Skip to main content
. Author manuscript; available in PMC: 2018 May 13.
Published in final edited form as: Science. 2018 Mar 2;359(6379):eaao0185. doi: 10.1126/science.aao0185

Fig. 2. Choosing experiments to accelerate collective discovery.

Fig. 2

(A) The average efficiency rate for global strategies to discover new, publishable chemical relationships, estimated from all MEDLINE-indexed articles published in 2010. This model does not take into account differences in the difficulty or expense of particular experiments. The efficiency of a global scientific strategy is expressed by the average number of experiments performed (vertical axis) relative to the number of new, published biochemical relationships (horizontal axis), which correspond to new connections in the published network of biochemicals co-occurring in MEDLINE-indexed articles. Compared strategies include randomly choosing pairs of biochemicals, the global (“actual”) strategy inferred from all scientists publishing MEDLINE articles, and optimal strategies for discovering 50 and 100% of the network. Lower values on the vertical axis indicate more efficient strategies, showing that the actual strategy of science is suboptimal for discovering what has been published. The actual strategy is best for uncovering 13% of the chemical network, and the 50% optimal strategy is most efficient for discovering 50% of it, but neither are as good as the 100% optimal strategy for revealing the whole network. (B) The actual, estimated search process illustrated on a hypothetical network of chemical relationships, averaged from 500 simulated runs of that strategy. The strategy swarms around a few “important,” highly connected chemicals, whereas optimal strategies are much more even and less likely to “follow the crowd” in their search across the space of scientific possibilities. [Adapted from (15)]