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Abstract

Emotions involve many cortical and subcortical regions, prominently including the amygdala. It 

remains unknown how these multiple network components interact, and it remains unknown how 

they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a 

framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-

fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal 

discovery). We outline a research program for investigating human emotion with these new tools, 

and provide initial findings from two large resting-state datasets as well as case studies in 

neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use 

causal discovery methods on fMRI data to infer causal graphical models of how brain regions 

interact, and then to further constrain these models with direct stimulation of specific brain regions 

and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach 

could yield anatomical hypotheses about brain connectivity, motivate rational strategies for 

treating mood disorders with deep brain stimulation, and could be extended to animal studies that 

use combined optogenetic fMRI.
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Introduction

How do networks of brain structures generate human emotions? Affective neuroscience has 

documented a wealth of data, primarily from activations observed in neuroimaging studies in 

response to emotional stimuli. This has provided us with an inventory of brain structures that 

participate in emotions, but little knowledge of their precise causal role. Studies in humans 

with direct electrical stimulation of structures such as the amygdala have shown causal links 

between brain regions and emotional responses, but these additional findings still leave us 

with scant knowledge of how emotions are implemented at the network level in the brain. 

The question is pressing for translational reasons as well. Deep-brain stimulation is being 

explored for a large number of neurological and psychiatric diseases, but with quite variable 

success. There are clear case studies of remarkable amelioration of depression, for instance

—but only in some cases, limiting the generalizability of the results (Kennedy and al, 2011; 

Mayberg et al., 2005).

We think of emotions as functional, central brain states defined by their cause-and-effect 

relationships with other brain processes, and with stimuli and behaviors. Which stimuli 

reliably cause emotions? How do emotions in turn cause behavioral responses? And -- the 

topic of this paper -- how do different brain regions causally interact with one another during 

emotion processing? The basic problem can be sketched in relation to the amygdala as 

schematized in Figure 1. The amygdala is activated by threat-related stimuli, lesions of the 

amygdala impair threat-related responses and (in humans) aspects of the experience of fear, 

and stimulation of the amygdala produces defensive behaviors (very roughly). Yet we do not 

understand the causal mechanisms that are responsible for these observations. Clearly, it is 

meaningless to say that “fear is in the amygdala”. The amygdala helps to orchestrate the 

many different causal effects of a fear state. But to understand these effects we need to map 

the causal relations between the amygdala and other brain regions, through which such 

effects are mediated. We know almost nothing about these causal relations in the human 

brain.

Studies in animals have begun to dissect the circuits responsible for processing emotion, and 

of course offer methodological tools that are unavailable in humans. For instance, 

experimental manipulation of brain activity in rodents and monkeys has provided insights 

into the causal roles of particular circuits, such as the extended amygdala (Amaral and 

Adolphs, 2016; Shackman and Fox, 2016) and the hypothalamus (Lin et al., 2011). 

Electrophysiological measures permit single-neuron resolution in the recordings as well. 

And behavioral dependent measures, while they need to be interpreted carefully, have given 

us strong evidence for how these specific neuronal populations can cause specific emotional 

behaviors related to fear and aggression. One main limitation with these animal studies has 

been achieving a whole-brain field-of-view. Although specific circuits can be manipulated, 

e.g. through optogenetic or chemogenetic activation, the downstream effects are typically 

measured in only a very small subset of brain regions. One exciting future combination of 

methods is concurrent optogenetic stimulation with whole-brain fMRI (Lee et al., 2010; 

Liang et al., 2015), or with ultrasound imaging. This source of results will be a critical 

complement to the human studies in the future (see Discussion). However, the homology to 

human emotions remains another main limitation (Adolphs and Anderson, 2018).
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Elucidating the causal networks that underlie emotion processing is one of the most 

important but also most difficult challenges faced by affective neuroscience. It is important 

because only an account at the level of causal mechanisms can really explain brain 

processing, and because only such an account can yield insights that allow us to manipulate 

brain function (for instance, with interventions aimed to treat mood disorders). Yet it is 

difficult because most of the data from the human brain are correlational in nature, making it 

unclear how to infer causality from typical neuroimaging and electrophysiological studies. 

Here we demonstrate the promise of a new technique – concurrent electrical stimulation and 

fMRI – and a new method in causal discovery – the fast greedy equivalence search – to 

obtain large-scale causal models that describe how different brain regions interact. We begin 

by briefly reviewing some of the findings from affective neuroscience, with an emphasis on 

the amygdala, and then outline the logic of causal discovery, before presenting our approach 

and pilot data to support it.

Emotion and the amygdala

Data from lesion studies and fMRI in humans, and from a range of approaches in animals, 

consistently implicate the amygdala (Figure 2), the medial prefrontal cortex, the insula, the 

hypothalamus, and the periaqueductal gray in emotions. These structures function as 

components of considerably more distributed systems, and attempts to localize particular 

emotions (fear, sadness, etc.) to any one of these structures have been largely unsuccessful 

(Lindquist et al., 2012), even though specific emotions can be classified from distributed 

activation patterns in neuroimaging studies (Kragel and LaBar, 2015; Nummenmaa and 

Saarimäki, 2017; Saarimäki et al., 2015; Wager et al., 2015). While debates about how to 

interpret the data thus far remain (Adolphs, 2017a, b; Barrett, 2017a, b), neuroimaging and 

electrophysiological findings have supported a picture of emotion states implemented by 

distributed cortical and subcortical circuits. A large open question is thus how to understand 

the functional role played by specific brain structures: what exactly does a structure such as 

the amygdala contribute to processing fear (or any other emotion) and at what point in the 

distributed processing of that emotion does it exert meaningful causal effects on the other 

components of the network?

The amygdala together with the bed nucleus of the stria terminalis (Fox and Shackman, 

2017) appears to serve a role as an organizing center in these circuits, coordinating the 

multiple cognitive, autonomic, and behavioral effects of an emotion (Davis, 1992; Whalen 

and Phelps, 2009). Both the known structural connectivity of the amygdala (in monkeys and 

rodents) and structure-function relationships in particular tasks, such as Pavlovian fear 

conditioning, strongly support this view (Figure 3). Yet the direct evidence for causal 

relationships is difficult to obtain in humans, and remains sparse even in animals.

While lesion studies argue for the necessary role of a brain structure, they do not elucidate 

the neural mechanisms through which the lesioned tissue contributes to normal function. 

Lesions of the amygdala, in animals as well as humans (Amaral and Adolphs, 2016) result in 

impairments in fear processing. In humans, these can include strikingly selective deficits in 

the recognition of fear from facial expressions (Adolphs et al., 1994) and in the conscious 

experience of fear to exteroceptive threats (Feinstein et al., 2011) but not to certain 
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interoceptive stimuli (Feinstein et al., 2013). However, studies in monkeys have shown that 

the causal consequence of an amygdala lesion on the brain is extremely complex, including 

widespread network changes in many other regions (Grayson et al., 2016). So although 

amygdala lesions have effects on emotional behaviors and conscious experience, 

understanding the causal mechanisms explaining this effect require additional measures. 

Indeed, some current theories of the conscious experience of emotion argue that the 

amygdala’s role in feelings and emotions is mediated entirely through cortical structures 

(LeDoux and Brown, 2017).

Similarly, lesions of the ventromedial prefrontal cortex (vmPFC) can lead to alterations in 

emotional behavior, such as impaired autonomic responses (Bechara et al., 1996), 

dysregulation of anger (Koenigs and Tranel, 2007), and atypical moral judgment (Koenigs et 

al., 2007). Once again, it is difficult from this to infer the causal mechanisms, which may 

involve additional brain regions with which the vmPFC is connected. For instance, lesions of 

the vmPFC result in abnormal activation of the amygdala when lesion patients undergo 

fMRI (Motzkin et al., 2015).

Thus almost all of the evidence for the causal mechanisms behind emotions is very indirect 

and tenuous. It derives from a combination of structural connectivity studies in animals (the 

basis for most of Figure 3), piecemeal assembly of evidence across very different studies in 

the literature (much of the basis of Figure 2), or flawed inference of causation from 

correlation (nearly everything based on neuroimaging alone, or electrophysiology alone). 

While this problem is well known, it is also well ignored, in the hope that sheer 

accumulation of correlative data of various kinds could in and of itself provide us with an 

understanding of the causal mechanisms.

Here we describe a research program that could take us from these heterogeneous 

beginnings to a principled approach for investigating causal architecture for emotions. 

Which brain regions are involved, how are they causally related to one another, and how do 

they in turn cause particular components of emotions? We suggest (and will show below) 

that parts of this broad and ambitious aim can in fact already be addressed with human 

neuroimaging data alone, using a novel causal discovery approach which we detail here. 

Parts of the aim also require new methods that make possible direct causal perturbation in 

the human brain, which we have recently developed (Oya et al., 2017). We provide initial 

results and a workflow for generating causal models from both of these types of data.

Causal Discovery

The range of methods for analyzing brain function at the network level vary from essentially 

descriptive (such as looking at correlations between regions, i.e., standard functional 

connectivity approaches) to methods for inferring parameters of pre-specified models (such 

as dynamic causal modeling (DCM)(Friston, 2011; Friston et al., 2013)). All of these have 

tradeoffs: standard “functional connectivity” from correlations does not provide a causal 

model; DCM is limited by our knowledge of the physiological basis of the BOLD response, 

the lack of a search algorithm over models, and poor scalability. In its classical 

implementation, for instance, DCM can only test very simple models (10 – 20 nodes) that 

are too restrictive for understanding realistic whole-brain networks (Smith, 2012; Smith et 
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al., 2011). It should be noted that there are continuous improvements, such as the novel 

regression-DCM approach, which has been scaled to 66 regions with 300 free parameters 

(Frässle and al, 2015; Frässle and al., 2017). But the primary challenge for DCM remains 

unsolved: how does one constrain reverse inference and search efficiently over candidate 

models given measured data? The number of candidate DCM models is enormous even for a 

small number of nodes, and there exists no efficient algorithm to search over all of them. 

The sweet spot, we believe, lies in the middle between standard functional connectivity 

approaches and physiologically-based models like DCM: causal modeling that takes 

advantage of the strengths of current BOLD-fMRI, and that enables the integration of 

experimental and observational data.

Causal models can be thought of as generative models that make predictions about what we 

might observe and about how we might achieve certain effects through experimental 

manipulation (e.g., brain stimulation to treat a mood disorder) (Pearl, 2009; Spirtes et al., 

2000b). The usual way to depict the causal relationships between variables (causes from one 

brain region to others, in our case) is with a drawing called a causal graph. Figure 3 above 

could be interpreted this way: the amygdala causes effects in the brainstem and 

hypothalamus which in turn cause effects in brain and behavior that are our dependent 

measures. Direct causal connections are taken to be relative to the set of variables depicted, 

thus a chain of three variables A→B→C without a direct arrow from A to C would indicate 

that B causally screens off A from C, that is, B completely mediates the causal effect of A 

on C. In terms of brain structures, we would think of this as region A providing inputs to B 

which in turn provides inputs to C, but without any direct connections from A to C.

Temporal order is often taken to be fundamental to causality, but for causal discovery it can 

be misleading. Intuitively, we would expect the cause A to precede its effect B, but if both A 

and B are effects of a common cause C, then B may well take longer to manifest itself than 

A, giving the impression as if A caused B. For causal discovery from fMRI data, actual 

temporal order of action potential events cannot be resolved, since these operate at a 

millisecond range that exceeds the temporal resolution of hemodynamic measures. 

Moreover, if one considered temporal order (which some analyses of BOLD-fMRI indeed 

attempt; (Friston et al., 2013)), one must take into account the interactions between the 

sampling rate and the rate at which the true underlying process operates, as well as regional 

differences in hemodynamic coupling. Appropriate temporal resolution and the absence of 

unmeasured common causes are the key assumptions underlying a valid inference to causal 

relations using Granger Causality (Granger, 1969). Concerns about these, among others, 

suggest that – though it has been used with fMRI data – Granger Causality is not well-suited 

for the causal analysis of fMRI (Smith 2011)(Stokes and Purdon, 2017).

Instead, modern causal discovery algorithms disregard temporal order and use the 

independence structure observed in the data in order to infer the underlying causal structure 

(see (Eberhardt, 2017) for an accessible brief review). The general idea of using the 

independence structure for causal inference goes back to the Principle of Common Cause 

(Reichenbach, 1956): if two variables are dependent, then either one causes the other, or vice 

versa, or there is a common cause of the two variables. Conversely, if two variables are 

independent, then they cannot (in general) be causes of one another or effects of a common 
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cause. The independence and dependence structure found in data can thus be used to 

constrain candidate causal models that would explain the observed data.

The simplest case in which a fully oriented causal structure can be uniquely determined 

from observational data is when there are three variables A, B and C, and A and C are 

probabilistically independent, but A and B, and C and B are dependent. If there are no 

unmeasured confounders, then this independence structure provides a signature that 

uniquely identifies A→B←C as the causal graph connecting the variables. More generally, 

it is well understood how to use the observed independence structure over the variables to 

constrain the underlying causal structure. Even if the causal structure cannot be uniquely 

identified, the set of equivalent causal structures can be identified (the equivalence class 

consists of all causal structures consistent with the observed data). Our results below 

demonstrate the power of this approach, using a new variant of a causal discovery algorithm 

(Ramsey et al., 2016) that scales to large sets of resting-state fMRI data (here, the Human 

Connectome Project dataset and the MyConnectome Project dataset). Our variables (the 

nodes of the causal graph; A,B,C etc.) will be the brain regions into which a whole brain is 

parcellated, and whose causal relations are the question of interest.

It is worth contrasting the results of the causal inference algorithm with purely correlation-

based techniques commonly applied to resting-state fMRI data. If the true causal structure 

has the form A→B←C, then the Pearson correlation matrix will have all non-zero entries 

except for the correlation of A and C. However, the inverse correlation matrix will have no 

non-zero entries, since all partial correlations conditional on all remaining variables are non-

zero; in particular A is not independent of C given B. However, if the true causal structure is 

A→B→C, then all Pearson-correlations will be non-zero, but the partial correlation of A 

and C given B is zero. As the two simple examples above indicate, an adjacency structure 

based on either the Pearson correlation matrix, or on the inverse correlation matrix (partial 

correlation), is not a representation of the causal structure. Causal inference algorithms 

disentangle exactly what inferences can be drawn about the presence and absence of causal 

connections from the independence structure (see also Figure 7).

Another way of inferring causal models is through experimental intervention. Whereas the 

approach above relies on conditional probabilities that are merely observed, such as analysis 

of resting-state fMRI data, experimental intervention corresponds to the conditional 

probabilities produced through what Judea Pearl coined as the “do” operator (Pearl, 2009). 

This is the type of data often sought in animal studies of emotion, for instance through 

optogenetic manipulation of the activity of a node (brain region) with full or partial 

experimental control. This concept also underlies the essence of randomized controlled 

trials: by randomizing subject assignment to treatment group, one is experimentally 

intervening and (in the large sample limit) breaking all confounding causes (Fisher, 1990). 

Once again, we can think of wanting to infer A→B in a brain (with A and B as distinct 

regions of interest) where there are many other possible causes at work. This time we 

experimentally activate A to see if we observe a change in B. To the extent that the 

activation fully controls A, this experimental manipulation amounts to breaking all the 

causal effects that could act on A (all the arrows going into A), in particular those that might 

act as confounders in an observational setting. As we will show in our Results below, in 
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humans this can now be accomplished through the rare opportunity of electrically 

stimulating the amygdala while measuring whole-brain fMRI. While the electrical 

stimulation will not fully control the pattern of activation, it can still help us to infer causal 

relationships with respect to the amygdala: It can help confirm that the relations detected in 

the observational dataset (such as resting-state fMRI) are not spurious, and possibly even 

help to orient causal arrows that could not be oriented from merely observational data.

In sum, the particular causal discovery algorithm that we used takes the observational (e.g., 

resting-state fMRI) data and tries to identify a sparse graph structure that accounts for all of 

the dependencies (the standard Pearson correlation matrix of the data). Our subsequent 

direct electrical stimulation experiments provide a completely different, interventional, set of 

data for comparison, validation, and possible further inference and refinement of the causal 

graph. The final result leverages at least three applications. First, it can be used to generate 

hypotheses, and interpret data, from many fMRI studies: studies that use emotional stimuli 

to produce brain activations, for example, could now be interpreted in terms of a causal 

mechanism implemented among the brain regions that instantiates an emotion state. Second, 

the results could be used to make neuroanatomical predictions: in their strongest 

interpretation they imply actual anatomical connectivity corresponding to the edges in the 

graph. And third, they make predictions about the effects of interventions through deep brain 

stimulation—predictions that could be used for strategically guided treatment of mood 

disorders. All of these are future goals of the framework we present here. The Methods 

below outline our overall approach, the Results provide preliminary findings, and the 

Discussion notes the limitations and hurdles still remaining to be solved (cf. Figure 4).

Methods

Our approach is roughly hierarchical in nature (Figure 4) and consists of three main steps. 

These three steps are based on the analysis of existing resting-state data from large 

databases, comparison to resting-state data from individual neurosurgical patients, and 

comparison with the patient’s graph using direct electrical stimulation-fMRI data from that 

patient. Future extensions beyond the scope of the present paper include (in red): formally 

integrating information from the large datasets as prior constraints for analysis of each 

patient’s data; comparing, and combining, results across multiple patients; and leveraging 

the results into hypotheses that could be tested with additional experiments and additional 

methods—hypotheses about anatomical connectivity, about individual differences, and about 

clinical intervention efficacy.

Step 1: Causal inference from observational resting-state fMRI data with a large number of 
samples

We first searched for causal graphs using observational data alone, taking advantage of large 

publicly available, high quality datasets.

Datasets—We used data from two public repositories, the 1200 subjects release of the 

Human Connectome Project (HCP) (Van Essen et al., 2013) and the MyConnectome Project 

(MCP) (Laumann, 2015; Poldrack, 2015). Both of these feature resting-state fMRI data with 

a large number of samples. They yield largely complementary information: the HCP 

Dubois et al. Page 7

Neuropsychologia. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provides data from almost 1200 subjects, which we can combine to de-emphasize 

individual-subject idiosyncrasies and thus extract a network structure with the highest level 

of generalizability; by contrast, the MCP data comes from a single subject scanned almost 

100 times over the course of one year and allows us to derive a very reliable causal graph at 

the single subject level, with inevitable idiosyncrasies compared to the group-level graph 

derived from the HCP data. Acquisition parameters and preprocessing of the resting-state 

fMRI data in both projects are described in their respective original publications (HCP, 

(Glasser et al., 2013); MCP, (Poldrack, 2015)). Briefly, in the HCP dataset, each subject 

underwent two sessions of resting-state fMRI on separate days, each session with two 

separate 15 minute acquisitions generating 1200 volumes (customized Siemens Skyra 3 

Tesla MRI scanner, TR = 720 ms, TE = 33 ms, flip angle= 52°, voxel size = 2 mm isotropic, 

72 slices, matrix = 104 × 90, FOV = 208 mm × 180 mm, multiband acceleration factor = 8). 

The two runs acquired on the same day differed in the phase encoding direction (left-right 

and right-left), which leads to differential signal intensity especially in ventral temporal and 

frontal structures. We used only the right-left phase encoding dataset, since this optimized 

signal in the right medial hemisphere, enabling the best comparisons to the electrical 

stimulation of the right amygdala in the neurosurgical patient #384 we describe further 

below. For the MCP dataset, a single subject underwent one 10 minute resting-state run, 

generating 518 volumes in each of 89 “production” sessions acquired on separate days 

(Siemens Skyra 3-Tesla MRI scanner, TR = 1,160 ms, TE = 30 ms, flip angle = 63°, voxel 

size = 2.4 mm × 2.4 mm × 2.0 mm, 68 slices, inter-slice distance factor = 20%, axial-coronal 

tilt 30 degrees above AC/PC line, matrix = 96 × 96, FOV = 230 mm FOV, multiband 

acceleration factor = 4). The HCP data was downloaded in its minimally preprocessed form, 

i.e. after motion correction, B0 distortion correction, coregistration to T1-weighted images 

and normalization to MNI space; while the MCP data was downloaded in its fully processed 

form (in native space), including minimal preprocessing and followed by resting-state 

specific denoising as described in (Laumann, 2015): censoring of frames with framewise 

displacement > 0.25 mm; regression of signals from whole brain, white matter and ventricles 

and their derivatives; regression of 24 movement parameters derived by Volterra expansion; 

and bandpass filtering 0.009 < f < 0.08 Hz. For consistency with MCP data, we replicated 

the same denoising pipeline (minus frame censoring) in Python (v2.7) and applied it to the 

minimally preprocessed data from the HCP.

Brain parcellation—The first step in a network analysis of the brain is the definition of its 

nodes (Sporns, 2013). There are two main approaches to defining network nodes in the 

brain: nodes may be a set of overlapping, weighted masks, e.g. obtained using independent 

component analysis (ICA) of BOLD fMRI data (Smith et al., 2013); or a set of discrete, non-

overlapping binary masks, also known as a hard parcellation. Hard parcellations come in 

many flavors, in terms of what data they are based on (anatomical data only, functional data 

only, or multi-modal), and whether they are group-based or individually-derived. 

Parcellating the brain is an area of intense investigation, and significant progress has been 

made in recent years (Glasser et al., 2016; Gordon et al., 2014). We eventually aim to utilize 

the most recent developments in surface-based analysis and multi-modal surface matching 

(MSM) (Robinson et al., 2014), which divides the brain into about 400 regions. (Indeed, a 

future aim would be to use voxelwise data for the analyses we describe below, and to use 
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causal discovery results to aggregate these into larger parcels based on their causal 

connectivity). However, applying these methods to patient data with implanted electrodes is 

difficult because MSM requires several types of data (such as high-resolution anatomical 

scans for precise surface reconstruction, field maps for precise co-registration of functional 

and anatomical data, and companion task and rest scans), which are not always available due 

to clinical constraints. Here, in this proof-of-concept paper, we used a more common 

volumetric parcellation in MNI space that divides the brain into 110 regions, based on the 

classical Harvard-Oxford anatomical atlas (http://www.cma.mgh.harvard.edu/fsl_atlas.html). 

Specifically, we derived maximum probability labels from the probabilistic Harvard-Oxford 

cortical and subcortical atlases distributed with FSL, using a 25% probability threshold for 

label assignment. We omitted one parcel from the Harvard-Oxford atlas, the brainstem, since 

this treats the entire region as a single functional object, a parcellation that we felt was too 

coarse for our purposes. See Supplementary Table S1 for the complete list of parcels we 

used.

Timeseries Extraction and Data Selection—HCP data was already transformed to 

MNI space (the same space as the Harvard-Oxford parcellation that we used) by the minimal 

preprocessing pipeline (Glasser et al., 2013). We derived a gray matter mask for each subject 

using information in ribbon.nii.gz and wmparc.nii.gz (from the individual HCP 

MNINonLinear directories), and restricted Harvard-Oxford parcels to gray matter voxels for 

each subject. For MCP data, MNI-space Harvard-Oxford labels were warped to the 

individual space via the MNI152 T1w template and the coregistered average of all 15 MCP 

T1w anatomical scans (Freesurfer 5.3.0 recon-all pipeline), using a diffeomorphic 

symmetric normalization (SyN) warp as implemented in ANTs 1.2.0 

(antsRegistrationSyN.sh script). Similarly, the warp from the MCP T1w average to a mean 

MCP EPI template was estimated and applied to the Harvard-Oxford labels using ANTs (the 

N-back EPIs were used to construct the mean EPI template, in place of the rsBOLD EPIs, 

because the latter were global mean-subtracted and therefore unusable for registration; this is 

possible because all MCP EPIs are transformed to the same space in the downloaded data). 

The gray matter mask output from the Freesurfer pipeline was used in combination with the 

individual-space Harvard-Oxford atlas labels to restrict ROIs to gray matter voxels. 

Timeseries for all Harvard-Oxford parcels were extracted using the 3dROIstats function 

provided by AFNI 17.2.04 (Cox, 2012).

We generated three datasets from the HCP and MCP data:

Dataset #1: HCP sparsely sampled (HCPs). For this dataset we chose samples sparsely from 

two resting-state fMRI runs with right-left phase encoding (rfMRI_REST1_RL and 

rfMRI_REST2_RL) from each of 880 unique subjects (with complete datasets and relative 

movement root-mean-square less than 0.15mm for both runs; see subject list in 

Supplementary Table S2a), taking one volume every 35th TR (i.e. every 25.2s). This resulted 

in 68 samples per subject, for a total of 59,840 samples. We split this dataset into 11 

completely non-overlapping subsets (80 subjects each) for “horizontal” reliability analysis, 

yielding 5,440 samples per subset. This provides the most general dataset with a large 

number of samples, pooling over a large number of subjects for representativeness, and 
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sampling sparsely to eliminate autocorrelation and thus maximize statistical independence 

between samples. Representativeness across subjects here trades off with the possibility of 

introducing additional dependencies in the data due to the pooling of data from multiple 

subjects. The next dataset therefore focuses on data from a single individual.

Dataset #2: MCP sparsely sampled (MCPs). This dataset chose samples sparsely from 80 

sessions of the MCP (see session list in Supplementary Table S2b), taking one volume every 

22nd TR (i.e. every 25.5s). This resulted in 23 samples per session, for a total of 1,840 

samples. We generated 20 non-overlapping datasets for reliability analysis, by shifting the 

starting volume (note that these datasets are not completely independent from one another 

due to autocorrelation of the fMRI BOLD signal).

Dataset #3: MCP densely sampled (MCPd). This dataset chose all volumes from 80 sessions 

in the MCP yielding a total of 41,440 samples. We split this dataset into 8 non-overlapping 

subsets (10 sessions each) for horizontal reliability analysis, yielding 5,180 samples per 

subset.

Causal discovery algorithm—We used a version of the Fast Greedy Equivalence Search 

(FGES) algorithm for causal discovery (Ramsey et al., 2016), a variant of the better known 

Greedy Equivalence Search (Chickering, 2002) that was optimized to large numbers of 

variables. The algorithm takes as input measurements over a set of variables that one can 

think of as nodes in the causal graph, in this case the mean BOLD signal obtained for each 

region of interest in a parcellated human brain (the 110 parcels provided by the Harvard-

Oxford atlas). FGES produces as output causal graphs that describe inferred direct causal 

connections between any pair of brain regions (the adjacency matrix), and, where possible, 

the orientations of these causal effects, i.e. whether brain region A causes BOLD response in 

brain region B, or vice versa. For any specific output causal graph, one can also estimate the 

strength of each causal connection (the effect size of each edge) using a linear Gaussian 

model. We next describe the algorithm in more detail.

The algorithm is a greedy optimization algorithm that operates in two phases, a forward 

phase in which edges are added to the graph, and a backward phase in which edges are 

removed. Under the assumption that the true causal model is causally sufficient (there are no 

unmeasured common causes), acyclic (there are no feedback cycles) and that the data is 

independent and identically distributed and not subject to sample selection bias, the FGES 

algorithm returns in the infinite sample limit the Markov equivalence class of the true causal 

structure with probability 1. That is, as sample size increases, the output of FGES converges 

towards (a representation of) a set of causal structures that are not distinguishable from the 

true causal structure on the basis of their probabilistic independences. For example, the three 

causal graphs A→B→C, A←B→C and A←B←C together form a Markov equivalence 

class under the given assumptions, since in all three structures A is independent of C given 

B, but no other (conditional) independences hold among the variables. Without experimental 

interventions or further assumptions (e.g. concerning time order or the parametric form) 

these three causal structures cannot be distinguished. In contrast, (as noted earlier in this 

paper) the causal structure A→B←C has a unique independence structure -- it only satisfies 
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that A and C are marginally independent, but no conditional independence -- and therefore 

forms a singleton Markov equivalence class.

The central idea underlying the FGES algorithm is the insight that one can construct a score 

tracking the posterior probability of a causal graph given a dataset such that the score is (i) 

decomposable into local scores for each edge, and (ii) gives the same value for graphs that 

are Markov equivalent. This insight provides the basis for a greedy search method that starts 

with an empty graph over the set of variables and then at each stage determines locally 
whether an edge addition improves the global score over the current causal graph. The edge 

that maximally increases the score is then added (in the forward phase of the algorithm, or 

removed, in the backward phase). The Bayes Information Criterion (BIC) is a score that 

decomposes in exactly this way. For a graph G over a set of variables V and data set D over 

V, BIC is defined as BIC(G|D) = k ln(n) − 2 ln(L), where L is the maximum likelihood 

estimate of the data given the graph, k are the free parameters of the causal model and n is 

the number of samples. Essentially, the likelihood is penalized by a model complexity 

parameter k ln(n), since a complete graph (an edge between each pair of nodes) will always 

fit the data perfectly. For directed acyclic graphs the joint distribution P(V) over the 

variables V can be factorized into P(V) = ΠXi in V P(Xi|pa(Xi)), where pa(Xi) are the 

parents of variable Xi in G. As a result, BIC is decomposable into a sum of local scores of 

each variable given its parents: BIC(G|D) = Σ Xi in V F(Xi|pa(Xi)), where pa(Xi) are the 

parents of variable Xi in G and F is the local scoring function. If each variable is a linear 

function of its parents plus independent Gaussian noise, then each P(Xi|pa(Xi)) is a Gaussian 

and the local BIC score becomes F (Xi ∣ pa(Xi)) = n ln (σeι
2 ) + ki ln (n) where σeι

2  is the 

estimated error variance of Xi, n is the sample size and Ki is the number of regressors, 

including the intercept. Since an added (or removed) edge changes the parent set, these local 
scores enable at each stage of the algorithm the efficient determination of the edge that 

maximally increases the global score given a current causal graph.

The fact that BIC also gives the same score to Markov equivalent graphs, and that both an 

edge-adding (forward) and an edge-removal (backward) phase are necessary for consistency 

of the FGES algorithm is not obvious, but we refer the reader to the excellent paper 

describing GES (Chickering, 2002) for details.

In our implementation we used the FGES algorithm published through the Tetrad code 

package (http://www.phil.cmu.edu/tetrad/) version 6.1.0. We did not force the faithfulness 

assumption and searched to the maximal node degree using the implemented SEMBIC 

score. The implementation has one free parameter s that functions as a sparsity parameter by 

multiplying the complexity term k ln(n) of the BIC score, higher values forcing sparser 

structures. We considered values of s from 20 down to 1, in steps of 2 for the HCP and MCP 

datasets, and starting from 10 down to 1 in single steps, for the smaller patient fMRI 

datasets.

Although the FGES algorithm does return orientation information for the causal edges in the 

graph, when those orientations are shared across all structures in the equivalence class, we 

focus in this paper principally on the adjacency structure (the causal “skeleton”). There are 

several reasons for this decision: (i) While (Ramsey et al., 2016) report very high accuracy 
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(precision and recall) for the recovery of adjacency and orientation information in 

simulations using FGES, we show in our simulations (see Supplementary Material, “FGES 

Simulation”) that such results obtain only for the setting in Ramsey et al. (2016) using 

extremely sparse graphs (number of edges equal to the number of variables). We found that 

precision and recall measures were lower for both adjacencies and orientations, in 

simulations that matched the somewhat denser graphs we find here (with ~10% of possible 

edges present, i.e. ~500 rather than ~100 edges). See Supplementary Figure S1 for the 

details of these simulation results. In particular the recall for edge orientations dropped 

significantly relative to the set of orientations that could theoretically be determined when 

switching from the extremely sparse graphs to the graph density we found here: many fewer 

edges that could be oriented were oriented. (ii) When we explored small subsets of real data 

using a (less-scalable) SAT-based causal discovery algorithm (Hyttinen et al., 2014) (see 

Supplementary Material, “SAT-based causal discovery algorithm”), we found that while the 

adjacency information was largely shared between FGES and the SAT-based algorithm when 

applied to the same dataset, the orientation information varied widely. See Supplementary 

Figure S2. (iii) Finally, the overall aim of the research plan we are outlining here is to use 

the electrical stimulation to provide a ground truth for orienting some of the causal 

adjacencies we find. In future work we hope to triangulate on the determination of causal 

orientation from a variety of angles. For all these reasons, we omit analyses of edge 

orientation in the results presented below. The entire analysis will be made available 

publicly, including the full FGES output.

Strategy for the discovery of reliable causal graphs—Setting a low sparsity 

parameter s in the FGES algorithm produces graphs with a larger number of edges, as one 

would expect, and consumes more computational time (a highly nonlinear effect). 

Conversely, setting a high s eliminates many edges but produces a graph whose edges are 

based on stronger evidence (vertical reliability). In essence, this is a tradeoff between 

sensitivity and specificity. For the HCPs dataset, we settled on a sparsity parameter s=8, for 

which ~80% of the causal graph edges were reproducible across 11 independent HCPs 

datasets (horizontal reliability, see below); this sparsity setting for the HCPs dataset yielded 

10% of the edges of the complete graph. We also find that s=8 provides a good trade-off in 

the accuracy measures in our simulations on synthetic data (see Supplementary Material). 

For the MCP and patient datasets, we subsequently set sparsity settings to also produce 10% 

of the edges of the respective complete graphs (which corresponded to similar sparsity 

values for the MCP dataset, but a much lower sparsity setting for the patient dataset); see 

Figure 6.

We defined horizontal reliability (in the HCPs dataset) as follows: We ran FGES on each of 

the 11 independent HCPs datasets for each value of the sparsity parameter. For a given 

sparsity value we then counted the number of times each adjacency appeared across the 11 

resulting graphs, yielding for each adjacency a value from 0 to 11. We then simulated 1000 

sets of 11 random graphs with the same adjacency density as the 11 real graphs of a fixed 

sparsity had (on average), so as to estimate how often each co-occurrence score (from 0 to 

11) would occur by chance. Horizontal reliability of an adjacency A was finally defined as 

the proportion of adjacencies that have a lower (or equal) co-occurrence count if 11 graphs 
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(of fixed density) were generated by chance than the co-occurrence count observed for A. 

See Supplementary Figure S3 for plots of the null-distribution for different graph densities, 

and for the co-occurrence count that corresponds to the 95% reliability cut-off that we use in 

the subsequent analysis. This definition allows us to compare graphs of different sparsities 

more fairly, since denser graphs will necessarily present more co-occurrences by chance 

than sparser graphs, which is adjusted for by our estimate of the empirical chance 

distribution. Of course there are many ways one could define horizontal reliability measures 

and our measure breaks down for very dense graphs. Moreover, this measure does not 

capture the reliability of absences of adjacencies. Nevertheless, we found it to be a useful 

first pass to make adjacency reliability comparable across different graph densities for 

relatively sparse graphs.

Graphs with weighted edges and reconstruction of the Pearson correlation 
matrix—In addition to obtaining binarized adjacency matrices—graphs that either had an 

edge or no edge between nodes – we derived graphs that had edges with parametric weights

—strong or weak causal connections corresponding to varying effect sizes. From such 

graphs with edge coefficients one can reconstruct the Pearson correlation matrix of the 

original data. The FGES algorithm returns the Markov equivalence class of causal structures, 

i.e. structures that all share the same (conditional) independences and dependences. 

Following the standard implementation in the Tetrad code package, we extracted one 

directed acyclic graph (DAG) from this equivalence class and then fit a maximum likelihood 

linear Gaussian structural equation model to the DAG using the dataset that was fed to 

FGES in the first place. That is, we fit a model of the form v = Bv+ e to the data, where v is 

a vector of variables representing the 110 parcels, B is a lower triangular matrix (with a zero 

diagonal; cf. Figure 7), whose non-zero entries correspond to the edges in the DAG (note 

that all DAGs in the equivalence class share the same adjacencies), and e is a vector of 

independent Gaussian errors, one for each node, with e ~ N (0,Se), where Se is a diagonal 

covariance matrix. Essentially, the model is fit by iteratively regressing each node on the set 

of its parents as defined by the DAG extracted from the equivalence class.

We used the fully parameterized linear Gaussian structural equation model (defined by B 
and Se) to reconstruct the data covariance matrix Cv, which is given by Cv = E(vvt) = (I−B)−1 

E(eet) = (I−B)−t = (I−B)−1 Se (I−B)−t where I is the identity matrix. After standardization Cv 

can be compared to the observed Pearson Correlation matrix using the coefficient of 

determination R2 to indicate the amount of variance explained (R2 is shown at the top of the 

matrices in Figure 7).

Comparisons and validations—We began by making comparisons that quantify the 

reliability and generalizability of the methods.

(a) Reliability of group-level whole-brain causal discovery graphs across groups of 
subjects in the HCPs data: We performed causal discovery separately for the 11 subsets of 

the HCPs dataset (each derived by sparsely sampling a new group of 80 HCP subjects) and 

compared their graphs for different sparsity settings, as described above (Figure 6).
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(b) Comparison of the rs-fMRI Pearson correlation matrix to the causal graph: The 

whole-brain causal graphs we produced with our criteria are relatively sparse (10% 

complete), and the question arises whether they indeed capture much of the structure in the 

Pearson correlation matrix. To address this point, we reconstructed the Pearson correlation 

matrix from a causal graph with weighted edges. These comparisons are shown in Figure 7.

(c) HCPs causal graph vs. MCPs causal graph: We wanted to see whether the graph 

derived from a single subject is similar to the graph derived across many subjects. We did 

this by comparing one sparsely sampled HCP dataset (subset #1), which comes from many 

(80) subjects, to an equally sparsely sampled MCP dataset (subset #1), which comes from a 

single subject with many (80) sessions. We kept only the horizontally reliable edges (r≥0.95) 

for this comparison. If the results were similar, this would confirm that the MCP dataset 

(from Russ Poldrack’s brain) is representative (and so can be reasonably compared to the 

patient’s dataset in step 2 below). This comparison is also shown in Figure 7.

(d) MCPs causal graph vs. MCPd causal graph: We also compared results in the sparsely 

sampled MCP dataset to the densely sampled MCP dataset (dense sampling being the only 

option with the patient’s dataset for whom much less data is available, see steps 2 & 3). This 

comparison addresses the question of whether autocorrelation in the data might be a problem 

for causal discovery, which assumes independence between samples. This comparison is 

also shown in Figure 7.

Step 2: Causal inference from observational resting-state fMRI data in single neurosurgical 
patients

In this step we conducted the same analyses as in Step 1 in a new dataset: that obtained from 

resting-state fMRI in neurosurgical patients who required chronic invasive intracranial 

monitoring as part of their treatment for medically intractable epilepsy. This step was carried 

out in each patient who was scheduled to undergo es-fMRI (see Step 3), before electrode 

implantation. The motivation for this Step 2 is twofold. First, given that the patients who 

participate in the es-fMRI experiment are all epilepsy patients with longstanding seizures, 

their brain connectivity may be atypical. The rs-fMRI graph obtained from the patients can 

thus be used either to exclude those patients who show abnormal connectivity (or have 

otherwise unusual fMRI data), or as the basis for refining the graphs from Step 1 (which are 

all from healthy individuals without epilepsy) to better match the patients’ brain 

architecture. Second, the rs-fMRI data provide an independent, baseline dataset in the 

patients to which the es-fMRI data can be compared. An additional benefit is that the rs-

fMRI data are obtained prior to electrode implantation, thus yielding signal in all parcels 

with a whole-brain field-of-view; by contrast, in the es-fMRI data there is typically 

substantial signal dropout in parcels where there are metallic contacts from depth electrodes 

or electrocorticography grids (including at the site of the electrical stimulation, of course).

Patients—We tested four neurosurgical patients who each had bilateral electrodes 

implanted in the amygdala. An electrocorticography (ECoG) monitoring plan was generated 

by the University of Iowa comprehensive epilepsy program after considering each patient’s 

clinical requirements. All experimental procedures were approved by the University of Iowa 
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Institutional Review Board, who had available our gel phantom safety experiments for their 

evaluation prior to any human experiments (Oya et al., 2017). Written informed consent was 

obtained from all subjects. Patient #384 was a fully right-handed 37-year-old male; #307 a 

fully right-handed 29-year-old male; #303 a fully right-handed 34-year-old female; and #294 

a fully right-handed 34-year-old male (see Supplementary Table S3). We present analysis of 

rs-fMRI data only from patient #384, who had the most es-fMRI runs (see below) and for 

whom we performed causal discovery in the es-fMRI data. We present standard GLM results 

of the activation evoked by es-fMRI in all four patients (Step 3; Figure 10).

Data acquisition—Resting-state fMRI runs for patient #384 were acquired on a 3 Tesla 

MRI scanner (Discovery 750w, GE Healthcare, Chicago, IL) with a 32 channel receive-only 

head coil. Each resting-state run consisted of 130 T2*-weighted EPI volumes (eyes open, 

central cross-hair fixated) acquired with the following parameters: TR = 2260 ms, TE = 30 

ms, flip angle = 80 degrees, voxel size = 3.4 mm × 3.4 mm × 4.0 mm, 30 slices, matrix = 64 

× 64, FOV = 220 mm. We obtained 5 such runs for #384. A field map (dual-echo GRE, TR 

= 500 ms, flip angle = 60 degrees, voxel size = 4.4 mm × 4.4 mm × 4.0 mm), high resolution 

T1-weighted (IR-FSPGR, TI = 450 ms, flip angle = 12 degrees, voxel size = 1.0 mm × 1.0 

mm × 0.8 mm) and T2-weighted scans (CUBE TSE TR = 3200 ms, TE = maximum, echo 

train length = 140, voxel size = 1.0 mm isotropic) were acquired in the same session.

Data preprocessing and denoising—All data were minimally preprocessed using the 

HCP fmriVolume pipeline (v3.5.0). In summary, after rigid-body motion correction, B0 

distortion correction was performed using the field map, and the mean EPI image was 

registered to the T1w image using boundary-based registration. All steps, including a final 

MNI space transformation, were concatenated and applied to the original fMRI time series 

in a single 3D spline interpolation step. Finally, this MNI-space time series was masked and 

intensity-normalized to a 4D global mean of 10000. Following this minimal preprocessing, 

we further applied the same denoising procedure described in Step 1 above (regression of 

nuisance signals and motion, bandpass filtering).

Causal discovery—The same analyses as in Step 1 were conducted. The major difference 

with Step 1 is, of course, the amount of observational data available for a single 

neurosurgical patient. While the HCP dataset had a large number of datapoints collected 

over a large number of subjects, and the MCP had a large number of datapoints collected 

over the course of over one year for a single subject, in the clinical setting we typically only 

obtained three to five 5 minute rs-fMRI runs with 130 volumes each, i.e. between 400 and 

800 observations. The autocorrelation of the fMRI signal, and other factors such as high 

motion, further reduce the effective number of independent observations available for causal 

discovery. Note that we have to determine the presence or absence of 5995 (110 choose 2) 

adjacencies, and the edge coefficients for those that are present, and another 110 parameters 

for the error variances -- the problem is thus underconstrained with this dataset and yields 

less reliable estimates (hence our proposed use of graphs derived from more data as priors, 

cf. Figure 4).
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Comparisons and validations—Once again, we carried out a set of comparisons similar 

to those listed above under Step 1, but this time using the patient’s rs-fMRI dataset. We also 

wanted to establish that the patient has largely normal resting-state connectivity, and thus 

made the following comparison:

Comparison (e): HCP and MCP causal graphs vs. patient causal graph. This 

comparison is shown in Figure 7.

Step 3: Causal inference from interventional fMRI data: es-fMRI in the amygdala

While Steps 1 and 2 relied exclusively on observational data, in Step 3 we intervene on one 

node of the causal network, the amygdala, using the es-fMRI technique that we recently 

developed. All further technical details are described in (Oya et al., 2017), and we only 

summarize them briefly here.

Patients—The same four neurosurgical patients described in Step 2. We conducted a 

standard whole-brain voxelwise GLM analysis of the data on all four patients (cf. below). 

We only carried out a (parcellated) causal graph discovery in the patient who had the most 

es-fMRI runs (patient #384).

Safety of es-fMRI—The safety of concurrent electrical stimulation and fMRI was 

previously established (Oya et al., 2017) through measures in a gel phantom, followed by 

carrying out the procedure in several patients. This demonstrated that induced currents, 

mechanical deflections of electrodes, and electrode or tissue heating were well controlled 

and all within acceptable safety levels. The electrical stimulation-fMRI experiments were 

performed after the final surgical treatment plan was agreed upon between the clinical team 

and the patient, and it was justified to move the patient to the MRI scanner (within 16 hours 

prior to the electrode removal surgery).

Intracranial electrodes and localization—The four patients were implanted with a 

combination of subdural surface strip and grid electrodes and penetrating depth electrodes; 

we stimulated only through the macro contacts on the depth electrodes located within the 

amygdala. Localization of the electrodes was done as follows. We routinely obtain two 

baseline (pre-implantation) structural MRI volumes, two post-electrode implantation 

structural MRI volumes right after implantation, another two structural MRI volumes at the 

time of the es-fMRI session, and a volumetric thin-sliced CT scan (1 mm slice thickness). 

Electrode contacts are identified on the post-implantation MRI/CT volumes and transferred 

onto the pre-implantation baseline MRI volumes. Great attention is paid to possible post-

surgical brain shift, which is corrected with a 3D thin-plate spline warping procedure (Oya 

et al., 2009). For the delineation of the sub-nuclei of the amygdala, we utilized a non-linear 

warping applied to an atlas of the human brain (Mai et al., 1997) to draw borders of the sub-

nuclei of the amygdala on the subject’s brain.

Electrical stimulation—Bipolar electrical stimulation was delivered through the 

intracranial electrodes using a battery-driven isolated constant current stimulator (IZ-2H 

stimulator, Tucker-Davis technology’s, Alachua, FL, USA, and Model 2200 isolator, A-M 

systems, WA, U.S.A.). We used biphasic charge-balanced constant current stimulus 
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waveforms of +9/-3 or +12/-4 mA, delivered at 100 Hz (5 to 9 pulses; see Figure 5, and 
Table S3). Mean in-situ electrode impedance measured at the time of the experiments was 

4.08 (sd = 1.65) k Ω for 100 Hz stimulation.

Experimental Design and data acquisition—We used a simple block design with 30s 

(stimulation-) ON blocks alternating with 33s (stimulation-) OFF blocks. For ON blocks, 

electrical stimulation was applied during a 100 ms gap between consecutive EPI volumes, 

when all gradients were effectively switched off; this served to minimize stimulation-

induced artifacts in the fMRI data and reduce the possibility of interactions between the 

external electrical stimulations and RF or gradient switching-induced potentials in the 

electrodes. There were 10 ON blocks per run, for a total run duration of approximately 11 

minutes. All scans were performed in a 3 Tesla MRI scanner using the quadrature single 

channel T/R head coil (patient #294: Siemens Trio; other patients: Siemens Skyra; TR = 

2900 ms, TR delay = 100 ms, TE = 30 ms, flip angle = 90°, voxel size = 3.2 mm × 3.2 mm × 

3.0mm, 44 slices, matrix = 68 × 68, FOV = 220 mm). During the scanning session, we 

carried out between one and four es-fMRI runs (#384: 4 runs; all other patients, 1 run). A 

T1w structural image was also acquired in the same experimental session (MP-RAGE, TR = 

2530 ms, TE = 3.52 ms, TI = 100ms, flip angle = 10°, 1 mm isotropic resolution).

Whole-brain, voxelwise GLM analysis—We ran a standard whole-brain voxelwise 

GLM analysis, contrasting blocks ON and blocks OFF. Preprocessing was as described in 

our previous work (Oya et al., 2017). Briefly, the first two EPI volumes were discarded; 

slice-timing differences were compensated; motion correction was performed; retrospective 

denoising was applied using FIACH (Tierney et al., 2016); principal component noise 

regressors (n=6) were calculated and used for regressing out the effect of noise; the patient’s 

T1w structural volume was co-registered to that patient’s mean EPI volume; spatial 

smoothing with a Gaussian kernel of FWHM (full-width at half-maximum) = 8 mm was 

applied; EPI time series were detrended by least squares fit of Legendre polynomials of 

order 5; frame censoring was applied for TRs with framewise displacement >0.5 mm (Siegel 

et al., 2014). The hemodynamic response was modeled using a boxcar function of duration 

50–90 ms (depending on the actual duration of the stimulus) convolved with a single 

parameter gamma function (peak at 5 s, the amplitude of the basis function was normalized 

to peak values of 1). These analyses were performed in subject space, with subsequent 

warping of the results to MNI space. Statistical parametric maps were thresholded at 

p<0.001(uncorrected); only clusters spanning more than 20 voxels were reported. This 

analysis was used in 4 patients to generate standard whole-brain, voxelwise analyses of 

activations evoked by amygdala stimulation (Figure 10 below). The activation produced by 

the electrical stimulation showed good temporal stability across different runs within the 

same subject (see Supplementary Figure S4).

Parcellated analyses: causal discovery, and simple ON-OFF contrast—All es-

fMRI data from patient #384 was minimally preprocessed and denoised as described in Step 

1, for parcellated analyses (to match the preprocessing and denoising of the MCP dataset). 

BOLD signal was averaged within gray matter-masked Harvard-Oxford parcels to create 

parcel timeseries, and concatenated across runs. We used all collected volumes from all es-
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fMRI runs as samples for causal discovery analysis (cf. Step 2). We also performed a simple 

t-test between samples ON and samples OFF in the parcellated concatenated data, 

accounting for a 5s hemodynamic delay. We corrected the resulting p-values for multiple 

comparisons across 110 parcels using the Benjamini-Hochberg false discovery rate (FDR-

corrected), and used Cohen’s d as a measure of effect size (shown in Figure 9).

Comparisons and validations—As for the comparisons we made in the preceding Step 

1 and Step 2, we wanted to obtain convergent evidence, and we wanted to use the es-fMRI 

data to augment the causal graphs we had obtained from the prior steps. We thus compared 

Pearson correlation matrices as well as causal graphs at the whole-brain level to those 

derived from the other datasets, and we specifically examined the edges that were connected 

with the right amygdala across datasets. We carried out the following comparisons:

Comparison (f): All resting-state causal graphs (HCP, MCP, patient) compared with 

the es-fMRI causal graph. This comparison is shown in Figure 7.

Comparison (g): The subgraphs comprising edges connected to the right amygdala, 

constituting direct causal connections with other brain structures (compared across all 

the datasets). This is shown in Figure 8. These subgraphs to the amygdala do not use 

weighted edges and only depict whether there is an edge there or not (binary).

Comparison (h): GLM analyses of the es-fMRI compared to the causal subgraphs of 

edges connected to the amygdala. The GLM analyses are shown in Figure 9 (plotted 

as Cohen’s d).

Results

Parameter setting for causal discovery and reproducibility across datasets

We first determined the reproducibility of our causal discovery analysis by deriving causal 

graphs from high-quality, large-sample size, statistically independent datasets. We began by 

using the HCPs dataset, which maximizes sample size, cross-subject generalizability, and 

statistical independence of the datasets. Comparing across 11 independent datasets from the 

HCPs, we obtained graphs at 10 different sparsity settings (Figure 6). As expected, 

increasing the sparsity parameter resulted in graphs with fewer numbers of edges (moving 

from left to right on the x-axis of Figure 6a and 6d). As well, low sparsity resulted in graphs 

that were less reproducible across datasets (larger error bars at low numbers on the x-axis, 

Figure 6a and 6d), corresponding to increased agreement (reliability) with higher sparsity 

settings (Figure 6b). Based on these initial results, we chose to use a sparsity setting of 8 

(green curve in Figure 6c, green marker on Figure 6b; see color legend inset in Figure 6c) 

for the HCPs dataset, which yielded 10% of the edges of the complete graph (a graph with 

an edge between every possible pair of nodes) (dashed line in Figure 6a). This 10% 

complete graph nonetheless was able to reproduce the original Pearson correlation matrix of 

the dataset very well, accounting for 91.6% of the variance (Figure 7a). We then set the 

sparsity parameter in the other datasets (MCPs, MCPd, and patient; see color legend inset in 

Figure 6a) to a value that produced graphs with approximately this same total number of 

edges (10% of the complete graph, Figure 6a). Figure 6 thus justifies our choice of the 
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sparsity parameters used for the causal graphs derived from our different datasets, on which 

subsequent comparisons were based.

Comparing causal graphs with Pearson correlation matrices

Before comparing causal graphs, we first compared the standard Pearson correlation 

(functional connectivity) matrices derived from our datasets: These comparisons are shown 

in Figure 7, as the top triangle in each of the plots. As can be seen visually in the figure’s top 

panel (Figure 7a,b and c), Pearson correlation matrices (top triangle in each plot) from our 3 

large-sample resting-state datasets were very similar – we quantified this similarity using 

Pearson correlation as shown in the inset table (Figure 7f). For the patient (bottom row, top 

triangle in each plot), the data were considerably noisier, as expected given the much smaller 

number of samples, higher motion, and clinical setting. Interestingly, the patient’s rs-fMRI 

Pearson correlation matrix was more similar to the group-level HCPs dataset (r = 0.46) than 

to the subject-level MCPs data (r = 0.24). This was also the case for the patient’s es-fMRI 

whole-brain Pearson correlation matrix (r = 0.45 versus r = 0.26, see further below). We 

suspect that this may result from the HCPs dataset smoothing out individual differences, 

while the MCPs dataset will retain many idiosyncratic features of the one subject in that 

dataset (Russ Poldrack).

We next turned to the causal graphs derived by FGES for each of our datasets (bottom 

triangle matrices in the plots). Comparing causal graphs (bottom triangles) to Pearson 

correlation matrices (top triangles), visual inspection of Figure 7 shows that the causal graph 

reproduces much of the structure of the correlation matrix, but is considerably sparser. Most 

notable at the whole-brain level are the homotopic connections, between corresponding 

parcels in the left and in the right hemisphere. These can be seen as the diagonal line visible 

in both the Pearson correlation matrix (upper triangle in each plot) and in the causal graph 

(lower triangle in each plot). The patient’s rs-fMRI is noisier, but again one sees this basic 

structure and can make out the homotopic connections. Using the Dice coefficient to 

quantify overlap between adjacency matrices, we found that 30% of the edges in the 

patient’s causal graph were also reproduced in the HCPs dataset causal graph (Figure 7f).

Connectivity of the amygdala

In order to provide comparisons with the electrical stimulation results, we then focused on 

the direct connections to the right amygdala (parcel #109) discovered by the FGES 

algorithm. To visualize edges connected to the right amygdala, we mapped these roughly 

onto a top view of the brain in Figure 8. Across datasets (HCPs, MCPs/MCPd, and patient 

#384 rs-fMRI and es-fMRI) the right amygdala was reliably found to be directly connected 

to the ipsilateral temporal pole and hippocampus, and the contralateral amygdala, direct 

connections that are supported by tracer studies in monkeys (Freese and Amaral, 2009). 

However, there were also numerous differences in the results from the different datasets, 

which will require future exploration to fully understand. One future approach we intend to 

incorporate is to use the causal graph inferred from one dataset (e.g., the HCP, as it may be 

the most reliable due to the largest number of samples provided) as a prior to help constrain 

the graphs obtained from other datasets (see Figure 4).
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Finally, we examined the results of our es-fMRI experiment (Figure 5). Using the same 

parcellated data used for causal discovery (concatenated data of 4 sessions of es-fMRI in 

patient #384), we simply contrasted ON and OFF volumes, as typically done in a standard 

GLM analysis, to produce a set of node activations and deactivations. We compare these to 

the direct neighbors of the right amygdala found by the FGES algorithm in Figure 9. The 

results show a striking difference between the ON-OFF contrast and FGES analysis: there is 

no overlap at all in the sets of parcels judged by the ON-OFF contrast to be activated by the 

stimulation, and those judged to be causal neighbors of the stimulated amygdala by FGES. 

This surprising finding raises methodological questions to which we do not know the full 

answers yet; we discuss it further in the Discussion section.

To provide a more general comparison, we also show in Figure 10 a voxelwise, whole-brain 

GLM analysis contrasting electrical stimulation-ON versus electrical stimulation-OFF 

blocks in all four neurosurgical subjects in whom we stimulated particular nuclei of the 

amygdala (for equivalency across patients who have differing numbers of sessions, only the 

first es-fMRI session was used in each patient for this Figure 10). Blockwise activation 

timecourses extracted from significantly activated ROIs showed absolute BOLD signal 

changes around 1% during the electrical stimulation and good reliability across runs 

(Supplementary Figure S4, and Oya et al. (2017)).

Across our four patients, the results were more heterogeneous, as Figure 10 shows. Much of 

this heterogeneity likely arises from differences in the specific amygdala nuclei that were 

stimulated. We therefore mapped the likely location of our bipolar stimulation with respect 

to structural MRIs of each patient’s amygdala, referenced to the Mai histological atlas (Mai 

et al., 1997); see Methods for details. These are shown in the insets in Figure 10.

Discussion

Summary of findings

We outlined a workflow for discovering causal connections in the human brain, and 

provided initial validation, measures of reliability, and comparisons across datasets. We then 

demonstrated the application of this workflow to the connectivity of the amygdala, as a case 

study for the investigation of causal networks that subserve emotion processing. However, 

our approach is quite general and we intend it to be applicable to the investigation of any 

brain structure, not just the amygdala (and indeed not only to BOLD-fMRI data, or data 

from humans).

Our approach features two quite novel components, and suggests several further ones that 

were beyond the scope of the present study (cf. Figure 4). One novel component that can 

readily be applied by other researchers to sufficiently large resting-state fMRI datasets uses a 

causal discovery algorithm. We used a version of the fast greedy equivalence search (FGES) 

algorithm on rs-fMRI data parcellated into the 110 nodes obtained with the Harvard-Oxford 

parcellation scheme. We demonstrated excellent reliability across independent samples in 

two large datasets, the Human Connectome Project (HCP) dataset, and the MyConnectome 

dataset (MCP), and we obtained faithful reconstruction of standard Pearson correlation 

matrices from our sparse causal graphs (Figure 7).
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The second component, one of the most novel aspects of our study, is the application of a 

new technique in human neurosurgical patients: concurrent electrical stimulation and fMRI 

(es-fMRI). We focused on emotion networks by investigating connectivity of the amygdala, 

the target of electrical stimulation. Several broad conclusions could be drawn. First, in each 

patient individually, there was strong consistency in the pattern of evoked BOLD activation 

due to amygdala stimulation: there was good session-to-session reproducibility, both in the 

pattern of evoked BOLD activations, and in the magnitude of the response (see 

Supplementary Figure S4, and Oya et al. (2017)). Second, there were specific differences in 

the statistical maps resulting from electrical stimulation across each of the four patients, as 

shown in Figure 10. This likely reflects the fact that different amygdala nuclei were 

stimulated in each patient (see insets in Figure 10), and indeed on different sides of the brain 

(patient #307 had left amygdala stimulation, the other three had right amygdala stimulation). 

However, it is also possible that there are individual differences in amygdala connectivity in 

the patients, a possibility especially pertinent (and clinically relevant) given that all patients 

had long-standing epilepsy. Studies in additional patients will be required to further 

understand these differences and to determine to what extent the activations seen here can be 

reproduced reliably across different patients in whom exactly the same amygdala nuclei are 

stimulated. The accrual of larger sample sizes will be required to address this issue.

The causal discovery analyses, both from resting-state data across three different datasets 

(HCP, MCP, and the patient #384’s pre-operative rs-fMRI), and from the rare electrical 

stimulation with concurrent fMRI in the four epilepsy patients, all provided novel findings 

about the connectivity of the amygdala. Many direct connections that would be predicted 

based on the known connectivity of the primate amygdala (Freese and Amaral, 2009) were 

also found here. For instance, there were prominent connections with temporal cortex, 

prefrontal cortex, and cingulate cortex. Some of the most reliable direct connections found 

across datasets were with the temporal pole, hippocampus, and contralateral amygdala. It is 

also notable that the es-fMRI results tended to produce strong activations in temporal and 

prefrontal cortices, but strong deactivations in posterior cingulate/retrosplenial cortices 

(Figure 10).

Perhaps most important at a global level is the finding that most of the correlations seen in 

standard analyses of functional connectivity (the Pearson correlation matrices shown in the 

top triangle plots of Figure 7) are due to indirect effects rather than direct causal effects of 

one brain region on another (cf. the much sparser causal adjacency matrix shown in the 

lower triangle plots in Figure 7). This is expected, since it is well known that not every brain 

region is connected to every other brain region, but that connectivity is much sparser than 

that.

Much more surprising was the finding that, in the es-fMRI dataset, most or all of the 

activations observed with standard GLM methods appear to arise from indirect causal 

effects, since we did not find them as direct edges in our causal discovery results (Figures 9, 

10). Further analyses that visualize edges that are 2- or even 3-removed from the amygdala 

could help to understand how the activations that we found due to electrical stimulation 

(Figure 10) arise at a network-level. It is worth noting that cortical projections from the 

amygdala are generally thought to be modulatory in nature: connections with temporal 
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visual cortices terminate in superficial cortical layers (Freese and Amaral, 2006), and 

projections to prefrontal cortex may exert effects via the dorsomedial thalamus rather than 

directly (Miyashita et al., 2007). A full understanding of how network-level effects of the 

amygdala arise will require not only further electrical stimulation-fMRI studies, but will also 

require the application of other causal discovery algorithms that can incorporate feedback 

(see further below, and Supplemental Material).

Taken together, the results highlight the promise, challenge, and next steps of this novel 

framework. We demonstrated that causal discovery analyses can produce graphs that are 

reliable and that capture the correlation structure of the observational data. We also 

demonstrated that es-fMRI in the amygdala produces robust activations in distal brain 

structures. Many of the results fit with what one would expect given current knowledge of 

the connectivity of the amygdala: there is activation in medial prefrontal and cingulate 

cortices, in insula, and in temporal cortex, amongst other regions. Yet the notable differences 

across individual subjects also highlight the difficulty in obtaining reproducible stimulation 

results across patients, and in obtaining a sufficiently large number of samples for reliable 

causal discovery. These issues can probably be resolved partly through the accrual of more 

data. Other next steps consist in investigating other nodes in emotion networks, and 

including results from experiments in animals. We briefly comment on next steps and 

extensions below.

Investigating emotions and feelings

While the present paper focuses its scope on an analysis just of data from the brain, such 

data will eventually need to be linked to their causal effects on the dependent measures that 

are typically used to infer emotions—autonomic responses, changes in facial expression, 

verbal reports of emotional experience, and a variety of effects on task performance (Figure 

11). Investigating causal connections related to emotions in the brain at rest, as we did here, 

is clearly suboptimal, because the different nodes of the network are unlikely to be as 

interactive during rest as they are during emotion processing. We would thus want to apply 

the causal discovery methods that we document here to fMRI data that reflects brain states 

of putative emotions — either induced through sensory stimuli (e.g., watching emotionally 

laden film clips (Gross and Levenson, 1995)), volitional instruction (e.g., asking people to 

remember emotional autobiographical events (Damasio et al., 2000)) or through direct 

electrical stimulation of structures such as the amygdala (Bijanki et al., 2014; Dlouhy et al., 

2015; Gloor et al., 1982; Halgren et al., 1978; Willie et al., 2016). The latter is a particularly 

intriguing aspect: as we demonstrated here it is in fact possible to combine electrical 

stimulation with concurrent fMRI measures, and it would offer the most direct test of the 

putative causal roles of brain structures in emotion.

This issue would be of very high relevance to the strategic planning of deep-brain 

stimulation to treat mood disorders, or indeed more broadly to treat any number of severe 

disorders that are medically refractory and that are candidates for treatment through deep-

brain stimulation. Alterations in brain connectivity are now thought to underlie much of 

psychopathology (Fox et al., 2014; Greicius, 2008; Greicius and Kimmel, 2012; Zhang and 

Raichle, 2010). Both invasive (Lozano and Lipsman, 2013) and noninvasive (Dayan and al, 
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2013) neurostimulation are regularly used, and gaining popularity, to treat a number of 

neurological and psychiatric diseases, including Parkinson’s and Alzheimer’s disease, 

depression (Fox et al., 2014; Mayberg et al., 2005; O’Reardon and al, 2007) and memory 

disorders (Hamani et al., 2008; Suthana et al., 2012). All of these avenues for treatment 

show a frustrating combination of features: they can be extremely effective for certain 

patients, yielding dramatic improvements in quality of life; but they don’t work for others, 

and we do not understand why. The current inadequacy in strategic planning of deep brain 

stimulation for treating mood disorders, and in predicting personalized outcome, stems from 

our ignorance of what deep brain stimulation actually does to the brain. The framework we 

presented here seeks to address this important outstanding question.

The approach we presented here would also help to resolve several ongoing scientific 

debates. For instance, the amygdala has long been thought to be necessary for fear, in 

humans and in animals (Amaral and Adolphs, 2016). But the evidence from lesion studies in 

humans does not show that the amygdala causes fear (only that absence of the amygdala 

interferes with it), as we noted in the Introduction. Electrical stimulation of the amygdala, 

which could show that the amygdala causes fear, has been thought to act through other 

indirect mechanisms, for instance via stimulating white matter pathways that instead activate 

regions of cortex, which in turn cause the conscious experience of fear (LeDoux, 2015; 

LeDoux and Brown, 2017). Our es-fMRI paradigm, coupled with a causal discovery 

analysis, as outlined in this paper, could resolve this issue and ultimately yield an 

understanding of the proximal causal substrates for all the different aspects of an emotion, 

including its conscious experience.

Our long-term goal is to use causal discovery and es-fMRI to investigate the neural 

mechanisms that underlie different components of emotion. It is notable that all of the es-

fMRI experiments we presented here were performed at a level of stimulation at which the 

patients were at chance in discriminating whether they had been stimulated or not, and no 

observable measures of emotion were produced (other than brain activations measured with 

fMRI). An experiment we plan to do next is to parametrically increase the amplitude and/or 

duration of the electrical stimulation. As one gradually stimulates the amygdala more and 

more, measurable components of emotion should be induced: there might be changes in 

autonomic responses such as skin-conductance response (Willie et al., 2016), changes in 

cognitive bias such as judgments of facial expressions (Bijanki et al., 2014), or changes in 

reported conscious experience (Halgren et al., 1978). What changes in the causal graph that 

describes the brain networks as these emotion components are induced? What accounts for 

the difference between stimulation trials in which the patient reports feeling nothing, and in 

trials in which the patient reports feeling an emotion? These are major unsolved questions in 

affective neuroscience that the framework we outline could begin to address.

Limitations and assumptions

Many of the assumptions we have made in our causal analysis are unrealistic for fMRI data. 

The brain is known to contain many connections with feedback; it is likely that there are 

unmeasured confounders; it is not plausible that the actual causal connections in the brain 

are linear Gaussian in form; despite our comparison between sparsely sampled and densely 
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sampled data (MCP) one may remain concerned about the i.i.d. assumption of the data. By 

such a standard, the present analysis can only be taken to show that rather sparse causal 

structures can give rise to the correlations observed resting-state fMRI data.

In the Supplementary Material we do explore what happens when some of these 

assumptions are dropped, in particular the assumption of no feedback (acyclicity) and no 

unmeasured confounding (causal sufficiency). We have applied a SAT-based causal 

discovery algorithm (Hyttinen et al., 2014) that does not make these assumptions to a small 

subset of three of the datasets considered in this paper (since the algorithm in its current 

form does not scale to large numbers of variables) and we compared the results to those 

from the FGES algorithm. We found that causal adjacencies are remarkably reliable when 

the two methods (FGES and SAT) were applied to the same dataset, but that orientations of 

edges in the causal graphs differed. While promising, these results also indicate that 

significantly more effort is needed to scale the methods with weaker background 

assumptions (SAT) to be applicable to datasets with many variables (such as a whole brain 

parcellated into ca. 100 nodes). We are actively engaged in developing more scalable 

versions of the SAT-based method and in the development of a fast non-parametric 

independence test, which would also allow us to drop the parametric assumption of linear 

Gaussianity. Such a test could also be used in other causal discovery algorithms that use 

weaker assumptions, such as the various versions of the FCI-algorithm (Spirtes et al., 

2000a). These future developments will require close collaboration with experts on causal 

algorithm development.

There are also important limitations to note at the stimulation end. Our electrical stimulation 

is quite imprecise compared to alternative approaches that are possible in animal models, 

such as optogenetics. Although we used bipolar stimulation to constrain current spread, and 

although the region of activation near the site of stimulation is fairly focal, this is still a large 

volume of neural tissue (several cubic millimeters). Not only will this introduce imprecision 

in the anatomical localization of the stimulation, but it will also subsume different 

anatomical subdivisions and cell populations, and even fibers of passage. This issue is 

especially problematic in the amygdala, and may be less acute for some surface cortical sites 

(we are also able to stimulate through grids that are on the surface of cortex). Depending on 

where one is stimulating, many different circuits can be activated; or inhibitory interneurons 

as well as excitatory neurons can be activated; or nearby white matter can be stimulated.

Our future plans for addressing these limitations are to try to triangulate on the results with 

as many methods as possible. In humans, we illustrated two in the present paper. Causal 

discovery algorithms applied to resting-state data will still have the limitations of fMRI, but 

do not have the just mentioned problems associated with electrical stimulation. As such, they 

may be able to provide priors that can help constrain the results from electrical stimulation 

(cf. Figure 4). We are also actively exploring animal models, which will ultimately be 

essential to obtain sufficient resolution and control. Convergent evidence from such studies 

can further help with the interpretation of the results from humans. Although there are of 

course difficult questions about homology, it is already the case that a number of studies in 

nonhuman primates has given us very detailed insight into circuits related to fear and 

anxiety, and allowed a considerably finer fractionation both of the circuits and of the 
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behaviors than is currently possible in humans (see (Fox and Shackman, 2017; Shackman 

and Fox, 2016) for an overview). The overall research program should thus incorporate 

results from rodents, monkeys, and humans. Each of these has somewhat complementary 

strengths and limitations. The rodents currently offer the most precise manipulation of 

circuits through optogenetics, but better methods for whole-brain imaging of activations are 

still needed (such as imaging using ultrasound, rather than BOLD-fMRI, for example). The 

monkeys are beginning also to offer optogenetic and chemogenetic approaches, although 

this is still more limited in application than is the case in rodents. However, monkeys are of 

course a better animal model for human emotions than are rodents. Finally, human studies 

will always be limited in the precision with which we can experimentally investigate and 

manipulate circuits, but offer large datasets based on fMRI and provide subjective reports of 

experiences—the dependent measure that also determines disorders of emotions we wish to 

treat.

Finally, there is no shortage of conceptual and programmatic challenges that of course need 

to be addressed. Transparency (ideally, pre-registration of experiments) and data sharing are 

two important programmatic aspects that apply to affective neuroscience as they do to all 

other scientific subdisciplines, and a host of challenges needs to be addressed in order to 

leverage fMRI results to reliable conclusions about the brains of individual people (Dubois 

and Adolphs, 2016). Relatedly, there is the need for more precision in the methods, the 

neuroanatomy, and the cognitive, behavioral, and experiential variables that can be 

measured. This is a very large task, but recent prescriptions in the case of the amygdala and 

fear give us examples of what needs to be done (Shackman and Fox, 2016).

Comparing causal discovery with standard GLM results

One of the most striking, and unexpected, findings from our study were those shown in 

Figure 9. We found that the brain regions activated by electrical stimulation of the right 

amygdala in the es-fMRI dataset (as analyzed with standard GLM analysis, contrasting ON-

OFF electrical stimulation) were completely nonoverlapping with the brain regions found to 

have direct edges (direct causal connections) with the right amygdala from FGES. Although 

we do not have a full explanation of this finding, it seems striking enough to warrant further 

investigations. We make the following remarks.

i. The direct GLM contrast between the ON and OFF blocks depends on 

knowledge about which data are ON and which data are OFF, as specified by the 

experimenter, but is independent of the measured actual activation of the right 

amygdala. By contrast, FGES operates on the complement of this set of 

information: FGES, as we ran it, is not informed about the stimulation at all, but 

instead uses the measured activation of the amygdala and attempts to determine 

its direct causal neighbors. This is a big difference that will need to be probed 

further in future studies. In preliminary explorations we did run FGES with the 

values of the right amygdala replaced by 1/0 for ON/OFF, corresponding to the 

stimulation blocks (i.e. the same information available to the GLM), and we 

found that the right amygdala was causally disconnected from all other nodes. It 

is unclear what explains this result, but it is likely that the number of independent 

ON/OFF samples is inadequate in a blocked design (since adjacent trails are 
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strongly depend on one another). Sparse event-related designs may circumvent 

some of these problems in future es-fMRI studies.

ii. There is some overlap when FGES is run on patient #384’s es-fmri data and 

when it is run on the other datasets, as shown in Figure 8. In particular, the 

ipsilateral temporal pole and hippocampus are found to be connected to the 

amygdala across the board, a finding that is also quite consistent with what one 

would expect from prior studies of amygdala connectivity, including direct tracer 

studies in monkeys. Oddly, these two regions do not show up as significantly 

activated by the stimulation according to the ON-OFF GLM contrast analysis, as 

can be seen in Figure 9. Differences in equating the statistical thresholding for 

the GLM and the sparsity settings in our FGES analyses may also partly explain 

these discrepancies. Future studies should undertake a more comprehensive 

analysis over a larger range of thresholding and sparsity settings. As well, one 

could undertake a more detailed investigation that specifically probes nodes 

found to be directly connected in the causal analyses, and uses them as ROIs for 

a GLM analysis (cf. also Figure 4). More broadly, there are still many more 

comparisons required between the different sets of results, in order to gain a 

better understanding of which are reliable findings obtainable with all 

approaches, which are reliable findings but can be discovered most sensitively 

only with a subset of the approaches, and which are unreliable findings that show 

up as false positives with some approaches.

iii. As we already noted, it is of course quite possible that many of the effects 

revealed with standard GLM contrasts are in fact not due to direct causal effects, 

but reflect indirect and possibly quite complex network-level effects. Figure 9 

shows only the direct causal neighbors of the right amygdala from the FGES 

analysis. Future studies could easily extend the analysis to examine nodes that 

are causally connected to the amygdala by one intervening node, two intervening 

nodes, and so forth. Of course, the larger the degrees of separation (the larger the 

number of intervening nodes), the larger will be the total set of nodes connected 

to the amygdala. In fact, it would be of interest to explore this parametrically and 

visualize how many degrees of separation are required before a given proportion 

of the complete set of nodes are connected with the amygdala (or any other 

structure of interest). Most broadly, such an analysis could reveal general 

principles of brain network architecture: what is the average degree of separation 

between any two places in the brain, and how are degrees of separation 

distributed (do they differ for cortical vs. subcortical structures)?

iv. It would be informative to investigate directionality and reciprocity in the 

connections between brain regions. We largely omitted this important issue, for 

two reasons already noted: (1) directionality of causal effects appears much less 

reliable than the presence of (undirected) edges and so we omitted it for this 

reason, and (2) reciprocity of connections (feedback) was explicitly assumed to 

be absent in FGES, since that is a background assumption required by this 

efficient causal discovery algorithm. We relaxed both of these constraints in an 

exploratory analysis using a different causal discovery algorithm (SAT) in our 
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Supplementary Material. However, the SAT algorithm currently does not scale to 

more than about 7 nodes, making it too limited for present purposes. Future 

development of causal discovery algorithms that are both efficient in how they 

scale to large numbers of variables, and that can relax background assumptions, 

will be essential to drive this field forward. However, even without such new 

algorithm development, one could extend the current studies by focusing future 

work on nodes revealed in the present analysis. For instance, if es-fMRI of the 

amygdala activates the hippocampus, then we could electrically stimulate the 

hippocampus to ask if we can produce a symmetrical activation in the amygdala. 

Such studies are certainly possible, and limited only by the density and extent of 

electrode coverage in the patients.

Future Extensions

As we already noted, immediate next experiments could be analyses carried out on already 

collected data. The HCP and the MCP datasets can be queried in much more detail. One 

could investigate connectivity of other specific nodes of putative emotion networks, 

including not only the amygdala, but also ventromedial prefrontal cortex, insula, and other 

regions. One could investigate individual differences across individuals, or groups of 

individuals, where independent behavioral or questionnaire-based measures related to 

emotion processing are available (some candidates from the HCP would be the Penn 

emotion recognition test, and the positive affect test, which are available for this dataset). 

And of course one could investigate differences between neurotypical and clinical 

populations (e.g., HCP versus ABIDE data to compare typical healthy brain networks to 

those from people with autism, respectively).

A major challenge will be how to improve the reliability of causal graphs obtained from 

single subjects, especially patients in whom there are often a number of additional 

constraints. The graphs obtained from large-sample datasets such as the HCP could be used 

as priors to constrain the causal discovery in smaller, noisier datasets from single patients 

(cf. Figure 4). While es-fMRI will always be limited to relatively short sessions and thus 

small numbers of samples, one could obtain denser rs-fMRI data in the same subjects before 

the implantation of the electrodes, providing additional, subject-specific prior information.

It is possible to parcellate the fMRI data into a larger number of parcels (e.g., the scheme by 

Glasser et al. (2016) rather than the Harvard-Oxford atlas we used, an alternative and more 

detailed parcellation we have already explored and which is entirely feasible in large 

sample-size datasets). This could provide new findings that the present parcellation scheme 

obscured through aggregation of functionally disparate brain areas. The causal discovery 

algorithm we used scales relatively efficiently with sample size. It would be interesting to 

compare several different parcellation schemes, and to test whether more fine-grained ones 

essentially reproduce the coarser ones or reveal different conclusions. Ultimately, it would 

be extremely interesting to run FGES voxelwise over the entire brain, as also suggested in 

section 7 of Ramsey et al. (2016). Not only would this be informative in whether or not it 

reproduces results from more aggregated parcellation schemes, but it could actually be a 

novel source of deriving parcellations in the first place.
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Finally, it is possible to stimulate not only multiple brain regions in separate sessions, but to 

stimulate them concurrently in a single session (or even in a specific temporal pattern). 

Theoretically, a relatively modest number of stimulations can very efficiently permit 

estimation of the causal graph (Eberhardt et al., 2005). One would like to be able to causally 

intervene on specific brain structures, while collecting data with the whole-brain field-of-

view of fMRI (or other emerging technologies, such as ultrasound imaging), with complete 

freedom in the choice of brain structures. This, of course, will never be possible in human 

subjects, but requires the application of our approach to animal studies. The most powerful 

future combination will incorporate conclusions from causal discovery studies in humans 

with data obtained from optogenetic-fMRI in rodents (Lee et al., 2010; Liang et al., 2015). 

Those optogenetic-fMRI studies would also have a further large advantage over human es-

fMRI, namely, the ability to stimulate genetically identified neuronal populations. Such 

studies could in fact explain much of the heterogeneity seen in human experiments, since 

these are likely to conflate many different circuits due to their anatomical and cell-type 

imprecision, and would substantially help us to refine emotion circuits in the brain. The 

complementary strengths and limitations of human and animal approaches will ultimately be 

required to fully map out the causal connections that underlie emotion (Adolphs and 

Anderson, 2018; Shackman et al., 2018).
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Highlights

• a novel causal discovery algorithm is used

• concurrent electrical stimulation and fMRI reveal amygdala connections

• a framework and initial data show causal emotion networks
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Figure 1. 
Amygdala connectivity with other structures. Schematized here as a very simplified causal 

graph are some of the main known interactions between the amygdala and cortical 

(prefrontal and temporal cortex) as well as subcortical (periaqueductal gray) structures, each 

of which in turn cause different components of an emotion that we can measure (which are 

hypotheses in this figure, just to make the conceptual point). Note that in the present paper 

we are omitting the periaqueductal gray for methodological reasons (insufficient spatial 

resolution in the parcellation scheme used for analysis of our MRI datasets), and we are 

focusing just on the brain networks, and not yet on the emotion measures (see Figure 4).
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Figure 2. 
Meta-analytic mapping of brain activations for emotion. Neurosynth maps for the keyword 

“emotion” yielded results from 790 fMRI studies (www.neurosynth.org). In the top panels 

(in blue) are the “forward inference” maps (all activations above a statistical threshold 

having to do with “emotion”). However, most or all of these regions are also activated in 

many other studies that do not have anything to do with emotion. A more specific analysis 

would ask which regions were activated only by those studies containing the keyword 

“emotion”, and not in studies that did not contain the word “emotion”. This “reverse-

inference” map is shown in the bottom panels (in red). Both analyses highlight the 

prevalence of reporting the amygdala, and to some extent the prefrontal cortex. This large 

bias in the literature has resulted in a strong belief that the amygdala is causally involved in 

emotion, a conclusion that is not yet warranted from the extant data.
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Figure 3. 
Connectivity of the central nucleus of the amygdala. The illustration summarizes the 

function of this amygdala nucleus in coordinating emotion components through its multiple 

causal effects on other brain regions. Note that the picture is in fact considerably more 

complicated, since the central amygdala also closely interacts with the adjacent bed nucleus 

of the stria terminalis in triggering the target effects shown here (Shackman and Fox, 2016). 

Reproduced from (Davis, 1992).
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Figure 4. 
Proposed framework for causal analysis of emotion networks. In black, analyses presented 

in this manuscript; in red, future extensions outside the scope of the present paper. 

Abbreviations: HCP: Human Connectome Project dataset. MCP: MyConnectome Project 

dataset. rs-fMRI: resting-state fMRI. es-fMRI: concurrent electrical stimulation with fMRI.
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Figure 5. 
Electrical stimulation with concurrent fMRI. Reproduced from (Oya et al., 2017). es-fMRI 

protocol used. Each gray block is one whole-brain fMRI volume, red is the electrical 

stimulation shown at increasing magnification from top to bottom. Electrical stimuli were 

delivered to the subjects between EPI volume acquisition, during a 100 ms blank period, 

ensuring no temporal overlap with RF transmission nor with gradient switching. Modified 

charge-balanced constant-current bi-phasic pulses were used.
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Figure 6. 
Causal graph sparsity and reliability. These panels justify how we chose the particular 

sparsity settings for all subsequent causal discovery analyses. a: Number of edges produced 

(as proportion of the complete graph) as a function of different sparsity parameters across 

our five datasets. As an example, the densest graph in the HCPs dataset is obtained with the 

lowest sparsity value we tested (a sparsity of 2) and produces graphs that are about 25% 

complete. For our analyses in this paper, we chose a criterion of producing about 10% of the 

complete graph (dashed line) across all datasets as a reasonable value that permitted 

comparisons in all subsequent analyses. b: Fraction of edges in the HCPs graph with 

horizontal reliability ≥0.95 (see Methods for a description of our horizontal reliability 

measure). As sparsity increases (blue dots towards the right) so does the fraction of reliable 

edges. c: The number of edges in the HCPs graph (as a proportion of the maximal number of 

edges that would be present in the complete graph) seen above a given horizontal reliability. 

Sparsity is encoded as line color. The leftmost point of each curve corresponds to observing 

a given edge only in 1 of the 11 datasets. Observing an edge in a sparse graph (large sparsity 

parameter s) is more surprising than observing an edge in a dense graph (small s), which our 

statistic for horizontal reliability captures (see Methods, and Supplementary Figure S3): 

hence the leftmost point of each curve shifts to the right for a higher sparsity parameter s. 

The second leftmost point corresponds to observing one repeat, i.e. to an edge repeating 

across 2 out of 11 datasets. Very high sparsity parameters (a sparsity of 20, blue curve) 

produce very reliable graphs. d: Same as a, except showing number of edges to the right 

amygdala (parcel #109), which is the node that we electrically stimulated in the 

neurosurgical patient. The dashed line corresponds to the number of edges to #109 obtained 

on average in the HCPs datasets with s=8 (as in a). Equating the number of edges to #109 is 

another way to set the sparsity parameters across datasets, which we also explored (see 

Figure 8).
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Figure 7. 
Connectivity between brain regions. a-e: Pearson correlation matrices (top triangle) and 

causal graphs (bottom triangle; direct connections as discovered by FGES, with weights 

estimated as described in the Methods section) for all five datasets. HCPs: subset #1 of the 

sparsely sampled HCP dataset. MCPs: subset #1 of the sparsely sampled MCP dataset. 

MCPd: subset #1 of the densely sampled MCP dataset. 384rs: patient #384 rs-fMRI dataset. 

384es: patient #384 electrical stimulation dataset. The R2 value at the top of each plot 

indicates the proportion of variance accounted for by the graph when used to reconstruct the 

Pearson correlation matrix (see Methods for details). f: similarities between these 5 plots 

(Pearson’s r between the Fisher z-transformed correlation matrices, top triangle; proportion 

of edges shared in the causal graphs, bottom triangle). To calculate the proportion of shared 

edges in the causal graphs, we first binarized the weighted causal graphs, yielding simple 

adjacency matrices; for HCP and MCP datasets, we kept only reliable edges with r≥0.95 to 

compute overlap. We then computed the overlap across datasets using the Sorensen-Dice 

coefficient (2Σ(adj A ≠ 0 ∩ adj B ≠ 0)/Σ(adj A ≠ 0 ∪ adj B ≠ 0))
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Figure 8. 
Causal discovery of direct connectivity with the right amygdala across all datasets. The two 

panels of this composite figure represent the causal graph solutions obtained over our 5 

datasets (5 colors, see legend at top left), showing direct edges to the right amygdala (parcel 

#109, circle in yellow; the same location electrically stimulated in patient #384). Left: 

results obtained when choosing the sparsity parameter so as to generate approximately 10% 

of the full graph (cf. Figure 6a). Right: result obtained when setting the sparsity parameter so 

as to generate approximately 7 direct edges to the amygdala (cf. Figure 6d). Sparsity settings 

are indicated at the top of the columns, which identify the parcels that had direct edges to the 

amygdala in each of the five datasets (colored entries next to the numerical and anatomical 

labels for all the parcels). For HCP and MCP datasets, we kept only horizontally reliable 

edges (r≥0.95). For the 384es dataset, we treated all brain volumes equivalently; unlike a 

standard contrast analysis, the causal discovery algorithm was not informed about ON and 

OFF states.
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Figure 9. 
Comparison of contrast-based and causal discovery-based results for the es-fMRI data in 

patient #384. This view down onto a brain depicts the statistically thresholded activation 

produced by right amygdala stimulation (parcel #109, circled in yellow). Color of each 

significantly modulated node encodes the effect size of the ON-OFF contrast produced in 

that parcel (Cohen’s d). Nodes which are found to be directly connected to the right 

amygdala using the FGES algorithm are circled in pink. Unlike for the ON-OFF contrast 

analysis, the location and timing of the experimental manipulation (electrical stimulation of 

the right amygdala) did not form an explicit part of the input to the FGES algorithm as we 

ran it for this analysis.
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Figure 10. 
Results of concurrent electrical stimulation of amygdala nuclei and fMRI in four 

neurosurgical patients. Shown are GLM results from one session of es-fMRI in the four 

patients, as standard voxelwise, whole-brain results (mapped onto the surface). For patient 

#384 (top), who had four runs, we only used the first run to generate this figure. Stimulated 

contacts are shown as small red dots on the structural MRIs and are also shown in the 

leftmost panels with respect to amygdala nuclei based on a non-linear warping to a 

histological atlas of the human brain (Mai et al., 1997). La = lateral nucleus, BM = 

basomedial nucleus, BL = basolateral nucleus, Ce = central nucleus, Hp = hippocampus. 

Cluster-forming threshold p < 0.001 (uncorrected) with a minimum cluster size of 20 voxels. 

See Supplementary Table S4 for the list of clusters for each patient.
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Figure 11. 
Extending the present results to a more comprehensive investigation of emotion. As also 

suggested in Figure 4, we would eventually want to extend the present findings to actual 

induction of emotion (either through direct stimulation, or suitable stimuli/tasks), and to the 

inclusion of other dependent measures, such as psychophysiological responses (skin-

conductance response, heart-rate changes, pupillometry, etc.) and even verbal reports of the 

conscious experience of an emotion.
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