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Abstract

We develop a general analytical and numerical framework for estimating intra- and extra-neurite 

water fractions and diffusion coefficients, as well as neurite orientational dispersion, in each 

imaging voxel. By employing a set of rotational invariants and their expansion in the powers of 

diffusion weighting, we analytically uncover the nontrivial topology of the parameter estimation 

landscape, showing that multiple branches of parameters describe the measurement almost equally 

well, with only one of them corresponding to the biophysical reality. A comprehensive acquisition 

shows that the branch choice varies across the brain. Our framework reveals hidden degeneracies 

in MRI parameter estimation for neuronal tissue, provides microstructural and orientational maps 

in the whole brain without constraints or priors, and connects modern biophysical modeling with 

clinical MRI.
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1. Introduction and overview of results

Brownian motion of water molecules is strongly hindered by neurite walls (Beaulieu, 2002). 

Serendipitously, this sensitivity to tissue microstructure can be probed with NMR for 

diffusion times t ~ 1 − 1000 ms, corresponding to a diffusion length (rms molecular 

displacement) ℓ(t) ~ 1 − 100 μm commensurate with cell dimensions. The resulting diffusion 

MRI (dMRI) signal, acquired over a macroscopic imaging voxel, is an indirect but powerful 

probe into neuronal structure at the scale ℓ(t), 2–3 orders of magnitude below the MRI 

resolution.
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The dMRI signal is generally anisotropic (Basser et al., 1994; Beaulieu, 2002; Jones, 2010), 

non-Gaussian (Le Bihan, 1995; Kroenke et al., 2004; Assaf et al., 2004; Kiselev and 

Il’yasov, 2007; Jespersen et al., 2007, 2010; Fieremans et al., 2011; Ferizi et al., 2015; 

Veraart et al., 2016b; Jensen et al., 2016), and time-dependent (Stanisz et al., 1997; Assaf 

and Cohen, 1998; Novikov et al., 2014; Fieremans et al., 2016). Description of this complex 

process simplifies at long times t ~ 100 ms, used in clinical dMRI, when ℓ(t) ~ 10 μm 

exceeds typical neurite diameters a ≲ 1 μm. In this regime, diffusion approaches its Gaussian 

limit separately in the intra- and extra-neurite spaces, Fig. 1. Biologically distinct hindrances 

lead to coarse-grained (Novikov et al., 2016) diffusion coefficients inside (Da) and outside 

( De
‖ and De

⊥) neurites within an elementary fiber fascicle; transverse diffusion ~ a2/t ≪ Da 

inside neurites then becomes negligible (Kroenke et al., 2004). The dMRI signal (voxel-

averaged diffusion propagator) is an ensemble average over contributions of individual 

fascicles within a voxel.

Here we investigate in detail the general picture of anisotropic Gaussian compartments, Fig. 

1, as an overarching “ Standard Model”, such that previously used biophysical models 

(Kroenke et al., 2004; Jespersen et al., 2007, 2010; Assaf et al., 2004; Fieremans et al., 2010, 

2011; Zhang et al., 2012; Sotiropoulos et al., 2012; Ferizi et al., 2015; Jelescu et al., 2016a) 

follow as special cases. To set up the model, we first represent the dMRI signal, 

parameterized by diffusion weighting b = q2t and measured in the unit direction ĝ, as a 

convolution1

Sg(b) = ∫
∣ n ∣ = 1

dn 𝒫(n) 𝒦(b, g · n) (1)

between the fiber orientation distribution function (ODF) ℘(n̂) normalized to ∫ dn̂ ℘(n̂) ≡ 1, 

and the response kernel  from a perfectly aligned fiber segment (fascicle) pointing in the 

direction n̂. The kernel (b,ĝ · n̂) depends on the relative angle θ, cosθ ≡ ĝ · n̂. The general 

representation (1) gave rise to a number of methods for deconvolving the fiber ODF from the 

dMRI signal for a given |q| = q shell in q-space, using different empirical forms of the kernel 

(Tournier et al., 2004; Anderson, 2005; Tournier et al., 2007; Dell’Acqua et al., 2007; Jian 

and Vemuri, 2007; Kaden et al., 2007; White and Dale, 2009).

Our work focuses on quantifying the microstructural origins of the signal, Fig. 1, which 

dictates the kernel’s functional form

𝒦(b, ξ) = S0 f e
−bDaξ2

+ (1 − f )e
−bDe

⊥ − b(De
‖ − De

⊥)ξ2
, (2)

1The convolution is on a unit sphere |n̂| = 1 (Healy et al., 1998). We normalize dn ≡ sin θdθdϕ
4π  such that ∫ dn̂ · 1 ≡ 1, while |b=0 

= S0 ≡ S|b=0.

Novikov et al. Page 2

Neuroimage. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with ξ = ĝ · n̂, to be a sum of the exponential (in b) contributions from intra- and extra-

neurite spaces. Here we neglect the myelin water compartment due to its short T2 time 

(Mackay et al., 1994) as compared to clinical NMR echo time TE. We emphasize that the 

fractions f and 1 − f are the relative signal fractions, and not the absolute volume fractions, 

due to generally different T2 values for the intra- and extra-neurite compartments (Dortch et 

al., 2013), and due to neglecting myelin water. Further compartments, such as isotropic 

cerebrospinal fluid (CSF), can in principle be added to kernel (2); here we will study in 

depth the two-compartment kernel (2), and will later comment on its generalizations. We 

also note that a major limitation of the kernel (2) is sharing the scalar parameter values 

among different fiber tracts passing through a voxel (Assaf and Basser, 2005; De Santis et 

al., 2016), which prompted assigning different (albeit constant) fiber responses to different 

tracts to deconvolve the ODF (Sherbondy et al., 2010; Tournier et al., 2011; Girard et al., 

2017).

The scalar parameters f, Da, De
‖ and De

⊥, and the tensor parameters (the spherical harmonics 

coefficients of the ODF ℘(n̂)), carry distinct biophysical significance. Deconvolving the 

voxel-wise fiber ODF, instead of relying on the empirical directions from the signal (1), in 

principle provides a more adequate starting point for fiber tractography, an essential tool for 

mapping structural brain connectivity and for presurgical planning (Behrens et al., 2007; 

Descoteaux et al., 2009; Farquharson et al., 2013; Sotiropoulos et al., 2013; Wilkins et al., 

2015).

The scalar parameters of the kernel (2) make dMRI measurements specific to μm-level 

manifestations of disease processes, such as demyelination (Fieremans et al., 2012; Jelescu 

et al., 2016b) ( De
⊥), axonal loss (Fieremans et al., 2012) (f), beading (Budde and Frank, 

2010) (Da), inflammation and oedema (potentially, mostly Da for cytotoxic and mostly 

De
‖, De

⊥ for vasogenic oedema (Unterberg et al., 2004)). Since the precise nature and 

pathological changes in microarchitecture of restrictions leading to Da, De
‖ and De

⊥ values are 

unknown, ideally, to become specific to pathology, one needs to estimate f, Da, De
‖ and De

⊥

separately, without constraints or priors.

Here we establish the mathematical structure of the general parameter estimation problem 

(1)–(2), reveal its hidden degeneracies, and elucidate the information content of the dMRI 

signal, in order to design a parameter estimation algorithm. The outline of our main steps 

and results is as follows:

• Scalar-tensor factorization. We factorize the model (1)–(2) in the spherical 

haromics (SH) basis, and employ rotational invariants, to separate the estimation 

of scalar parameters x ≡ {f,Da, x ≡ { f , Da, De
‖, De

⊥}} from the ODF SH 

coefficients, Sec. 2.1.

• Radial-angular connection and parameter count. We derive, using Taylor 

expansion of the model (1)–(2), the connection between the radial q-space 

sensitivity and the angular resolution for the ODF expanded in the SH basis, and 
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thus identify the physically preferred role the SH basis plays in dMRI 

acquisitions, Sec. 2.2–2.4.

• Parameter landscape. We show that the estimation of the scalar parameters in 

the space of rotational invariants is generally degenerate, and uncover the 

nontrivial topology of the parameter landscape, Fig. 2 in Sec. 4.1.

• LEMONADE (Linearly Estimated Moments provide Orientations of Neurites 

And their Diffusivities Exactly). We analytically study this topology by 

expanding the model (1) in the powers of b, deriving and exactly solving the 

system of equations relating the signal’s moments to the model parameters, Sec. 

2.5.

• Fit degeneracies as LEMONADE branches. We establish the two types of 

degeneracies, Sec. 4.1–4.2. The discrete degeneracy amounts to the two sets 

(“branches”) x± of parameters that exactly satisfy the low-b expansion of model 

(1)–(2), and fit realistic dMRI data equally well. Furthermore, these branches are 

not just isolated minima, but narrow trenches in the parameter landscape, Fig. 2; 

up to (b2), each point on a trench satisfies the model (1)–(2) exactly. This 

continuous degeneracy rationalizes poor precision in parameter estimation, tying 

it to inherently low information content of clinical acquisitions.

• Branch selection. Out of the two parameter branches, only one corresponds to 

the biophysical reality, and the other should be discarded. Branch selection is 

nontrivial, Sec. 4.4, as it depends on the ground truth values, and is generally 

brain region-specific, as we show in Figs. 3–5 based on 21-shell human dMRI 

with b ≤ 10 ms/μm2.

• Algorithm. We designed a nonlinear estimation algorithm that is initialized 

using the selected branch. We produce parameter maps (Fig. 3), their histograms 

(Fig. 4) and ROI bar plots (Fig. 5), as well as fiber ODFs and tracts reconstructed 

via locally estimated kernels (2), Fig. 6.

• Finally, in Sec. 5 we discuss noise propagation, ways to improve precision by 

using “orthogonal” acquisitions, and critically assess the previously used 

constraints, Fig. 7.

2. Theory

2.1. Scalar-tensor factorization and rotational invariants

Signal (1) factorizes in the SH basis for any kernel  (Healy et al., 1998; Tournier et al., 

2004; Anderson, 2005; Jespersen et al., 2007; Jian and Vemuri, 2007; Dell’Acqua et al., 

2007),

Slm(b, x) = plm Kl(b, x) . (3)

Here Slm and plm are the SH coefficients of the signal S and of the ODF
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𝒫(n) ≈ 1 + ∑
l = 2, 4, …

lmax
∑

m = − l

l
plmY lm(n), (4)

up to order lmax which practically depends on the dMRI sampling and signal-to-noise ratio 

(SNR), as it will be discussed below. The functions Kl(b, x) are projections of our model 

kernel (2) onto the Legendre polynomials (Eq. (A.2) in Appendix A) for a given set 

x = { f , Da, De
‖, De

⊥} of scalar parameters.

To factor out the dependence on the choice of the physical basis in three-dimensional space 

(via m = −l ...l), recall that any rotation corresponds to an orthogonal transformation on the 

(2l + 1)-dimensional vectors Slm and plm, belonging to the irreducible representation of the 

SO(3) group of rotations of weight l. Hence, the 2-norms ‖Sl‖
2 = ∑m = − l

l ∣ Slm ∣2 and 

‖pl‖
2 = ∑m = − l

l ∣ plm ∣2 do not depend on the choice of the physical basis. Introducing 

basis-independent rotational invariants

Sl ≡ ‖Sl‖/𝒩l, pl ≡ ‖pl‖/𝒩l, 𝒩l = 4π(2l + 1) (5)

of the signal and ODF [cf. (Kazhdan et al., 2003) for using such approach for image 

matching in computer vision, (Mirzaalian et al., 2016) for dMRI data harmonization, and 

(Reisert et al., 2017) for the related machine-learning dMRI parameter estimation 

framework], the ODF SHs plm are factored out:

Sl(b, x) = plKl(b, x), l = 0, 2, … . (6)

Here, p0 ≡ 1 (ODF normalization); the remaining ODF invariants, one for each l, 
characterize its anisotropy, with the normalization factor l chosen so that 0 ≤ pl ≤ 1 (cf. 

Appendix B).

It now appears logical to first estimate the scalar parameters x, together with just a few 

basis-independent pl, l = 2,..., from the greatly reduced system of equations (6), one for each 

l. A standard way to solve any such nonlinear system is to minimize the corresponding 

“energy” function

F2(x, {pl}) ≡ 1
(1 + L

2 )Nb
∑

l = 0, 2, …

L
∑
j = 1

Nb
wl j[Sl(b j, x) − plKl(b j, x)]2 (7)
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with respect to x and a few pl, l = 0, 2,..., L. We will refer to Eq. (7) as the rotationally 

invariant (RotInv) nonlinear objective function for minimization. Here bj are the radii of Nb 

shells in q-space for a uniform spherical sampling; all units for diffusion coefficients and for 

1/b are μm2/ms hereon. The weights wl j = 1/σl j
2  are chosen for the optimal precision, in 

terms of the effective noise variances σl j
2 (2l + 1)/N j in each shell, after estimating 2l +1 

independent parameters plm over the Nj diffusion directions in the shell b = bj.

The estimated scalar parameters x will allow us to reconstruct the kernel components Kl(b, 

x), and to subsequently evaluate all ODF coefficients plm using Eq. (3), based on the linearly 

estimated Slm from the measured signal — much like in a spherical deconvolution approach 

(Tournier et al., 2004, 2007), albeit with the voxel-wise, rather than globally estimated 

kernel (2), cf. (Anderson, 2005; Barmpoutis et al., 2009; Schultz and Groeschel, 2013).

While the above rotationally invariant framework looks conceptually simple and completely 

general [cf. (Anderson, 2005; Jespersen et al., 2007; Reisert et al., 2017)], the rest of this 

paper will be devoted to uncovering and resolving hidden degeneracies of parameter 

estimation problem (1) because of the kernel (2) specific to multi-compartmental diffusion 

in neuronal tissue. Understanding these degeneracies is essential for proper initialization 

and/or constraining any kind of solution for nonlinear system (6), e.g. via minimization of 

Eq. (7), or by machine learning methods (Reisert et al., 2017). This is especially relevant 

because it has been known all too well that direct nonlinear fitting of model (1)–(2) to 

realistic noisy data is unreliable. Hence, parameter estimation from clinical acquisitions has 

so far reverted to making severe restrictions on the ODF shape: either assuming a highly 

aligned bundle (Fieremans et al., 2010, 2011, white matter tract integrity (WMTI)), or a 

special Gaussian-like ODF shape characterized by one (Zhang et al., 2012, NODDI) or two 

(Tariq et al., 2016) parameters, in order to reduce the dimensionality of the problem by an 

order of magnitude.

Furthermore, the problem (7) has multiple degenerate minima, as we will investigate in 

detail below in Sec. 4, cf. Fig. 2. This echoes our previous recent study, where, even 

assuming the simplest, 1-parameter ODF shape (Zhang et al., 2012), unconstrained 

nonlinear fitting reveals multiple biophysically plausible minima in the (4+1) - dimensional 

parameter space, and flat directions along them (Jelescu et al., 2016a). Fixing all diffusion 

coefficients in Eq. (2) and ODF shape ℘(n̂) in Eq. (1), as done in NODDI (Zhang et al., 

2012; Tariq et al., 2016), introduces a priori unknown bias (Jelescu et al., 2016a) for the 

remaining few parameters, and thereby leads to the loss of specificity — the main 

motivation for employing microstructural modeling. For example, diffusivity changes were 

recently found (Khan et al., 2016) in regions with no detectable neurite density changes; 

these details would otherwise have been lost or attributed to other parameters in an analysis 

using fixed diffusivities.

To understand analytically the information content of our acquisitions, in the rest of this 

Section we analyze the parameter estimation for the model (1)–(2) perturbatively in b. This 

approach is based on the Taylor expansion of the signal (1)
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Sg(b)
S0

= 1 − bMi1i2
(2) gi1

gi2
+ b2

2! Mi1…i4
(4) gi1

…gi4
− … (8)

in the fully symmetric moment tensors Mi1…il
(l) . (Einstein’s convention of summation over 

repeated indices is assumed hereon.) The expansion in moments has a one-to-one 

correspondence with the cumulant expansion of ln Sĝ (b) (Kiselev, 2010), and is also 

equivalent to Taylor-expanding the above nonlinear equations (3), (6), and (7), matching the 

moments of the signal and of the model at each order in b.

The perturbative approach, which we develop term-by-term in b, is useful in the three ways. 

First, it enables us to elucidate the role of the order lmax in Eq. (4), via the radial-angular 

connection in the q-space, Sec. 2.2, and to count the number Np(lmax) of model parameters, 

which depends on the maximal even power lmax of the diffusion weighting qlmax ~ blmax/2 to 

which an acquisition is sensitive, at a given signal-to-noise ratio (SNR), Sec. 2.4. Second, it 

helps us to develop intuition by analytically studying the problem’s degeneracies, Sec. 2.5, 

which will qualitatively persist in the subsequent full non-perturbative numerical treatment. 

Third, it will help initialize the full, non-perturbative numerical parameter estimation, Eq. 

(7) above.

2.2. Radial-angular connection in the q-space

Expanding the model (1)–(2) in the powers of b, one can readily see that moments Mi1…il
(l)

are proportional to angular averages 〈ni1 ... nil 〉 over the ODF ℘(n̂). This follows from 

expanding the exponential terms containing ξ = nigi in kernel (2), so that subsequent terms 

have the form b〈ninj〉gigj, b2〈ni1 ... ni4 〉 gi1 ... gi4, etc (cf. Appendix C for explicit formulas 

up to l = 6).

It is crucial that the maximal even order l of the product 〈ni1 ... nil 〉 always appears with the 

corresponding power ql ~ bl/2 of the diffusion weighting. This observation underpins the 

perturbative radial-angular connection in the q-space: Practical sensitivity to the maximal 

order qlmax automatically sets the sensitivity to the maximal order 〈ni1 ... nilmax 〉 of the ODF 

average, and, therefore, to the maximal order lmax in its SH expansion (4). This key relation 

between the expansion (8) of the signal (1) and of the ODF (4) rests on the fact that linear 

combinations of symmetric tensors ni1 ... nil form the SH set Ylm(n̂) (cf. Eq. (C.3) in 

Appendix C). Therefore, linear combinations of the ODF averages 〈ni1 ... nil 〉 correspond to 

the ODF SH coefficients plm.

The physical coupling between products qi1 ... qil in q-space imaging (Callaghan et al., 

1988) and the ODF averages 〈ni1 ... nil 〉 emphasizes the preferred role the SH basis plays in 

dMRI. Essentially, the q-space measurement directly couples to the SH basis coefficients. 

Since we do not know the functional form of the ODF shape a priori, we cannot claim that 

we are able to determine ODF sharper than what is permitted by the practical sensitivity to 

the corresponding order qlmax.
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Hence, if our acquisition is only sensitive to, e.g. (q4 ~ b2) (equivalent to diffusion kurtosis 

imaging, or DKI (Jensen et al., 2005)), parametrizing the ODF with plm with l > 4 would 

amount to ODF overfitting. Conversely, apparent sensitivity to plm up to order, e.g., lmax = 6, 

is equivalent to the presence of notable (b3) contributions for a given b-shell (at a given 

SNR level). At finite b, the corresponding Kl(b) values numerically connect the radial and 

angular sensitivities in the q-space. We will turn to this point in Discussion, Sec. 5.1.

2.3. Parameter count: Signal via its moments, term-by-term

Let us count the number of parameters in expansion (8) as a function of the maximal order 

lmax. A term Mi1…il
(l)  of rank l is a fully symmetric tensor, which can be represented in terms 

of symmetric trace-free (STF) tensors of rank l, l − 2, ..., 2, 0. Each set of STF-l tensors 

realizes a 2l + 1-dimensional irreducible representation of the SO(3) group of rotations, 

equivalent (Thorne, 1980) to the set of 2l+1 SH Ylm (cf. Appendix C). Hence, the total 

number of independent components in the rankl moment (or cumulant) is 

nc(l) = ∑l′ = 0, 2, …
l (2l′ + 1) = 1

2(l + 1)(l + 2). Truncating the series (8) at l = lmax means that 

we determine all components of Mi1…il
(l)  for l = 0,2,...,lmax, with the total number of 

independent, i.e. “informative”, components

Nc(lmax) = ∑
l = 2, 4, …

lmax
nc(l) = 1

12 lmax
3 + 5

8 lmax
2 + 17

12 lmax (9)

corresponding to Nc = 6, 21, 49, 94 ... for lmax = 2, 4, 6, 8 ... . (We did not include the 

unweighted S 0 in our counting.) Eq. (9) returns familiar numbers of DTI, DKI, etc 

components, which can be practically estimated via polynomial regression of ln Sĝ (b).

2.4. Parameter count: Model (1)–(2), term-by-term

So far, we counted the parameters of the representation (8) of the signal in terms of its 

moments. This representation is completely general — it only respects the time-reversal 

symmetry of the problem (only even orders l are included). We now count the number of 

parameters defining the biophysical model (1)–(2) with ODF (4) up to lmax. The Ns = 4 

scalar parameters from kernel (2) in the absence of CSF (or Ns = 5 if the CSF compartment 

is added), are complemented by lmax(lmax + 3)/2 tensor parameters plm, obtained as 

∑l = 2, 4, …
lmax (2l + 1) ≡ nc(lmax) − 1 (since p00 ≡ 4π is set by the ODF normalization), yielding

N p(lmax) = Ns + lmax(lmax + 3)/2. (10)

Hence, Np = 9, 18, 31, 48, ... for lmax = 2, 4, 6, 8, ... already for the two-compartment kernel 

(2), without including S0 and CSF fraction in the count.
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Equation (10) reveals that the model complexity grows fast, as lmax
2  due to the ODF, if we 

are to account for the rich orientational content of the realistic fiber ODFs in the brain. For 

the achievable lmax ~ 4–8, the dMRI signal in principle “contains” a few dozen parameters, 

none of which are known a priori.

A superficial reason for poor fit quality is the high dimensionality (10) of the parameter 

space. However, comparing Nc(lmax) with the corresponding number of model parameters 

Np(lmax), it naively looks like the series (8) is overdetermined, Nc ≥ Np, already for lmax ≥ 4 

— meaning that the acquisition looks sufficiently informative starting from the DKI level.

Unfortunately, this simplistic parameter count does not present the full picture, as the 
information content is not evenly distributed among all the Nc(lmax) components. It turns out 

that for lmax = 4 (DKI), there are not enough relations for scalar model parameters x, while 

too many for tensor parameters plm. All model parameters can be determined from the series 

(8) only starting from lmax ≥ 6, as we will now explain.

2.5. Perturbative approach to model (1)–(2): LEMONADE

In Appendix C, we derive the LEMONADE system of equations (C.6), relating the linear 

combinations of the signal’s moments to the model parameters. The rotationally invariant 

form of the LEMONADE system, one of the central results of this work, is as follows:

M(2), 0 = f Da + (1 − f )(3De
⊥ + Δe) (11a)

M(2), 2

p2
= f Da + (1 − f )Δe (11b)

M(4), 0 = f Da
2 + (1 − f ) 5De

⊥2 + 10
3 De

⊥Δe + Δe
2 (11c)

M(4), 2

p2
= f Da

2 + (1 − f ) 7
3De

⊥Δe + Δe
2 (11d)

M(6), 0 = f Da
3 + (1 − f ) 7De

⊥2(De
⊥ + Δe) + 21

5 De
⊥Δe

2 + Δe
3 (11e)
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M(6), 2

p2
= f Da

3 + (1 − f ) 21
5 De

⊥2Δe + 18
5 De

⊥Δe
2 + Δe

3 . (11f)

Here Δe ≡ De
‖ − De

⊥. The system (11) involves rotationally invariant components M(L),l 

[defined in Eq. (C.7)] of the tensors Mi1…il
(l) , up to minimal orders L ≤ 6 and l ≤ 2, enough to 

find all 4 scalar kernel parameters x, and ODF anisotropy invariant p2.

The first four LEMONADE equations, corresponding to lmax = 4, contain 5 unknowns. 

(Introducing an extra equation M(4),4 ∝ p4 does not help, as it introduces yet an extra 

unknown ODF invariant p4.) This is why the lmax = 4 acquisition, equivalent to relying on 

the signal’s curvature, or kurtosis, is fundamentally insufficient. This is an important 

fundamental limitation for the parameter estimation in the Standard Model.

The full system’s 6 equations are in principle enough to determine 5 model parameters; even 

with added CSF compartment with its fraction and an isotropic DCSF = 3 μm2/ms, one could 

in principle still determine the 6 parameters from the appropriately modified system (11). At 

the lmax = 6 level, one could introduce even more equations: M(6),4 ∝ p4, or M(6),6 ∝ p6, at 

the expense of extra unknown ODF invariants p4 and p6. Practically, they would rely on the 

components M(L),l with high l, which are less accurately estimated. Tying pl with different l 
to each other could be a way to increase precision, but at the expense of constraining the 

ODF shape to a particular functional form. Therefore, the LEMONADE system (11) is 

minimally complex yet still fully unconstrained. LEMONADE is solved exactly in Appendix 

D, and its output is subsequently used to initialize the subsequent nonlinear minimization, 

Eq. (7) in Sec. 2.1 above.

Crucially, LEMONADE, and hence the original nonlinear problem (7), has multiple 

biophysically plausible solutions. The choice of the physical solution, to initialize problem 

(7), is nontrivial, Sec. 4.1; in Sec. 4.4 below we will rationalize our recipe for making such 

selection voxel-wise. In the Methods, Sec. 3.4 and Fig. 3, we summarize all RotInv 

computational steps.

3. Methods

3.1. In vivo dMRI

Three healthy volunteers underwent imaging on a Siemens Prisma 3T whole-body MRI 

scanner. The study was approved by the local Institutional Review Board, and informed 

consent was obtained and documented from all participants. The MRI scanner was equipped 

with a 80 mT/m gradient system and a 64-channel receiver head coil. The body coil was 

used for transmission. A monopolar diffusion-weighted EPI sequence was used to acquire 

the dMRI data. Diffusion weighting was applied along 64 isotropically distributed gradient 

directions for each of the 21 b-values equidistantly distributed in the range [0 : 0.5 : 10] ms/

μm2. Following imaging parameters were kept constant throughout the data acquisition 

sequence: TR/TE : 4000/105 ms, matrix: 80 × 80, NEX: 1, in-plane resolution: 3 × 3 mm2, 
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slice thickness: 3 mm, slices: 38, parallel imaging: GRAPPA with acceleration factor 2, 

reconstructed using the adaptive combine algorithm to ensure Rician data distribution, 

multiband acceleration with factor 2, and no partial Fourier. Total scan time was just below 2 

hours per person.

3.2. Image processing

MP-PCA noise estimation and denoising method (Veraart et al., 2016a,c) allowed us to 

preserve only the significant principal components and to strongly reduce the noise in the 

data and to estimate spatially varying noise map. The positive signal bias, inherent to low-

SNR magnitude MR data, was removed by using the method of moments (Koay and Basser, 

2006), where the denoised signal was used as a proxy for the Rician expectation value. 

Denoised and Rice-floor-corrected images were subsequently corrected for Gibbs ringing 

(Kellner et al., 2016), geometric eddy current distortions and subject motion (Andersson and 

Sotiropoulos, 2016).

3.3. Estimating moments from dMRI signal

Expansions in moments and in cumulants are mathematically equivalent; the combinatorial 

relation between moments and cumulants (“linked cluster expansion”) was established in 

statistical physics (Mayer and Montroll, 1941), and is reviewed in (Kiselev, 2010). While 

expanding in moments (8) is the most optimal for the analytical treatment (contributions 

from different tissue compartments add up), we observe that estimation from the dMRI 

signal is more accurate from the cumulant series. Hence, for accuracy, we first estimate the 

cumulant tensors C(l)

ln
Sg(b)

S0
= − bCi1i2

(2) gi1
gi2

+ b2Ci1…i4
(4) gi1

…gi4
− … (12)

and the unweighted S0, via b-matrix pseudoinversion applied to ln Sĝ (b), with voxel-

specific weights (Veraart et al., 2013) up to lmax = 6. We then convert Ci1…il
(l)  to the moments 

Mi1…il
(l)  as derived in Appendix E. For unbiased estimation, we use only shells within 0 ≤ b ≤ 

2.5, where the cumulant series is expected to converge.

3.4. Implementation and computation time

Processing steps (Fig. 3) were implemented in Matlab (Math-Works, Natick, MA, USA), 

according to Eqs. (12), (C.5), (C.7), and (D.1)–(D.7) using standard library functions, and 

the Levenberg-Marquardt algorithm for subsequent nonlinear minimization of Eq. (7) 

initialized by LEMONADE output x and p2. For the whole brain (34383 voxels within the 

WM+GM mask for subject 1, at our relatively coarse resolution) on a desktop iMac (4 

cores), it took under 2 min for estimating the cumulants using the b-matrix pseudoinversion 

with the voxel-specific weights (Veraart et al., 2013), together with recalculating the 

moments (C.5) from the cumulants, Appendix E (only the range b ≤ 2.5 was used for 
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unbiased estimation); 1.5 min for LEMONADE calculation (both branches); and ~ 5 min for 

nonlinear fitting, Eq. (7), including all shells, using the corresponding LEMONADE solution 

(Sec. 4.4) as fit initialization. Nonlinear fitting achieves speedup because of the initial values 

being already quite close to the minima of F; we also precomputed corresponding integrals 

(A.2) and their first derivatives in a broad range.

4. Results

4.1. Topology of parameter landscape

The contour plots of values of RotInv energy function F, Eq. (7), shown in Fig. 2 (cf. also 

Supplementary Figs. S.1–S.2 for more examples), illustrate that the minimization landscape 

is generally quite flat in at least 1 dimension, and there exist multiple minima. We 

emphasize from the outset that these degeneracies are intrinsic to the problem (1)–(2), and 

are not introduced by the above RotInv framework or the particular way (7) of solving the 

system (6). Rather, this framework allows us to uncover their general origin – namely, the 

multi-compartmental character of the kernel (2).

We now focus on the topology of the low-energy landscape of F in order to understand 

degeneracies in parameter estimation, which is crucial for initializing the search for 

parameters x within the biophysically correct domain, and for speeding up the solution of 

system (6). As mentioned in Theory Section above, our analytical method to study this 

topology, is to approximate the signal (1) by its low-b expansion (8), whose consecutive 

terms are equivalent to diffusion tensor imaging (DTI, ~ b), diffusion kurtosis imaging (DKI, 

~ b2), etc. Empirically, it is known that DKI (Jensen et al., 2005) approximates clinical 

dMRI signal (bmax ~ 1 – 2) quite well, further justifying studying the series (8) up to (b2), 

and perhaps, up to (b3).

For low enough b (typically used in the clinic), nonlinear fitting (7) practically corresponds 

to matching first few moments of the signal (8) to those of the model (1). In Sec. 2.5 above 

we exactly derived this matching, the LEMONADE system (11), for up to (b3). We can 

now calculate the dimensionality of the low-energy “attractor” manifolds in Fig. 2 by simple 

counting of equations.

Taking the l = 0 invariant alone, S 0 = K0, is exactly equivalent to isotropic (or “powder”) 

signal averaging (Jespersen et al., 2013; Lasic et al., 2014), a result subsequently used in the 

“spherical mean technique” (SMT) (Kaden et al., 2016b,a). Expanding the relation S0 = K0 

up to (b2) yields a 2-dimensional surface, in accord with the two equations (11a) (~ b) and 

(11c) (~ b2) for the 4 scalar parameters x, cf. Fig. 2a (note that isotropic averaging discards 

nontrivial pl with l > 0). This rationalizes the empirical need for the 4 – 2 = 2 constraints 

introduced in the SMT; their validity will be discussed in Sec. 5.2 below. While, 

theoretically, the l = 0 technique allows one to factor out the ODF, we can see that 

practically determining all 4 scalar parameters x from the single invariant K0 requires the 

sensitivity to the signal’s moments up to M(8) (namely, to their full traces), i.e. up to b4 in 

expansion (8), which is extremely hard to achieve. Intuitively, it is quite obvious that 

discarding the orientational content of the signal makes parameter estimation less 

informative.
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According to the analysis in Sec. 2.5 above, staying at the same level (b2), and including 

the K2(b) invariant, L = 2, adds one extra parameter p2 describing the sensitivity to the 

lowest-order ODF anisotropy, and two extra equations, (11b) and (11d), turning the surface 

into the two narrow 1-dimensional trenches in parameter space, Fig. 2b,c (the first 4 

equations of the system (11) for 5 parameters: x and p2). Having a perfectly flat trench is 

obvious from the counting of equations; getting what looks like two trenches is nontrivial.

The trenches fξ(p2) (Eq. (D.7) in Appendix D), labeled by branch index ξ = ±, Eq. (D.8), 

represent the exactly derived “flat” one-dimensional continuous manifold that involves 

rotationally invariant combinations of signal’s moment tensors M(2) and M(4). The 

parameterization of this manifold, derived as the two branches of quadratic equation (D.4), 

makes it appear within the physically meaningful domain of parameters as either one trench 

(the ξ = ± parts merge), Fig. 2a,b, or as two disjoint trenches, Fig. 2c, depending on the 

ground truth values. Physically, the dual branches come from having two tissue 

compartments, cf. the “toy model” of Appendix F. There, we emphasize that both sets of 

values (obtained after imposing an extra constraint p2 = p4 = 1 of a single-fiber case) can 

look perfectly plausible, and the “wrong” set corresponds to swapping intra- and extra-

neurite parameters — which carries the danger of misrepresenting parameter changes in 

pathology. Including the K4(b) invariant adds one extra parameter p4 and only one equation 

for M(4),4 (since Kl(b)|b→0 ~ bl/2); hence, further invariants Kl>2 do not provide extra 

equations relative to the number of unknowns up to b2.

As a result, if an acquisition is only sensitive to (b2), due to e.g. b-range or SNR limitations 

(as it is often the case in the clinic), the parameter estimation problem will be in general 

“doubly degenerate”, as we empirically observed recently for a particular ODF shape 

(Jelescu et al., 2016a): with respect to selecting the trench (discrete degeneracy), and due to 

the perfect flatness (zero curvature) along either trench (continuous degeneracy). Our exact 

solution of system (11) establishes that these two kinds of degeneracy are general “hidden” 

features of problem (1)–(2), due to every point in each branch exactly matching the b and b2 

terms in the Taylor expansion (8).

Furthermore, as already mentioned in Sec. 2.5, simplistic counting of parameters, without 

separating them into the scalar and ODF parts, can be misleading: the Nc(4) = 21 DKI 

parameters are not enough to determine the corresponding Np(4) = 18 model parameters, Eq. 

(10), since the excess parameters over-determine the ODF, whereas the kernel (2) remains 

under-determined. (This issue becomes even more severe if the kernel has more than 2 

compartments, e.g. by adding the CSF pool.) This means that, unfortunately, a popular DKI 

acquisition is not enough to resolve two-compartment model parameters due to a perfect 1-

dimensional degeneracy within a chosen trench, unless, e.g., p2 is fixed by the ODF shape: 

p2 → 1, the aligned fibers assumption (Fieremans et al., 2010, 2011) (which still then 

requires making a discrete branch choice).

We also note that including the l > 0 invariants in system (6) is only possible for anisotropic 

ODFs, with pl > 0. Physically, it is expected since the less symmetric the system, the more 

inequivalent ways it enables for probing its properties; this intuition has had far-reaching 

consequences in quantum theory of excitations of non-spherical nuclei (Bohr and Mottelson, 
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1998). For our classical physics purposes, it means that it is overall harder to determine 

parameters of gray rather than white matter. Fortunately, in the brain, ODF is at least 

somewhat anisotropic; the anisotropy parameter p2 is generally nonzero even in the gray 

matter, as we can see a posteriori, cf. Figs. 3–5.

4.2. Bimodality of parameter estimation in human dMRI

In Figures 3 and 4 we demonstrate the double degeneracy of parameter estimation problem 

(1)–(2), anticipated from topology of Fig. 2, using a dedicated human dMRI acquisition (cf. 

Methods). We first solve the LEMONADE system (11) (using subset with b ≤ 2.5), map all 

parameters (cf. Fig. 3 lemo ±), and plot histograms for its both branches 

{ f , Da, De
‖, De

⊥, p2}
ζ = ± (red and blue dotted lines in Fig. 4) in white matter (WM, ~ 11,000 

voxels), and in gray matter (GM, ~ 13,000 voxels), selected using probability masks. (WM 

mask was further thresholded by FA > 0.4 to exclude partial volume effects.)

We then use pairs of LEMONADE solutions with ξ = ± in each voxel to initialize the full 

gradient-descent nonlinear Rot-Inv minimization (7), for which all the data with b ≤ 10 is 

used (cf. Fig. 3 RotInv ±). This leads to the corresponding shaded histograms in Fig. 4. We 

can see that the output of full optimization (7) is qualitatively similar to that based on the 

Taylor expansion (8), with bimodal parameter histograms corresponding to the fundamental 

degeneracy of the parameter landscape corresponding to the two distinct branches of 

solutions.

Our analysis shows that the two branches are qualitatively distinct in the following ways: f+ 

> f−; also, usually, Da > De
‖ for ξ = + and Da < De

‖ for ξ = − (cf. Eq. (13) below). Generally, 

neither solution can be discarded based on parameter values alone, as they often fall within 

plausible biophysical bounds 0 < D ≲ 3 and 0 < f < 1. (We show up to D = 4 to illustrate the 

role of noise in broadening the histograms.) Figure S.4 in Supplementary Section S.3 shows 

that improvement in accuracy gained by nonlinear minimization (7) relative to LEMONADE 

occurs because small errors in estimated moments in the finite range of b translate into 

greater errors in the LEMONADE solutions, mostly due to errors in estimating the moment 

tensor M(6).

4.3. Branch index ξ in terms of ground truth parameters

Our analysis in Fig. 3 (cf. branch column) and in Fig. 4 highlights the stability of the branch 
index ξ: The exact bimodality, following from the topology of minimization landscape at 

low b, still affects parameter estimation even at very high b, since the (b3) terms and 

beyond generally result in a local minimum in either trench. Hence, branch assignment is 

akin to a discrete topological index, characterizing which part of the parameter space a given 

imaging voxel belongs to, based on its ground truth values.

In Appendix D, Eq. (D.8), we derive that the choice of the ξ = + branch corresponds to the 

ratio β between ground truth compartment diffusivities falling within the interval
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4 − 40
3 < β < 4 + 40

3 , β =
Da − De

‖

De
⊥ , (13)

and the ξ = − branch should be chosen otherwise.

Branch choice is nontrivial because we a priori do not know the ground truth values Da, De
‖

and De
⊥ entering Eq. (13); besides, these values may generally vary across the brain, and be 

altered in pathology. Noise may affect estimated diffusivities enough to switch the estimated 

branch ratio β (Figs. 3–5 and S.4), which is particularly noisy due to the division by a small 

De
⊥ and its imprecise estimator.

4.4. Branch selection

Sensitivity to (b3) terms and beyond, ideally, will determine which branch ξ = ± is the 

correct one, as well as the true minimum (solution) along this branch. Practically, however, 

branch selection from realistic noisy data turns out to be quite challenging. Relying on very 

large b data is also tricky: the scaling (Veraart et al., 2016b; McKinnon et al., 2016) 

S f / bDa for bDa ≫ 1 is similar for both branches, since f+ > f− and Da+ > Da−, 

compensating each other’s effect. (Note, however, the 1/b-scaling of the ODF variance 

suggested in (Veraart et al., 2016b) as a method to uncouple f and Da; the precision of this 

uncoupling has so far been generally not enough to make a decisive branch choice for single 

fiber populations in WM.)

For now, to get the best available proxy for the ground truth, and to select the branch, we use 

our wide-b-range dedicated dMRI acquisition and calculate the scalar parameters 

independently of the branch location, solely based on the prevalence. In order to not bias our 

outcome on the branch choice, for each voxel, we initialize the problem (7) using 100 

random starting points within the biophysically plausible parameter range (such as 0 < f, p2 

< 1, and 0 < D < 3 for all diffusivities), observe that the fit outcomes typically cluster around 

a few points in the parameter space, and select the mean of the largest cluster (after 

excluding the outcomes outside the plausible bounds). An increasing b-range broadens the 

basin of attraction of the true minimum in a model calculation (Jelescu et al., 2016a). 

Supplementary Fig. S.4 justifies this method using simulations for a range of ground truth 

values with added noise. Certainly, this method may still fail in some voxels, but the overall 

maps (Fig. 3 bottom row, and Fig. 6c) look sufficiently smooth and biophysically plausible. 

While we do not have an independent validation method for the prevalence parameters, we 

performed the prevalence calculation for all three subjects and observed that the prevalence 

maps and histograms are similar, as are their ROI values (Fig. 5).

Histograms of branch ratio (13) in Fig. 4, as well as branch maps in Fig. 3, unfortunately 

yield no clear branch selection depending on the ROI. It looks like the left inequality, 

4 − 40/3 < β, is practically most often choosing the branch, but this choice is inconclusive, 

cf. bottom two rows in Fig. 5 —presumably, due to the ground truth values varying across 
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the brain, and because of the effects of the noise in estimating the three diffusivities. (Since 

typical De
⊥ ≲ 0.5, the left inequality may be practically often identified with 

ζ = sgn (Da − De
‖); however, the exact branch selection involves all three diffusivities.) There 

is a cluster of voxels with Da ≈ De
‖ such that β ≈ 4 − 40/3 ≈ 0.35 (cf. also Fig. 7); for those, 

branches merge since the discriminant  → 0, Eq. (D.6), and both estimated parameter sets 

coincide.

Prevalence calculations take long time. Practically, since we cannot so far see any obvious 

“global” branch selection method, we tested choosing the branch voxel-wise, based on 

having the two redundant LEMONADE equations (11e) and (11f) for M(6),0 and M(6),2. As 

described at the end of Appendix D, their independent solutions for p2 (after excluding all 

scalar parameters using the first 4 LEMONADE equations), which we label p2ζ
(6), 0 and 

p2ζ
(6), 2, produce the corresponding sets xζ

(6), 0 and xζ
(6), 2 of scalar parameters, for both 

branches. Only the correct solution would yield the same set of parameters 

xζ ≡ xζ
(6), 0 = xζ

(6), 2 when using either of these two equations. Noise inevitably causes the 

discrepancy between the solutions xζ
(6), 0 and xζ

(6), 2 even for the correct branch ξ; however, 

for sufficiently small noise, these solutions in the correct branch will be closer to each other 

than those for the wrong branch. This branch choice, cf. Appendix D, is reasonable for SNR 

= 100 (and not very conclusive for the SNR = 33), Supplementary Fig. S.4. Its output, taken 

as the mean between the sets xζ
(6), 0 and xζ

(6), 2 for the chosen ξ is shown in Fig. 3 (lemo ξ 

row), and Fig. 4 (dashed green lines). We then use it to initialize the full nonlinear RotInv 

problem (7), which leads to the output marked by RotInv ξ in Fig. 3 and by solid green lines 

in the histograms of Fig. 4. We can see that this output generally matches quite well the 

results of the prevalence method. Furthermore, we observe strong similarity in the ROI-

averaged values between both methods, Fig. 5 and Supplementary Fig. S.3.

4.5. ODF and fiber tracking using locally estimated kernels

Figure 6b demonstrates that fiber ODFs (right panel), calculated using factorization relation 

(3), are notably sharper than the “reference” signal ODFs (left panel). Here, we calculated 

the SH coefficients of the reference signal ODF ℘(0) via plm
(0) = ( − )l/2Slm, cf. Appendix G. 

The logic was to maximally preserve the “raw” diffusion-weighted signal, and to only rotate 

its l = 2,6,10,... harmonics, so that the directionality of the resulting ℘(0) mimics that of the 

genuine fiber ODF, while the blurring due to the diffusion is preserved. We notice that the 

projections (A.2) of the kernel onto the Legendre polynomials have the alternating sign 

(−)l/2, which physically turns a prolate fiber ODF into an oblate signal. In Appendix G we 

show that such a procedure corresponds to a (de)convolution with a singular kernel, 

concentrated along the equator ξ = n̂ · ĝ = 0 of the unit sphere n̂ = 1 (relative to the diffusion 

direction ĝ), akin to the Funk-Radon transform (Tuch, 2004; Descoteaux et al., 2009; Jensen 

et al., 2016) — albeit taking a fractional derivative ∂ξ
1/2 ∣

ξ = 0 in the direction transverse to 

the equator, instead of merely averaging over the equatorial points via δ(ξ), as in the FRT. 
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Such a “blur-preserving” procedure can serve as a natural reference for the model-based 

ODF deconvolution methods. Note that the coefficients |Kl(b)| generally decrease with l. 
Therefore, dividing by the kernel Kl(b) gives larger weight (relative to (−)l/2) to the higher-

order spherical harmonics, sharpening the fiber ODF relative to ℘(0), Fig. 6b. Small spurious 

ODF peaks are intrinsic to unconstrained SH deconvolution due to low order truncation and 

thermal noise (Tournier et al., 2004), and might be further mitigated by adopting the 

constrained approaches (Tournier et al., 2007). Here, we show all parameters estimated 

without any constraints.

Fiber ODFs, rather than empirical signal ODFs, should be in principle a better starting point 

for any fiber tracking algorithm, as physics of diffusion is factored out. Figure 6c shows an 

example of the probabilistic tractography outcome, using iFOD2 algorithm with default 

settings (Tournier et al., 2010) as part of the MRtrix3.0 open source package by Tournier et 

al. (2012, www.mrtrix.org), relying on ODFs (4) using locally estimated kernels (2) via Eq. 

(3), with the scalar parameters and p2 drawn on the streamlines. Furthermore, voxel-wise 

estimated f,Da, De
‖, De

⊥ and plm can serve as a starting point for mesoscopic global fiber 

tracking (Reisert et al., 2014) that can provide further regularization of problem (1)–(2) by 

correlating over adjacent voxels.

5. Discussion

The rotational invariant framework for the overarching model (1) generalizes previous 

methods which constrained parameter values or ODF shape, reveals a nontrivial topology of 

the fitting landscape, and explains its degeneracies, and associated issues with accuracy and 

precision in modern quantitative approaches to dMRI-based neuroimaging.

5.1. Parameter values

We observe that scalar parameter values in Fig. 3 (especially RotInv ξ and prevalence) 

exhibit WM/GM contrast, with the T2-weighted axonal water fraction f highest in major 

tracts, approaching 0.7 – 0.8. The neurite fraction drops significantly in GM, down to about 

0.2, in agreement with the recent study based on isotropic diffusion weighting (Lampinen et 

al., 2017). There could be a number of explanations to this observation. First, the T2 values 

in extra- and intra-neurite spaces are generally different, which re-weighs the compartment 

fractions. In fact, in our recent RotInv-based work (Veraart et al., 2017), where we varied 

echo time for probing compartment T2 values, we generally found T2
a > T2

e for WM, 

effectively increasing the T2-weighted fraction f in WM; this balance may be different in 

GM. Second, water within cell bodies in GM may effectively add to extra-neurite fraction 

(Chklovskii et al., 2002). Furthermore, such low fraction could be rationalized if some of 

neurites (e.g. dendrites or glia) happen to be in the intermediate or even fast water exchange 

regime as recently argued by (Yang et al., 2017); in this case, the low f ~ 0.2 could be 

dominated by myelinated axons whose fraction is lower in GM. In that case, model (1) for 

GM should be augmented by incorporating exchange and possibly time-dependence of 

effective diffusion metrics (Novikov et al., 2014; Fieremans et al., 2016).
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Scalar parameters x do not abruptly differ between corpus callosum and the crossing regions 

such as centrum semiovale, cf. Fig. 6c, emphasizing that our approach is able to separate the 

spatially varying orientational dispersion ℘(n̂) from the kernel . Conversely, p2 drops 

significantly in WM crossing regions, Fig. 6c (panel p2), as well as in GM (Fig. 3 and Fig. 

6a). Typical fiber orientation dispersion angle θdisp, calculated as θdisp ≡ cos−1 〈 cos2 (θ)〉, 

cf. Eq. (B.2) in Appendix B, delineates major WM tracts in Fig. 6a; the values θdisp ≈ 20° in 

genu and splenium agree remarkably well with the range 14° – 22° observed recently from 

NAA diffusion and from histology in human corpus callosum (Ronen et al., 2014). Even 

stronger orientational dispersion occurs in other WM regions, stressing the need to account 

for it (Zhang et al., 2012; Tariq et al., 2016; Ferizi et al., 2015).

Relation (3) describes how fast the signal’s harmonics Slm decrease as function of l. As an 

estimate, for a HARDI shell of b = 3, assuming Da ≈ De
‖ ≈ 2 and neglecting De

⊥, we 

numerically find (−)l/2Kl ≈ {0.36, 0.14, 0.055, 0.019, 0.0055, 0.0014} for l = 0,2,...,10. This 

calculation gives an estimate of the highest SH order l to be observed in the signal S lm, as 

function of SNR, assuming that plm are not small, and suggests lmax = 6 – 8 as a practical 

upper bound at typical in vivo SNR values, in agreement with numerical estimates (White 

and Dale, 2009) and an observation in voxels with single fiber populations (Tournier et al., 

2013). Conversely, the same estimate tells that at reasonable SNR, involving the S4(b) signal 

invariant to estimate scalar parameters may help only marginally (we did not see practical 

difference with our MRI data), while higher-order Sl(b) will likely drown in the noise. The 

decrease of Kl(b) with l and b embodies a non-perturbative analog of the perturbative radial-

angular connection (Sec. 2.2).

5.2. Parameter (in)dependence and possible constraints

Overall, we find that all three diffusivities generally vary across brain. We also observe that 

Da is estimated more precisely than De
‖ and De

⊥ (cf. Fig. S.4 in Supplementary Sec. S.3). This 

can be expected due to the extra-neurite space being suppressed by the factor e
−bDe

⊥
 relative 

to the intra-axonal one, cf. Eq. (2). Scatter plots in Fig. 7 confirm that De
‖ and De

⊥ should be 

generally estimated independently, since neither of the widely employed constraints of 

NODDI and SMT, De
‖ = De

⊥/(1 − f ), Da = De
‖ (Alexander et al., 2010; Zhang et al., 2012; 

Tariq et al., 2016; Kaden et al., 2016a) and Da = De
‖ = 1.7 (Alexander et al., 2010; Zhang et 

al., 2012; Tariq et al., 2016) seem to be universally valid. Given the “shallow” fit landscape, 

employing unjustified constraints generally results in notable and unpredictable bias in the 

remaining parameters, which is likely to translate is unknown biases in parameter trends 

when applied to pathologies.

We can see that the tortuosity constraint De
‖ = De

⊥/(1 − f ) (left panels in Fig. 7) is especially 

questionable: the tortuosity De
‖/De

⊥ 5 seems to be very high, as compared to the mean-field 

estimate (Szafer et al., 1995) used previously. The fact that the mean-field estimate fails, by 
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~ 100%, at the biologically relevant fiber packing densities has been previously shown both 

analytically and numerically (Novikov and Fieremans, 2012).

Whether Da = De
‖ can be adopted as a constraint at least in some regions remains 

inconclusive. To test this assumption, we solved the LEMONADE system (11) exactly under 

the additional assumption Da = De
‖, based on the first 4 equations, equivalent to 1 + d2(p2) = 

da(p2), cf. Eqs. (D.2) in Appendix D; the branch selection for the corresponding quadratic 

equation

9M(4), 0 − 5(M(2), 0)2 p2
2 + 2 9M(4), 2 − 7M(2), 0M(2), 2 p2 = 8(M(2), 2)2

is definitive in this case (always the + branch of the corresponding discriminant, since 

otherwise p2 < 0), and all parameters x are given via simple explicit expressions (D.2) based 

on the found p2. However, due to bias in the moments, as well as likely the inapplicability of 

the global constraint Da = De
‖, the parameter values remain biased so that, for instance, often 

times f > 1. This solution also proved notably less optimal for initializing the full RotInv 

estimation (7) (unphysical values in many voxels, and overall lack of agreement with the 

prevalence outcomes). These observations speak against imposing such a global constraint 

on the diffusivities.

On the other hand, there is recent evidence that Da ≈ De
‖ in rat spinal cord (Skinner et al., 

2017). Recent time-dependent diffusion study (Jespersen et al., 2017) in fixed porcine spinal 

cord favors the ζ = + branch. However, we note that spinal cord morphology, and effects of 

tissue fixation, can make these estimate sufficiently different from those in in vivo human 

brain. Overall, it remains an open question whether and by how much Da and De
‖ differ, and 

by how much each of them changes in different pathologies.

At this time, we are not aware of relations between parameters able to constrain the problem 

without introducing bias. Precision improvement can come from “orthogonal” 

measurements (Dhital et al., 2015; Szczepankiewicz et al., 2015, 2016; Lampinen et al., 

2017; Skinner et al., 2017; Dhital et al., 2017a,b) cutting through the trenches (as discussed 

below), as well as from searching for solutions within the physical parameter ranges for x 
(e.g. by creating libraries of Kl(b, x)), based on better understanding of the ground truth. 

This should be a subject of future work. 5.3. Branch selection and “orthogonal” 
measurements

Overall, our current branch choice method does not seem optimal, and we suggest that 

branch selection remains an essential problem for quantifying neuronal microstructure, to be 

ultimately validated using very strong diffusion gradients (e.g. employing unique 

Connectom scanners with gradients up to 300 mT/m), as well as adding “orthogonal” 

acquisitions such as extra-neurite water suppression by strong gradients (Skinner et al., 

2017) and isotropic diffusion weighting (Dhital et al., 2015; Szczepankiewicz et al., 2015, 
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2016; de Almeida Martins and Topgaard, 2016; Lampinen et al., 2017). In particular, 

isotropic weighting (spherical tensor encoding), yielding

S(b)/S0 = f e
−bDa + (1 − f )e

−b(De
‖ + 2De

⊥)
, (14)

seems to produce relations Da ≈ De
‖ + 2De

⊥ due to an empirically small iso-weighted kurtosis 

of signal (14) (Dhital et al., 2015; Lampinen et al., 2017; Dhital et al., 2017a). While this 

can be interpreted as favoring the ζ = + branch, this relation cannot be used as a global 

constraint: Szczepankiewicz et al. (2015) show it failing in thalamus, apparently consistent 

with the ζ = – selection in GM (note however that thalamus is a GM/WM mixture). It is also 

interesting to further investigate the branch-merging case of Da ≈ De
‖ (Skinner et al., 2017).

We also note that branch selection (13) for the unconstrained problem (1)–(2) is qualitatively 

similar but quantitatively different from that in the WMTI highly-aligned tracts case 

(Fieremans et al., 2010, 2011), cf. the toy model of Appendix F. In Fig. 3 we see that the 

lemo– branch qualitatively corresponds to the standard WMTI choice Da < De
‖, also 

preferring larger p2 (strongly aligned fibers). While qualitatively, the “wrong branch” in both 

the full model (1)–(2) and WMTI (Fieremans et al., 2011) corresponds, roughly, to swapping 

of intra- and extra-neurite parameters, there is no exact correspondence; for instance, f and 

De
⊥ are also different between the branches. The difference between WMTI and the full 

model comes from the fact that in the toy model (WMTI prototype), the perfectly-aligned 

fiber constraint p2 = p4 = 1 has been implemented, together with effectively mixing the 

LEMONADE equations with moments M(4),2m and M(4),4m. Therefore, the branch choice 

based on sgn (De
‖ − Da) is sufficiently different from that of Eq. (13).

5.4. Limitations and generalizations

Overall, our experience shows that it is quite difficult to estimate scalar parameters, even 

with a highly oversampled acquisition. The scalar-tensor factorization works in such a way, 

that while ODF parameters plm “lie on a surface”, scalar parameters are quite hidden, so that 

directional dMRI acquisition is not very sensitive to their values. Therefore, our 

unconstrained fit, Eq. (7), yields maps which for some parameters are quite noisy (Fig. 3), 

with unphysical values masked. Noise in voxelwise maps is not a bug but a feature: it arises 

from the degeneracies (“trenches”) in the landscape, Fig. 2, inherent to the general model 

(1)–(2). Similar issue has been empirically noted in the related machine-learning method 

(Reisert et al., 2017), where model degeneracies manifest themselves in priors strongly 

affecting the estimation outcome. Here, our goal has been to uncover and to understand the 

uncertainties in the unconstrained maps achieved with a very extensive directional human 

dMRI acquisition. Effect of noise is somewhat alleviated when looking through semi-

transparent-drawn tracts (Fig. 6c), where the anatomical trends in all parameters become 

particularly obvious.
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Our main limiting assumption has been that all fibers in a given voxel share the same scalar 

parameters, which may be questionable when anatomically different tracts cross. This can 

lead to particularly challenging branch selection, where some “average” values, such as 

Da ≈ De
‖, corresponding to the two branches merging, could be preferred — if fiber tracts 

belonging to different branches cross. Quantification of the role of this limitation may be 

possible with adding, say, isotropic weighting measurement to an extensive multi-shell 

protocol.

Generalizing, for any number of compartments in the kernel (2), scalar parameters can be 

determined from a set (6) of basis-independent rotational invariants. Branch-selection 

degeneracy of the scalar sector will persist for 3 or more compartments. Relating moments 

(8) to kernel parameters can be used to analyze this degeneracy. If the added compartment(s) 

are isotropic, the LEMONADE branches will correspond to the anisotropic 2-compartment 

part of the kernel , determining the respective higher-dimensional “low-energy” manifolds 

in parameter space. Methods other than gradient descent (e.g. library-based or machine-

learning (Reisert et al., 2017)) can be utilized for solving system (6); applicability of all such 

methods hinges on resolving intrinsic degeneracies for driving the estimation towards the 

biophysically correct parameter domain.

6. Outlook

Using SO(3) symmetry and representation theory, we separated the parameter estimation 

problem for neuronal microstructure into scalar and tensor (ODF) sectors. Taylor-expansion 

analysis of the scalar sector reveals a nontrivial topology of the parameter landscape, with 

the first few moments exactly determining two narrow trenches along which the parameters 

approximate dMRI measurements almost equally well. This degeneracy is intrinsic to model 

(1)–(2) with any ODF, revealing issues with accuracy and precision in parameter estimation.

Branch selection criterion (13) determines the domain for the physical solution. Our voxel-

wise LEMONADE-inspired branch choice remains to be validated by estimating ground 

truth compartment diffusivity values in animal studies, and by using strong diffusion 

gradients or alternative acquisition schemes.

Notwithstanding the branch selection uncertainty, the combination of a linearized solution 

for the moments and the subsequent nonlinear optimization gives rise to an unconstrained 

algorithm for parametric maps in the whole brain, that does not imply any parameter priors, 

and yields scalar and ODF maps in the whole brain in about 10 min on a desktop computer. 

Precision still remains a challenge due to the fundamental degeneracies of the parameter 

estimation problem. Our analysis shows that commonly used constraints between the scalar 

parameters generally do not hold, and can severely bias the remaining parameters due to the 

nontrivial topology of the minimization landscape.

We believe our approach sets the analytical foundation and poses further questions necessary 

for building an unbiased non-invasive clinically feasible mapping of key neuronal 

microstructure parameters orders of magnitude below MRI resolution, opening a window 
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into architectural, orientational and functional changes in pathology, aging and development, 

and bridging the gap between biophysical modeling, basic neuroscience, and clinical MRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Scalar-tensor factorization for the full problem (1)–(2)

Since kernel (2) is axially symmetric, it can be expanded in even-order Legendre 

polynomials Pl(ξ) (i.e. in the m = 0 SHs), as function of ξ ≡ cos θ (for given scalar 

parameters x):

𝒦(b, ξ) = ∑
l = 0, 2, …

(2l + 1)Kl(b)Pl(ξ), (A.1)

Kl(b) ≡ ∫
0

1
dξ𝒦(b, ξ)Pl(ξ) . (A.2)

Applying the SH addition formula

Pl(g · n) = 4π
2l + 1 ∑

m = − l

l
Y lm(g)Y lm

∗ (n) (A.3)

to Pl(ξ) from kernel (A.1) plugged into model (1), yields Eq. (6) of the main text, where SH 

components Slm (with even l only, due to n̂ → –n̂ symmetry) are defined in a standard way 

(note the definition of dn̂ or dĝ in footnote 1),

Sg(b) ≡ ∑
l = 0, 2, …

∑
m = − l

l
Slm(b)Y lm(g) = 4π∫

∣ g ∣ = 1
dg Sg(b)Y lm(g) . (A.4)

Rotationally invariant functions (A.2) were first analytically calculated and used by 

(Anderson, 2005) for a single-compartment kernel (2), by (Jespersen et al., 2007) for the full 

fitting (3), and later by (White and Dale, 2009; Reisert et al., 2017).

We note that the normalization of the measure dn̂ (footnote 1) with the normalization ∫ dn̂ 
℘(n̂) ≡ 1 of the ODF (4) sets ℘ ≡ 1 for the completely isotropic case, with the kernel and its 

l = 0 invariant normalized to |b=0 = K0|b=0 ≡ S0.
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Appendix B. Geometric meaning and normalization of the ODF rotational 

invariants

The normalization factor l in Eq. (5) is chosen such that the maximal value of pl is unity. 

Indeed, for the maximally anisotropic fiber ODF, with all fibers oriented along ẑ, the SH 

coefficients

plm = δm, 0 · 4π∫0
1

d cos θ Yl0(θ)δ( cos θ − 1) ≡ δm, 0 · 𝒩l,

where we used Y l0(θ) = 2l + 1
4π Pl( cos θ) and the Legendre polynomials normalization Pl(1) ≡ 

1. This yields pl ≡ 1 for all l for such a singular ODF. Less anisotropic ODFs will 

correspond to 0 ≤ pl < 1. Therefore, defined in this way, the invariants pl can serve as a 

purely geometric normalized measure for the ODF anisotropy in each SO(3) sector l, with 

all the diffusion physics factored out. The p2 invariant may be thought of as a purely 

geometric fiber fractional anisotropy, and so on.

To better appreciate the geometric meaning of pl, consider first the l = 2 case. The m = 0 SH 

component

p20 = 4π∫ dn 𝒫(n) Y20(n) = 𝒩2∫ dn 𝒫(n)P2( cos θ)

≡ 𝒩2 · 3〈 cos2 θ〉 − 1
2 ,

(B.1)

where 〈…〉 stands for taking the mean over the ODF, as before. Hence, p20/ 2 is a measure 

of the angular ODF dispersion cos2 〈θ〉. Consider now the single-fiber voxels, where one 

could approximately assume axial symmetry around the principal fiber direction; in the basis 

where the ẑ axis is along the fiber direction, the corresponding |p2m| ≪ p20, and θ is the 

angle of the ODF orientation dispersion. Therefore, p20/ 2 ≈ ||p2||/ 2 ≡ p2 is a measure of 

the fiber orientation dispersion:

〈 cos2 θ〉 ≃
2p2 + 1

3 . (B.2)

This intuition has been applied to define the axially-symmetric liquid crystal order parameter 

(Emsley, 1985), and more recently to characterize single-fiber populations in dMRI (Lasic et 

al., 2014) in the fiber reference frame. Written via the rotational invariant p2, this relation 

can be applied irrespective of the choice of the basis, applies to fibers without axial 

symmetry, and also underscores the benefit of normalizing the invariant p2 such that 0 ≤ p2 ≤ 

1.
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Likewise, pl0 = l · 〈Pl(cos θ)〉; in the fiber basis, with ||pl|| ≃ pl0 dominated by pl0 when the 

ODF is approximately axially symmetric, we obtain

pl ≃ 〈Pl( cos θ)〉, 0 ≤ pl ≤ 1. (B.3)

This relation allows one to recursively express any (even) moment 〈cosL θ〉 via the 

invariants pl, l = 2 …L, calculated in any basis. Odd-l moments vanish by inversion 

symmetry.

Appendix C. Scalar-tensor factorization for the moments: LEMONADE

Let us first give the outline of the LEMONADE derivation:

1. We relate all tensor components Mi1…iL
(L)  to the scalar parameters x and to the 

ODF SH components plm, for L ≤ lmax = 6, Eqs. (C.1). These Nc(6) = 49 

redundant relations for the Np(6) = 31 parameters embody the perturbative 

parameter count of Secs. 2.3 and 2.4. However, this large number of nonlinear 

equations makes brute-force investigation difficult.

2. This problem factorizes in SH basis, Mi1…iL
(L) M(L), lm, Eq. (C.5). Here the index 

L corresponds to the order bL/2, and index l ≤ L labels irreducible representations 

of SO(3). This transformation is the mathematical manifestation of the products 

ni1 …nil forming the set of SH, mentioned in Sec. 2.2 above. As a result, it is 

now the set of transformed tensor components M(L),lm that is related to the model 

parameters x and plm, forming the LEMON-ADE system (C.6).

3. Importantly, in this “natural” basis the problem diagonalizes: The (l,m) 

components for the M(L),lm tensors only involve the corresponding plm of the 

ODF. We can see that generally, M(L),lm are proportional to plm, and the highest 

order M(l),lm yields the highest order plm, Eq. (C.6g), —a mathematical 

formulation for the term-by-term radial-angular connection of Sec. 2.2.

4. Finally, we factor out the dependence on the choice of the basis, by writing 

system (C.6) in rotationally invariant form, cf. Eq. (5) above.

Taylor expansion of model (1)–(2) up to (b3)

To connect the moments to the model parameters, and to explore the low-energy landscape 

of the problem (6)–(7), let us expand the signal (1)–(2). The (b) term, l = 2, yields the 

diffusion tensor

Mi j
(2) ≡ Di j = f Da〈nin j〉 + (1 − f ) De

⊥δi j + Δe〈nin j〉 (C.1a)
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where 〈ninj〉 = ∫ dn̂℘(n̂) ninj and

Δe ≡ De
‖ − De

⊥ .

Expanding up to (b2) and (b3) yields the 4th and 6th order moments, correspondingly:

Mijkl
(4) = f Da

2〈nin jnknl〉 + (1 − f ) De
⊥2δ(i jδkl) + 2De

⊥Δe〈n(in j〉δkl) + Δe
2〈nin jnknl〉 ; (C.1b)

Mi1…i6
(6) = f Da

3〈ni1
…ni6

〉 + (1 − f ) De
⊥3δ(i1i2

δi3i4
δi5i6) + 3De

⊥2Δeδ(i1i2
δi3i4

〈ni5
ni6)〉

+ 3De
⊥Δe

2δ(i1i2
〈ni3

…ni6
〉 + Δe

3〈ni1
…ni6

〉 .

(C.1c)

Here symmetrization (Thorne, 1980) over tensor indices between (… ) is assumed, such that, 

for instance, S(i j)k = 1
2!(Sijk + S jik) for any tensor Si jk. Therefore,

δ(i jδkl) = 1
3 δi jδkl + δikδ jl + δilδ jk ,

〈n(in j〉δkl) = 1
6 〈nin j〉δkl + 〈nink〉δ jl + 〈ninl〉δ jk + 〈nknl〉δi j + 〈n jnl〉δik + 〈n jnk〉δil ,

(C.2)

such that δ(i jδkl)gigjgkgl = 1, 〈n(inj〉δkl)gigjgkgl = 〈ninj〉gigj. Similarly, symmetrized tensors 

in Eq. (C.1c), when convolved with gi1 …gi6, yield the respective powers of the product ĝ · 

n ̂.

In principle, one can proceed further, with the escalating complexity of relating the higher-

order moments of the signal to the nonlinear combinations of the scalar model parameters 

x = { f , Da, De
‖, De

⊥} and of the ODF averages 〈ni1 …nil 〉 ≡ ∫ dn̂℘(n̂) ni1 …nil. We would like 

to invert the above relations: to solve for the ODF expansion parameters plm and the scalar 

parameters x in terms of the moments Mi1…il
(l) , and to explore the properties of the solution.

The Nc(6) = 49 equations (C.1) provide an overdetermined nonlinear system for Np(6) = 31 

model parameters. To obtain an exact solution of this system we will utilize symmetry, by 

working in the irreducible representations of the SO(3) group, for which this challenging 

problem factorizes. We first remind of some useful facts on the SO(3) representations.
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Isomorphic SO(3) representations: STF tensors and SH basis

We will now outline how linear combinations of symmetric tensors ni1 …nil form the SH set 

Ylm, and how to form a basis in the space of symmetric moments Mi1…il
(l)  using STF tensors.

Consider any symmetric trace-free tensor Ai1…il of rank l (STF-l tensor), such that Ai1…il is 

symmetric with respect to permuting any pair of its indices, and any trace is zero, 

Ai1…in…im…ilδinim 0, 1 ≤ n,m ≤ l. It has 2l + 1 independent components; under any rotation, 

these components transform such that the STF properties are preserved. Viewed as a 2l + 1-

dimensional vector, such components transform among themselves; technically, this means 

that STF-l tensors generate an irreducible representation of the SO(3) group of rotations, of 

weight l and dimension 2l + 1 (Thorne, 1980).

The 2l + 1 SH of order l also generate an irreducible representation. Therefore, there is a 1-

to-1 mapping between STF-l tensors and SH set Ylm, −l ≤ m ≤ l. This mapping is realized 

via the special, location-independent STF-l tensors 𝒴i1…il
lm  [defined e.g. in Eq. (2.11) of 

(Thorne, 1980)], that generate SH:

Y lm(n) = 𝒴k1…kl
lm nk1

…nkl
. (C.3)

Generally, the 2l + 1 linearly independent tensors 𝒴k1…kl
lm  form the basis for STF-l tensors, 

such that Ak1…kl
= ∑m = − l

l Alm𝒴k1…kl
lm . Hence, any fully symmetric tensor Sk1…kl of rank l, 

with the number nc(l) of independent components [cf. main text, before Eq. (9)], can be 

projected on the STF-l, STF-(l – 2), STF-(l – 4), …basis 𝒴k1…kl
lm , 𝒴k1…kl − 2

l − 2m , 𝒴k1…kl − 4
l − 4, m , …, 

by taking subsequent traces, each time reducing its rank by 2: Sk1…klδkl–1kl, 

Sk1…klδkl–3kl–2δkl–1kl, and so on, so that the total number of its independent components 

∑l′ = 0, 2, …
l (2l′ + 1) is indeed given by nc(l).

l = 2 example: Diffusion tensor invariants and FA

Representing textbook-defined real-valued SH in the form Y2m(n) = 𝒴i j
2mnin j, we obtain the 

basis of 5 STF-2 tensors

𝒴i j
2, − 2 = C2 · 3

2 (δi1δ j2 + δ j1δi2),

𝒴i j
2, − 1 = C2 · 3

2 (δi2δ j3 + δ j2δi3),

𝒴i j
2, 0 = C2 · 3

2δi3δ j3 − 1
2δi j ,

𝒴i j
2, 1 = C2 · 3

2 (δi3δ j1 + δ j3δi1),

𝒴i j
2, 2 = C2 · 3

2 δi1δ j1 − δi2δ j2
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where Cl = 𝒩l/4π = (2l + 1)/4π, that form the basis in the space of all symmetric trace-free 

3 × 3 matrices. The trace-free diffusion tensor components in the STF-2 basis are therefore 

the five l = 2 components D2m = 𝒴i j
2mDi j.

Since the 2-norm in each SO(3) representation is rotation invariant (cf. Theory), the SH 

representation for the diffusion tensor yields the following two rotational invariants: the l = 0 

invariant D00 = C0δi jDi j ≡ 1
4π

tr D, and the l = 2 invariant ‖D2m‖2 ≡ ∑m = − 2
2 (D2m)2, that 

can be expressed in terms of the STF part DSTF of Di j, so that Dii
STF = 0:

tr(DSTF)2 ≡ Di j
STFDi j

STF = 2
3C2

2‖D2, m‖2, Di j
STF ≡ Di j − tr D

3 · δi j .

In the eigenbasis, where Di j = diag (λ1 λ2 λ3), tr (DSTF)2 = Σ(λi – λ̄)2, where mean 

diffusivity λ ≡ 1
3 tr D. This allows us to represent the familiar fractional anisotropy

FA =
3
2 tr (DSTF)2

1
3(tr D)2 + tr (DSTF)2 = 3‖D2m‖2

5 ∣ D00 ∣2 + 2‖D2m‖2 (C.4)

in terms of the l = 0 and l = 2 invariants, and calculate it without diagonalizing the diffusion 

tensor. Hence, using two basis-independent DTI metrics — mean diffusivity and FA — is 

equivalent to using the two SO(3) invariants of a rank-2 symmetric tensor: its trace (i.e. the 

isotropic part), and the STF invariant tr (DSTF)2 quantifying its “variance” relative to an 

isotropic tensor. (Note that, adding the third — cubic in Di j — invariant det D, which would 

contribute to the eigenvalue “skewness” ~ Σ(λi –λ̄)3, would define the three independent 

invariants of the matrix Di j, i.e. the coefficients of its characteristic polynomial, or, 

equivalently, its three independent eigenvalues.)

Likewise, for the 4th-order cumulant tensor (from which kurtosis tensor is derived), this 

approach yields 3 rotational invariants (out of total 12, cf. (Ghosh et al., 2012)): 

C(4), 0 = Cii j j
(4) (mean); C(4),2 = ||C(4),2m||; and C(4),4 = ||C(4),4m||, where C(4), 2m ∝ 𝒴i j

2mδklCijkl
(4)

and C(4), 4m ∝ 𝒴ijkl
4mCijkl

(4)  are the STF components of the tensor Cijkl
(4) . Generally, for the lth 

order cumulant, this approach would yield l/2 + 1 SO(3) invariants, which can be calculated 

in any basis, without diagonalization.

LEMONADE derivation

Based on the above general theory, the irreducible SO(3) representations of weight l for the 

moment tensors in equations (C.1) are selected by projecting them onto the special STF-l 

tensors 𝒴k1…kl
lm . Remarkably, the products ni1 …nil yield the SH (C.3) after this projection. 
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Since ODF is real, here we re-define 𝒴k1…kl
lm 2 Re 𝒴k1…kl

lm  for m > 0 and 

𝒴k1…kl
lm 2 Im 𝒴k1…kl

l ∣ m ∣  for m < 0, to work in real SH basis. Introducing the corresponding 

moments in the SH basis [ l given before Eq. (6)]

M(L), lm = 4π
𝒩l

𝒴k1…kl
lm δkl + 1kl + 2

…δkL − 1kL
Mk1…kL

(L) , (C.5)

we relate the SH moments M(L),lm to the model parameters by convolving equations (C.1) 

with 𝒴k1…kl
lm δkl + 1kl + 2

…δkL − 1kL
, and by using the following identities, which can be 

proven by direct inspection, for L = 4

δ(i jδkl)δkl = 5
3δi j, δ(i jδkl)δi jδkl = 5;

〈n(in j〉δkl)δkl = 1
6 7〈nin j〉 + δi j , 〈n(in j〉δkl)δi jδkl = 5

3;

and for L = 6:

δ(i1i2
…δi5i6)δi1i2

δi3i4
δi5i6

= 7,

δ(i1i2
δi3i4

〈ni5
ni6

〉δi1i2
δi3i4

δi5i6
= 7

3,

δ(i1i2
〈ni3

…ni6
〉δi1i2

δi3i4
δi5i6

= 7
5 .

As a result, we obtain the minimal system for the overall q-space order L ≤ lmax = 6, and 

involving only angular orders l = 0, 2:

M(2), 00 = f Da + (1 − f )(3De
⊥ + Δe) (C.6a)

M(2), 2m

p2m/𝒩2
= f Da + (1 − f )Δe (C.6b)

M(4), 00 = f Da
2 + (1 − f ) 5De

⊥2 + 10
3 De

⊥Δe + Δe
2 (C.6c)
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M(4), 2m

p2m/𝒩2
= f Da

2 + (1 − f ) 7
3De

⊥Δe + Δe
2 (C.6d)

M(6), 00 = f Da
3 + (1 − f ) 7De

⊥2(De
⊥ + Δe) + 21

5 De
⊥Δe

2 + Δe
3 (C.6e)

M(6), 2m

p2m/𝒩2
= f Da

3 + (1 − f ) 21
5 De

⊥2Δe + 18
5 De

⊥Δe
2 + Δe

3 (C.6f)

The system (C.6) involves minimal orders L and l enough to find all the 4 scalar kernel 

parameters x, as well as p2m. Adding the orders l = 4, 6 would introduce respective extra 

parameters p4m and p6m, and so it does not provide added practical benefit for determining 

the scalar parameters, especially given the generally lower accuracy and precision in 

determining the components M(L),lm with larger l at a given L. Having found the parameters 

of the kernel (2), equation

M(l), lm =
plm
𝒩l

· f Da
l/2 + (1 − f )Δe

l/2 (C.6g)

yields the ODF parameters plm up to arbitrary order l ≤ lmax, as long as M(l),lm are linearly 

found from series (8) and Eq. (C.5). By defining the rotational invariants of the moments

M(L), l = ‖M(L), lm‖ ≡ ∑
m = − l

l
∣ M(L), lm ∣2

1/2
, (C.7)

l = 0, 2, …, L (as we did for the signal in Sec. 2.1 and for the diffusion tensor, ||D2,m|| 

above), and using p2 as defined in Eq. (5), we obtain the rotationally invariant system (11) in 

the main text. Note that we do not use the factor l in the definition of the invariants (C.7) 

because we intend to cancel it in going from Eqs. (C.6) to Eqs. (11).

Appendix D. LEMONADE exact solutions: Low-energy branches

To solve the system (11), we first focus on Eqs. (11a)–(11d), and eliminate Da, De
⊥ and Δe. 

Introducing the common scaling factor
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D(p2) ≡ 1
3 M(2), 0 − M(2), 2/ p2 = (1 − f )De

⊥, (D.1)

we make all quantities dimensionless functions of p2 and f :

da ≡
Da
D

, d2 ≡ M(2), 2

p2D
, δe ≡

Δe
D

=
d2 − f da

1 − f ,

m0 ≡ M(4), 0

D2 , m2 ≡ M(4), 2

p2D2 , de
⊥ ≡

De
⊥

D
= 1

1 − f ,

(D.2)

such that moments d2, m0, m2 are functions of p2 explicitly, and via f = f (p2) to be found 

below:

Δm(p2) ≡ m0 − m2 = 5de
⊥ + δe =

5 + d2 − f da
1 − f . (D.3)

Multiplying the dimensionless equation (11d) by f,

f m2 = ( f da)2 + f (d2 − f da) 7
3

1
1 − f +

d2 − f da
1 − f

and eliminating da using equation (D.3), the f3 term fortuitously cancels, and we are left with 

a quadratic equation

a f 2 − (a + c − 40
3 ) f + c = 0, (D.4)

where the functions a = a(p2) and c = c(p2) are given by

a = (Δm)2 − (7
3 + 2d2)Δm + m2, c = (Δm − 5 − d2)2 . (D.5)

We observe that, similar to the toy model (F.1) (cf. Appendix F below), the full 

LEMONADE system (11) up to (b2) yields two possible solutions f = f±(p2), 

corresponding to the two branches of 𝒟. Here, the discriminant of equation (D.4), 

expressed via the original parameters, using c = f2/(1 – f )2 · (5 + d2 – da)2 and 

a = c/ f + 40
3 /(1 − f ), is a full square
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𝒟 = (a − c − 40
3 )2 − 160

4 c = 40
3

f
1 − f − c · 1 − f

f
2

≡ f
1 − f

2 40
3 − (5 + d2 − da)2 2

.

(D.6)

Analogously to our considerations in Appendix F, the solution

f ζ(p2) = (a + c − 40
3 + ζ 𝒟)/(2a) (D.7)

corresponds to the correct branch fζ ≡ f when ζ 𝒟 = 40
3

f
1 − f − c · 1 − f

f , equivalent to the 

branch index

ζ ≡ sgn 40
3

f
1 − f − c · 1 − f

f = sgn 40
3 − (5 + d2 − da)2

= sgn 40
3 − ∣ β − 4 ∣ , β =

Da − De
‖

De
⊥ ,

(D.8)

in terms of the original model parameters — in this case, involving all three diffusivities, 

independent of f. (Here we used 5 + d2 – da = 4 – β.) The condition (D.8) is equivalent to the 

branch selection (13) in the main text. Choosing the opposite branch will, roughly, swap the 

compartment diffusivity values, similar to the toy model (F.1) considered in detail in 

Appendix F.

An important difference of the general solution (D.7) from the toy model (F.1) is the 

remaining dependence on p2, due to the arbitrary fiber ODF, leaving the model parameters 

undetermined at (b2): the branches f±(p2) correspond to the two 1-dimensional manifolds 

of model parameters { f (p2), Da(p2), De
‖(p2), De

⊥(p2), p2}± which exactly satisfy the first 4 

equations of the system (11). These manifolds correspond to the two trenches in the low-

energy landscape of the full RotInv problem (7), Fig. 2 and Supplementary Figs. S.1–S.2, 

which are flat if our acquisition is only sensitive to (b2). It is the (b3) terms, 

corresponding to Eqs. (11e) and (11f), that in the noise-free case select the correct trench 

(elevating F for the wrong one), and yield the value p2 fixing the minimum of F in the 

correct trench.

For each ζ, substitution of Eq. (D.7) into Eqs. (11e) and (11f) separately yields p2ζ
(6), 0 and 

p2ζ
(6), 2; these values should coincide, p2ζ

(6), 0 = p2ζ
(6), 2, for the correct ζ choice in the absence 

of noise and for the unbiased moments. Based on our experience with numerical simulations 

with different SNR levels, we suggest for now to choose ζ corresponding to the smallest 
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difference: ζ = arg min{ζ = ± } ∣ p2ζ
(6), 0 − p2ζ

(6), 2 ∣. We then further average the 

corresponding parameter values xζ ≡ (xζ
(6), 0 + xζ

(6), 2)/2 to increase precision. The numerical 

solution is fastest (~ 1 ms/voxel on a desktop computer) by simply performing exhaustive 

search for the arg min of squares of each Eq. (11e) and (11f), on the discretized interval 0 ≤ 

p2 ≤ 1.

Appendix E. From moments to cumulants

Comparing term-by-term the Taylor expansion (8) and the Taylor expansion of exp(ln S ) 

where ln S is given by Eq. (12), we obtain the following relations:

Mi j
(2) = Ci j

(2),

Mijkl
(4) = 2Cijkl

(4) + C(i j
(2)Ckl)

2 ,

Mi1…i6
(6) = 6Ci1…i6

(6) + 6C(i1i2
(2) Ci3…i6)

(4) + C(i1i2
(2) Ci3i4

(2) Ci5i6)
(2) ,

and so on. Note that full symmetrization over all indices, as in Eq. (C.2), is essential. Here it 

was implemented as a Matlab function that symmetrizes any tensor by determining its rank l 
and generating the appropriate code at runtime, employing function evalc.

Appendix F. Multiple minima: A toy model

To develop intuition about the problem (1)–(2), we first consider its simple variant that 

already has the main signatures of the general solution. Suppose we were able to measure 

the kernel (b, ξ) directly — i.e. assume for a moment that an imaging voxel is small 

enough to contain only one fiber orientation n̂—but our measurements were limited only to 

directions parallel (||, ξ = 1) and transverse (⊥, ξ = 0) to the fascicle. Since typical human 

dMRI has bDi ~ 1, where Di = {Da, De
‖, De

⊥}, fitting practically performs matching between 

the first few moments (Taylor coefficients) of the signal and of the series 

𝒦 ≃ 1 − bD + b2
2! M − …. Matching up to (b) and up to (b2) respectively yields

D⊥ = (1 − f )De
⊥, D‖ = f Da + (1 − f )De

‖;
M⊥ = (1 − f )De

⊥2, M‖ = f Da
2 + (1 − f )De

‖2 .
(F.1)

In ⊥ direction, scalar parameters De
⊥ = M⊥/D⊥ and f = 1 – D⊥2/M⊥ are uniquely expressed 

via the moments. However, there are two possible solutions of the corresponding quadratic 

equation De
‖2 − 2D‖ · De

‖ + (D‖2 − f M‖)/(1 − f ) = 0 for De
‖ (and hence, Da) in || direction, cf. 

(Fieremans et al., 2010, 2011). The duality arises from choosing the ζ = ± branch of the 

square root De, ζ
‖ = D‖ + ζ 𝒟, where 𝒟 = f

1 − f (M‖ − D‖2). To understand which branch ζ to 
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choose, let us express the discriminant  in terms of the original model parameters, using 

equations (F.1). Remarkably, 𝒟 = f 2(De
‖ − Da)2 is a full square. Assigning the branch index 

ζ = sgn (De
‖ − Da) in terms of the ground truth parameters De

‖ and Da yields 

ζ 𝒟 = ζ · f ∣ De
‖ − Da ∣ = f (De

‖ − Da), such that we get back the correct values De, ζ
‖ = De

‖ and 

Da,ζ = Da. However, with the wrong branch choice ζ = sgn (Da − De
‖), the apparent 

diffusivities differ from the true ones:

Da
app = (2 f − 1)Da + 2(1 − f )De

‖,
De

‖app = 2 f Da + (1 − 2 f )De
‖ .

(F.2)

Note that in this case, as expected, De
‖app − Da

app = − (De
‖ − Da), i.e. the difference has the 

same absolute value and a wrong sign.

To recap, there exist two solutions of equations (F.1) which, up to (b2), exactly satisfy the 

toy parameter estimation problem. Hence, there will be two distinct minima in the toy 

“energy” function (analog of Eq. (7)), because of the branch selection ambiguity. This 

feature originates from the two - compartment nature of the model. It is the (b3) term that 

would elevate the wrong minimum above the true one. If noise over-whelms the (b3) effect, 

there will be no way to select the correct branch ζ based on comparing the values of the 

energy function in both minima (Jelescu et al., 2016a). Note that wrong values (F.2) can be 
completely plausible; in particular, for the symmetric case f = 1/2, the diffusivities are 

swapped — i.e. we mistake the intra- for the extra-axonal. We also see that the branch 

choice ζ depends on η, i.e. the + branch should be selected if Da < De
‖, and vice-versa. (For 

this toy example, branch choice is different from Eq. (13) because in selecting || and ⊥ 
directions we implicitly involved components of M(4),4m, in addition to M(4),2m, and 

constrained p2 ≡ p4 ≡ 1. However, the qualitative origins of bi-modality are similar.)

Appendix G. Minimally rotating dMRI signal to obtain fiber directions 

without blurring or sharpening

When discussing Fig. 6, we advocated a “reference” dMRI deconvolution, with the 

measured dMRI signal represented as

S(g) = ∫ dn𝒫(0)(n)𝒦(0)(n · g) (G.1)

such that the kernel (0) is defined by unit coefficients (A.2), Kl
(0) = ( − )l/2 ≡ eiπl/2, whose 

sign alternates as that in Kl(b) for the model kernel (2). To obtain the closed-form expression 

for (0)(ξ), we sum the series (A.1)
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𝒦(0)(ξ) = ∑
l = 0

∞
(2l + 1)eiπl/2 − εlPl(ξ), (G.2)

where the factor e−εl, ε → + 0, is added for the regularization of the series. (The imaginary 

terms are irrelevant, as they correspond to odd l, absent in dMRI.) Using the generating 

function

ℱ(η, ξ) = ∑
l = 0

∞
ηlPl(ξ) = 1

1 + η2 − 2nξ
(G.3)

of Legendre polynomials, we calculate the sum (G.2) as

𝒦(0)(ξ) = (1 − 2i∂z) ∣
z = π /2 + iε

ℱ(eiz, ξ) = 1
2

1
(ε − iξ)3/2 , ε + 0. (G.4)

Conversely, we can check that the expansion coefficients (A.2) of (0)(ξ) are equal to (−)l/2. 

For that, instead of evaluating these integrals for each l, we use the generating function (G.

3):

∑
l = 0

∞
tlKl

(0) = 1
2∫−1

1 dξ𝒦(0)(ξ)
1 + t2 − 2tξ

= −
∂ε

2∫−1
1 dξ

ε − iξ 1 + t2 − 2tξ
.

The latter integration can be performed using an elementary substitution u = ξ + iε; taking 

the derivative ∂ε |ε→0 leads to

∑
l = 0

∞
tlKl

(0) = 1
1 − it , (G.5)

confirming Kl
(0) = eiπl/2 upon expanding the geometric series.

The equivalence of the integration kernel (G.4) with a fractional derivative operator is best 

seen in the Fourier domain:

𝒦(0)(k) = ∫
−∞

∞
dξ e−ikξ𝒦(0)(ξ) = 4θ(k) πk 𝒦(0) ∝ ∂ξ

1/2, (G.6)
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since the nth order derivative in the Fourier domain corresponds to multiplication by (ik)n. 

(The integration contour was deformed to pass alongside the branch cut, chosen along the 

negative Im axis of the complex variable ξ. Here, the positive ε = + 0 is essential, as it shifts 

the singularity below the Re ξ axis and makes the integral convergent, relying on the 

analytic continuation of Euler’s Γ-function. The unit step function θ(k) reflects closing the 

contour in the upper- or lower-half-plane of ξ according to Jordan’s lemma.)

The fractional derivative singularity is illustrated in Fig. G.1, where the peak at ξ = 0 

(corresponding to concentrating the weight on the equator n̂ · ĝ = 0, Eq. (G.1)), expected 

from the Funk-Radon transform (FRT) relations (Tuch, 2004; Jensen et al., 2016), also 

develops negative lobes. In an integral

∫ dξ𝒦(0)(ξ)ϕ(ξ) ≡ 𝒦(0)ϕ
ξ = 0 ∝ ∂ξ

1/2ϕ ∣ ξ = 0

with any function ϕ(ξ), these lobes compare the values of ϕ(ξ) in the vicinity of ξ = 0. In 

contrast, the asymptotic FRT kernel bDe−bDξ2
 in the fiber ball limit b→ ∞ (Jensen et al., 

2016) acts as δ(ξ), yielding ϕ|ξ=0 when integrated with ϕ(ξ). Hence, the kernel (G.4) is 

qualitatively more singular than the FRT. This singular behavior is reflected in the l-

independent basis coefficients | Kl
(0)|, as compared to the FRT coefficients Pl(0) = (−)l/2(l – 

1)!!/l!!, decaying with l as |Pl(0)| ~ (πl)−1/2 for l ≫ 1 and de-emphasizing the higher-l 
harmonics.

Figure G.1. 
The real part of kernel (G.4) for ε = 0.03 (blue) and ε = 0.01 (red). Points are the result of 

summing even-order Legendre polynomials in Eq. (G.2) up to l = 1000; solid lines are given 

by the corresponding analytical formula (G.4). Here, ε controls the peak width, i.e., the 

vicinity of the equator n̂ · ĝ = 0 in Eq. (G.1) (with ĝ pointing at the North pole), where the 

fractional derivative (G.6) is evaluated.

Hence, there exists a hierarchy of the kernel coefficients in the SH basis. The coefficients 

Kl
(0) exceed Pl(0) for the FRT, which are in turn greater than the coefficients (A.2) at finite b:
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∣ Kl(b) ∣ ≤ ∣ Pl(0) ∣ < ∣ Kl
(0) ∣ ≡ 1 < 1

∣ Pl(0) ∣ , (G.7)

since the corresponding functions gl ≡ Kl(b)/Pl(0) ≤ 1 for all b, at any given l (Jensen et al., 

2016). Physically, this reflects that the kernel (G.2) in Eq. (G.1) by design does not magnify 

or decrease the sharpness of the “reference” ODF ℘(0)(n̂), while the fiber-ball kernel blurs 

the ODF, and the realistic (finite-b) kernel (2) blurs it even more (that latter kernel is what, 

presumably, occurs in nature).

Of course, it is the left-hand side of Eq. (G.1), the dMRI signal, that is given, and we are 

trying to obtain the best approximation for the true ODF ℘(n̂). Deconvolving the ODF from 

the signal (dividing Slm by Kl) progressively magnifies the signal’s harmonics with larger l 
for the FRT in the fiber-ball limit, and even more so for the finite-b case, Fig. 6, in order to 

compensate for the blurring of the ODF by the diffusion kernel . This results in the ODF 

sharpening (presumably, approaching the realistic ODF, at least in the absence of noise), 

relative to the minimally-rotated signal ODF ℘(0) with plm
(0) = Slm/Kl

(0). We also note that the 

original Q-ball ODF reconstruction (Tuch, 2004; Descoteaux et al., 2009) implies plm ~ 

Pl(0)Slm, i.e. de-emphasizing the signal harmonics with the higher l, which puts Q-ball 

kernel 1/Pl(0) to the right of | Kl
(0)| in the hierarchy (G.7).

We can see that our “minimal rotation” of the signal SH coefficients provides a natural 

reference for the ODF deconvolution methods. We also note an obvious property of the 

transform (G.1): since Kl
(0) 2 ≡ 1, the operator 𝒦 ̂ (0) on a unit sphere applied twice yields 

identity; equivalently, it equals its inverse.
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Figure 1. Standard Model of diffusion in neuronal tissue
In the long time limit, elementary fiber segments (fascicles), consisting of intra- and extra-

neurite compartments, are described by at least 4 independent parameters: f, Da, De
‖ and De

⊥. 

Within a macroscopic imaging voxel, such segments contribute to the directional dMRI 

signal according to their ODF ℘(n̂). Due to its rich orientational content, the total number of 

parameters (10) characterizing a voxel is about 30 – 50.
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Figure 2. Degeneracies in scalar parameter estimation
depending on the maximal invariant L used, Eq. (7). Contour surfaces are darker for lower 

values of F. Low-“energy” landscape of nonlinear RotInv problem (7) for system (6) is a 2-

dimensional surface for l = 0 invariant (a), and two 1-dimensional trenches with l = 0, 2 

invariants included (b, c). The trenches can either match to form a single 1-dimensional 

manifold (b), or be disjoint (c, d), depending on the ground truth values (see Supplementary 

Figs. S.1–S.2). Circles denote minima in both trenches, with the true minimum marked by *. 

Exact branches ξ = ± of system (11) (Sec. 2.5) are drawn in red and blue, reproducing the 

trenches up to (b2). Including large b data further limits the landscape to the surface f / Da

arising solely from intra-neurite space (Jensen et al., 2016; Veraart et al., 2016b) (green 

section in d), helping, but not fully curing all degeneracies (see text and Figs. S.1–S.2).
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Figure 3. Parametric maps for both branches (LEMONADE and nonlinear RotInv estimation), 
and prevalence maps
Exemplary maps for subject 1, mid-brain axial slice. The branch maps (last column) are 

calculated using Eq. (13) based on the voxel-wise estimated parameters, with ξ = ± 

corresponding to red/blue. lemo±: outputs of LEMONADE ξ = ± branches, respectively 

(solution of Eqs. (11)), using only the shells within 0 ≤ b ≤ 2.5. Note that f+ > f−, as well as 

Da + > De +
‖  and Da − < De −

‖ , practically consistent with Eq. (13). For ξ = + branch, the 

output De
‖ ≳ De

⊥ is likely to be a result of the bias of moments estimation (a similar bias was 

observed in numerical simulations), since it is biophysically more plausible that De
‖ ⊳ De

⊥. In 

a few voxels, the branch index ξ flips due to noise and partial volume effects affecting 

solution of Eqs. (11e)–(11f). RotInv±: Full nonlinear estimation outputs of gradient-descent 

minimization, Eq. (7), using all b shells, initialized via the corresponding lemo± maps. We 

observe the same qualitative features as in the LEMONADE maps, while numerically 

bringing De
‖ and De

⊥ closer. Importantly, the branch index ξ is fairly stable (cf. also 

histograms in Fig. 4) — for the vast majority of voxels, the nonlinear fitting of the full 

problem (7) does not change the branch index ξ = ± calculated based on the estimated 

parameters. lemo ξ: Selecting the LEMONADE branch ξ = ± voxel-wise, based on the 

proximity of the solutions for the redundant Eqs. (11e) and (11f), cf. Sec. 4.4 for details. 

RotInv ξ : Full RotInv output based on lemo ξ from previous row. Prevalence: Maps 

generated using the prevalence method (see text), current proxy for the ground truth. Note 
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quantitative similarity of the parameter maps between RotInv ξ and prevalence. Extra-axonal 

diffusion tensors are practically always prolate, with De
⊥ values typically below 1, while Da 

and De
⊥ around 2.
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Figure 4. Degeneracy in parameter estimation with human dMRI data as bimodality in 
parameter histograms
Parameter histograms for WM, a, and for GM, b. Red/blue dashed histograms correspond to 

ζ = ± solutions { f , Da, De
‖, De

⊥, p2}± of LEMONADE system (11); filled histograms are 

obtained via RotInv fitting (7) up to b ≤ 10, initialized by the ξ = ± solutions of system (11). 

The last column shows the branch selection parameter β, Eq. (13), with the red/blue intervals 

corresponding to the ± branches. Nonlinear fitting (7) brings the Da and De
‖ values closer to 

each other, and reduces De
⊥, as in the maps in Fig. 3. Green dashed and solid histograms 

correspond to the branch selection method of Sec. 4.4 (cf. Fig. 3, lemo ξ) and the 

respectively initialized full RotInv output (Fig. 3, RotInv ξ). Note the qualitative and 

quantitative agreement between the voxel-wise branch selection output of RotInv (green) 

and prevalence method (black) described in Sec. 4.4.
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Figure 5. ROI values
Mean ROI values for the 3 subjects, based on the prevalence method, in 10 standard WM 

ROIs (JHU atlas), as well as in all WM and GM voxels. The maximal water diffusivity value 

3 μm2/ms for the body temparature is drawn as red lines for Da and De
‖. Inter-ROI variability 

clearly exceeds inter-subject variability for f and p2; the ROI differences in diffusivities are 

present albeit less pronounced. The ‘branch’ values are calculated based on ROI means 

according to Eq. (13), while the corresponding β values are calculated voxel-wise, and 

averaged over ROIs. The ξ = + branch would correspond to β falling in-between the two red 

lines, and ξ = − otherwise, cf. Eq. (13). Branch assignment based on the fairly noisy 

estimates of β is not robust and needs further validation.
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Figure 6. ODF dispersion, local kernel-based tractography, and parameter maps
a, Fiber orientation dispersion angle θdisp from p2 (prevalence method) emphasizes major 

WM tracts. b, Empirical reference ODF ℘(0) (left, see text and Appendix G), and the fiber 

ODF calculated using plm from Eq. (3) (right), for the b = 5 shell, with l ≤ lmax = 6. Note the 

strong ODF sharpening effect, due to the deconvolution with locally estimated kernels Kl(b, 

x). c, Coronal view of a structural MR image (MPRAGE) overlaid with a reconstruction of 

the corticospinal fiber tract colored according to the value of the respective parametric maps 

x and p2 (via prevalence method, Fig. 3) at each point along the track. Fiber tracts have been 

reconstructed using improved probabilistic streamline tractography (Tournier et al., 2010) by 

integration over local fiber ODFs calculated using plm estimated from Eq. (3) using the 

voxel-wise estimated kernel Kl(b, x), for the b = 5 shell with maximal SH order lmax = 6.
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Figure 7. Are the scalar model parametersf, Da, De
‖ and De

⊥ independent?

To see whether we can rely on relations between the scalar parameters in order to increase 

precision in their estimation, we investigate the validity of widely used constraints 

(Alexander et al., 2010; Zhang et al., 2012; Tariq et al., 2016; Kaden et al., 2016a) using 

parameter values estimated from the prevalence method. Generally, these constraints fail. 

Colors correspond to 3 subjects in WM(a) and GM (b). Interestingly, constraints fail more 

dramatically in GM.
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