 4.17 5.42
8 96.14 ± 0.69 3.86 ± 0.69 92.20 ± 0.95 3.50 3.50 4.82
9 96.03 ± 0.71 3.97 ± 0.71 92.09 ± 0.98 3.64 3.64 5.02
10 93.56 ± 1.10 6.44 ± 1.10 90.53 ± 1.21 5.60 5.60 6.17
Mean 95.72 ± 0.87 4.28 ± 0.87 91.37 ± 1.13 4.43 4.43 5.76

Figure 13: Discrete STL 3Dmodel created manually from detected feature points (landmarks).The pathology of vertebrae and intervertebral
disc is clearly visible.

chosen to increase the resolution of the input data, because
of its good high-frequency response and high-frequency
enhancement. What is more, a novel method of intensity
inhomogeneity correction useful for sagittal MRI spine
images has been presented. In last years, multiple methods
used for intensity inhomogeneity correction emerged [60,
61]; however, they were mostly used for and tested with brain
MRI scans. Because of a different application, segmentation
of bone tissue instead of brain tissue, an additional method of
initial filtration was developed.

For MRI images, a robust method for spine segmentation
was prepared. The procedure combined well-known and
widely tested Machine Learning methods [18]: Cascade of
Boosted Classifiers [19–21] based on extended set Haar-like
features [31] for preliminary vertebrae detection, with patch
based Active Appearance Model [22, 23, 38] and Principal
Component Analysis [39] for precise tissue segmentation.
Usage of feature localization method and interpolation of the
resulting information with centripetal Catmull–Rom splines
[26, 27] omitted the problem of low quality. Due to the
nature of Catmull–Rom splines [28] further optimization can

be done to achieve better interpolation results. The paper
[62] presents multiple recent methods for intervertebral disc
segmentation, which can be treated as a similar task, includ-
ing Machine Learning and deep learning based approaches.
The segmentation results presented in the paper [62] were
measured with dice overlap coefficients and varied from
81.6% to 92% for different methods. Comparing those results
with obtained segmentation and generalization results of
90.19% and 91.37%, one can conclude that presented AAM
approach provides a good segmentation performance and
moreover can be applied for intervertebral discs localization
and segmentation.

In the future, automatically defined landmark localiza-
tions could be used for automatic creation of a discrete
(Figure 13) and continuous (Figure 14) 3D spine models,
which can be easily used in Finite Element Analysis [63–65],
contrary to standard voxel representation.

Obtained three-dimensional model (Figures 13 and 14)
contains information about the size and shape of the inter-
vertebral disk and the adjacent vertebral bodies. Based on
it, one can determine morphology of the intervertebral
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Figure 14: Continuous NURBSmodel created manually from detected feature points (landmarks), easily convertible to Finite Element mesh.
The pathology of vertebrae and intervertebral disc is clearly visible.

disk including direction, dimensions, and volume of the
herniation of intervertebral disc, giving the clinicians a tool
for better understanding of the pathology.
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