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Abstract
Innate lymphoid cells (ILCs) are defined as a distinct 
arm of innate immunity. According to their profile of 
secreted cytokines and lineage-specific transcriptional 
factors, ILCs can be categorized into the following 
three groups: group 1 ILCs (including natural killer 
(NK) cells and ILC1s) are dependent on T-bet and 
can produce interferon-γ; group 2 ILCs (ILC2s) are 
dependent on GATA3 and can produce type 2 cytokines, 
including interleukin (IL)-5 and IL-13; and, group 3 
ILCs (including lymphoid tissue-like cells and ILC3s) are 
dependent on RORγt and can produce IL-22 and IL-17. 
Collaborative with adaptive immunity, ILCs are highly 
reactive innate effectors that promptly orchestrate 
immunity, inflammation and tissue repair. Dysregulation 
of ILCs might result in inflammatory disorders. Evidence 
regarding the function of intrahepatic ILCs is emerging 
from longitudinal studies of inflammatory liver diseases 
wherein they exert both physiological and pathological 
functions, including immune homeostasis, defenses 
and surveillance. Their overall effect on the liver 
depends on the balance of their proinflammatory and 
antiinflammatory populations, specific microenvironment 
and stages of immune responses. Here, we review 
the current data about ILCs in chronic liver disease 
progression, to reveal their roles in different stages 
as well as to discuss their therapeutic potency as 
intervention targets.
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Core tip: Innate lymphoid cells (ILCs), mirroring both 
the phenotypes and functions of T cells, have been 
defined as a distinct arm of innate immunity. There has 
been a marked increase in the studies investigating 
the dysregulation of ILCs in chronic liver pathologies. 
This manuscript presents a comprehensive overview of 
the state of ILCs, including the fundamental concepts 
as well as summarizing their ambiguous roles in the 
progression of the chronic liver hepatitis, fibrosis and 
carcinoma. It also provides an insight into the current 
research gaps and indicates the therapeutic potency 
and development direction of future research of ILCs.
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INTRODUCTION
Liver diseases usually evolve from inflammation to 
fibrosis, with cirrhosis manifested in the advanced 
stage, and serving as a well-determined major risk 
factor of liver cancer. Liver disease remains a major 
health problem, affecting millions of people worldwide. 
Ongoing chronic inflammation in the liver induced by 
infections, hepatotoxic drugs, autoimmunity, alcohol 
abuse or toxins will result in liver fibrosis, which is the 
consequence of an irreversible, progressive condition 
occurring in most types of chronic liver diseases and 
characterized by excessive deposition of extracellular 
matrix (ECM) proteins, mainly composed of collagen[1]. 
The situation where ECM formation is prompted by 
activated hepatic stellate cells (HSCs) outweighs the 
collagen degradation by matrix metalloproteases (MMPs) 
and will lead to structural distortion of the normal liver 
tissue and functional impairment; furthermore, it is 
associated with an increased risk of cirrhosis, portal 
hypertension and subsequent liver failure and liver 
cancer[2-4]. Tremendous efforts have been made to 
design strategies which could prevent liver disease 
progression.

Innate lymphoid cells (ILCs) are a recently identified 
group of mononuclear hematopoietic cells which 
encompass not only cytotoxic natural killer (NK) cells 
but also noncytotoxic ILCs, and are involved in immunity 
and tissue remodeling. Though characterized with 
lymphoid morphology, ILCs lack the rearranged antigen 
receptors and are defined as cell lineage marker-
negative (Lin-) cells[5]. ILCs mirror both the phenotypes 
and functions of T cells, for which noncytotoxic ILCs 
have been proposed as the innate counterparts of CD4+ 
T helper (Th) cells, whereas NK cells are considered 

to be the innate equivalents of CD8+ cytotoxic T (Tc) 
cells[6].

Group1 ILCs comprise both Eomes-dependent NK 
cells and T-bet-dependent ILC1s[7]. Upon stimulation 
by interleukin (IL)-12, IL-15 and IL-18 derived from 
both myeloid cells and nonhematopoietic cells, the 
ILC1s can produce Th1 cell-associated cytokines, 
such as interferon (IFN)-γ and tumor necrosis factor 
(TNF)-α, which play critical roles in clearing intracellular 
pathogens[8,9]. Distinguished from ILC1s, NK cells 
depend on Eomes to develop and exert their cytotoxic 
functions by secreting granzymes and perforin[10,11]. 
Group 2 ILCs (ILC2s), being dependent on GATA3 and 
ROR-α and respondent to epithelium-derived cytokines 
IL-25, IL-33 and thymic stroma lymphopoietin (TSLP), 
can produce Th2 effector cytokines (IL-4, IL-5, IL-9, 
IL-13 and amphiregulin), thus playing a critical role in 
antihelminth immunity and allergic inflammation as well 
as tissue repair[12-15]. Finally, group 3 ILCs are dependent 
on RORγt and mainly respondent to myeloid cell-derived 
IL-1β and IL-23. These ILCs include lymphoid tissue-like 
(LTi) cells and ILC3s, which can produce IL-22, IL-17, 
granulocyte macrophage colony-stimulating factor and 
TNF, thus showing great significance in antibacterial 
immunity[16-18] (Figure 1). 

Dysregulation of ILCs can cause severe inflammation 
and injury in gut[19], lung[20], skin[21] and liver[22]. During 
the past 5 years, a growing number of studies have 
investigated the roles of ILCs in inflammatory, fibrotic 
and cancerous liver diseases[23-27]. Herein, we summarize 
the present knowledge of ILCs to reveal their complicated 
and versatile effects and the underlying mechanism in 
chronic liver diseases, in order to provide perspectives of 
new therapeutic strategies.

LIVER INFLAMMATION
Group 1 ILCs
There are two distinct NK populations in murine liver, 
CD49a-CD49b+ and CD49a+CD49b- cells. The CD49a-

CD49b+ subset represents conventional (c)NK cells, 
which circulate in the blood. The CD49a+CD49b- subset 
has ever been considered as tissue-resident (tr)NK cells 
or ILC1s in previous studies, which are beside dendritic 
cells (DCs) localizing in the sinusoids of the portal 
area[28,29]. Both cNK and trNK cells express natural 
cytotoxicity receptors and require IL-15 signaling 
for their development. Compared to cNK cells, trNK 
cells have relatively lower expression of CD11b, Ly49 
receptors, CD43 and KLRG1, but higher expression of 
CXCR3 and CXCR6, which is a chemokine receptor for 
CXCL16 responsible for the enrichment of natural killer 
T (NKT) cells in the liver and can provide intravascular 
immune surveillance[30,31]. In parallel, human livers 
contain CD56bright and CD56dim (accounting for 90%) 
NK cells, respectively representing the equivalents of 
murine cNK and trNK cells. With respect to function, 
CD56bright NK cells are prominent cytokine producers, 
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whereas CD56dim NK cells are efficient killers[32]. 
Liver is an immune-tolerant organ predisposing for 

chronic infections of certain clinically significant path
ogens. As an organ with predominant innate immunity, 
the liver is enriched with NK cells, which account for 
25%-50% of total intrahepatic lymphocytes and are 
responsible for killing transformed cells and viruses. 
The cytotoxicity of NK cells is regulated by both 
cytokines and surface receptors[33,34]. IFN-γ is one of 
the most prominent cytokines derived from NK cells to 
exert antiviral, antifibrotic and antitumorigenic effects. 
Furthermore, it has been demonstrated that cNK rather 
than trNK cell-derived IFN-γ promotes Th1 polarization 
and secondary CD8+ cytotoxic lymphocyte (CTL) 
responses, the major effectors for clearance of hepatic 
B virus (HBV) in transgenic HBV mouse models[35]. 
Meanwhile, the interactions of NK cells with hepatocytes 
via the NKG2A inhibitory receptor could prime DCs to 
induce CD4+CD25+ regulatory T cells (Tregs), which will 
in turn up-regulate the expression of NKG2A on NK cells 
via IL-10 production, thus impairing the antiviral ability 
of NK cells[36,37].

In the pathogenesis of chronic HBV infection (CHB), 
ILC1s have potential proinflammatory effects that 
mirror Th1 cells in adaptive immunity exactly. First, in 
patients with CHB, liver injury has been significantly 
associated with enhanced ILC1s’ response, as reflected 
by markedly elevated levels of T-bet, IFN-γ and IL-12 
signaling. Besides, decreased ILC1-produced IFN-γ has 

been found to have a connection with the telbivudine-
induced alleviation of liver injury in CHB patients[23]. 
These results could be explained by the study of 
Krueger et al[38], in which it was demonstrated that 
CD49a+ ILC1s could inhibit expression of CXCL9, which 
was further required for robust accumulation of IFN-
γ+CD49b+ NK cells during the early phase of adenovirus 
infection. In this way, ILC1s played a role in maintaining 
the liver as a tolerogenic site as a result of increased 
expression of NKG2A receptors compared with NK cells, 
which would further suppress the activation of liver 
CD103+ DCs, thus interrupting the priming of antigen-
specific, antiviral CD8+ T cells and the clearance of virus. 
The mechanism was found to be the same in hepatitis 
C virus infection for which NKG2A-/- patients showed 
resistance[39,40]. To conclude, ILC1s help to maintain the 
tolerance of liver in normal conditions, and blockage of 
NKG2A signaling to generate potent anti-viral CD8+ T 
cell responses required for the elimination of persistent 
liver pathogens may prove to be a novel therapeutic 
strategy (Figure 2A).  

Group 2 ILCs
IL-33 belongs to the IL-1 superfamily, which is alarmins 
secreted by epithelial cells upon cellular stress and tissue 
damage. Upon binding to its specific heterodimeric 
receptor which comprises the ST2 and IL-1 receptor 
accessory protein, IL-33 is able to induce strong 
expression of Th2-like cytokines, thus balancing the Th1 
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Figure 1  Developmental pathways and classification of innate lymphoid cells. ILCs are derived from a CLP. With the same phenotype as CLP as well as 
expressing α4β7 integrin, αLP gives rises to cytotoxic NK cells and differentiates into a CHILP, which gives rise to all noncytotoxic ILCs. The transcription factor PLZF 
further divides the progeny of CHILPs into a PLZF+ ILCPs that are restricted to ILCs except LTi cells and PLZF-independent LTi cells. Group 1 ILCs comprise both 
Eomes-dependent NK cells and T-bet-dependent ILC1s. They could produce IFN-γ and TNF-α in response to the stimulation by IL-12, IL-15 and IL-18. NK cells can 
also secrete granzymes and perforin to exert cytotoxic functions. Dependent on GATA3 and ROR-α as well as respondent to cytokines IL-25, IL-33 and TSLP, group 
2 ILCs could produce Th2 effector cytokines (IL-4, IL-5, IL-9 and IL-13 and amphiregulin). Group 3 ILCs encompass both RORγ-dependent LTi cells and ILC3s. They 
can produce IL-22, IL-17 and GM-CSF, mainly in response to IL-1β and IL-23. αLP: α-lymphoid progenitor; CHILP: Common helper-like innate lymphoid progenitor; 
CLP: Common lymphoid progenitor; GM-CSF: Granulocyte macrophage colony-stimulating factor; IL: Interleukin; ILC: Innate lymphoid cell; ILCP: Innate lymphoid 
cell precursor; INF: Interferon; LTi: Lymphoid tissue-like; NK: Natural killer; PLZF: Promyeloid leukemia zinc finger; Th: T helper; TNF: Tumor necrosis factor; TSLP: 
Thymic stroma lymphopoietin.
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Figure 2  Protective and pathogenic roles of innate lymphoid cells in hepatic inflammation. A: cNK cells could produce IFN-γ to enhance the priming of CD8+ 
T cells to clear HBV. The interactions of NK cells with hepatocytes via NKG2A inhibitory receptor could prime DCs to induce CD4+CD25+ Tregs, which would in turn 
up-regulate the expression of NKG2A on NK cells via IL-10 production, thus impairing the antiviral ability of NK cells. Because of increased expression of NKG2A 
on ILC1s in hepatic Ad as well as hepatitis C virus infection, ILC1s play a role in maintaining the liver as a tolerogenic site by inhibiting CXCL9 expression, which is 
required for the accumulation of cNK cells. This would further impair the activation of liver CD103+ DCs, thus interrupting the proliferation of virus-specific CD8+ T 
cells and the clearance of virus; B: In ConA-induced immune hepatitis, hepatic ILC2s could amplify inflammation through the expression of IL-5 to recruit eosinophils 
in response to IL-33 released upon liver tissue damage. The inflammatory activity of endogenous ILC2s in immune-mediated hepatitis might be regulated by IL-33-
elicited ST2+ Tregs. Besides, in Ad-induced viral hepatitis, a strong expression of ILC2s was induced by IL-33 to exert a protective role through down-regulation of the 
hepatotoxic cytokine TNF-α in T cells and macrophages. Both the proinflammatory and protective roles of ILC2s in hepatitis are part of IL-33 action; C: In immune 
hepatitis, ILC3-derived IL-22 has a protective role in ConA- and carbon tetrachloride-induced hepatitis, while IL-17 plays a pathological role in ConA-induced hepatitis. 
Besides, Notch-mediated IL-22 is an important mediator of the inflammatory response in HBV infection, being responsible for the recruitment of antigen-nonspecific 
inflammatory cells into the liver and subsequent liver injury. In Ad-induced acute hepatitis, the IL-17A/F signaling is critical for adaptive T response and is responsible 
for affected lymphocyte infiltration and hepatic inflammation. Ad: Adenovirus; cNK: Conventional natural killer; ConA: Concanavalin A; DC: Dendritic cell; HBV: 
Hepatitis B virus; IL: Interleukin; ILC: Innate lymphoid cell; NK: Natural killer; Tregs: T regulatory cells.
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immune response[41,42]. Epithelial cells, hepatocytes and 
HSCs have been reported as the main sources of IL-33 in 
the liver[43,44]. The expression of IL-33 shows significant 
connection with chronic liver diseases, such as persistent 
viral infection[45-47], liver fibrosis[43] and liver failure[48].

It has been demonstrated that through interaction 
with ST2, IL-33 induces production of the inflammatory 
cytokine IFN-γ, as well as Fas-FasL interaction between 
hepatocytes and NKT cells in concanavalin A (ConA)-
induced hepatitis, which is a well-established murine 
model of T-cell mediated hepatitis, resembling the 
pathology of immune-mediated hepatitis in humans[49,50]. 
Neumann et al[24] further demonstrated that IL-33-elicited 
ILC2s were also involved in the pathogenic process of 
murine immune-mediated hepatitis. In response to the 
release of IL-33 upon liver tissue damage induced by 
CD4+ T cells, hepatic ILC2s were found to be poised 
to produce type 2 cytokines, including IL-13 and IL-5. 
Recruitment of eosinophils induced by IL-5 could be one 
mechanism by which ILC2 amplifies inflammation during 
immune hepatitis, and IL-13 was indicated to have a 
prominent role in chronic diseases[51]. Exogenous IL-
33-elictied hepatic ILC2s appear to aggravate immune-
mediated hepatitis, while the inflammatory activities 
of endogenous ILC2s might be regulated by IL-33-
elicited ST2+ Tregs, which showed strong expansion in 
immune-mediated hepatitis as well. These findings are 
consistent with those of the previous study that revealed 
IL-33/ST2 axis to exert a protective role in ConA-induced 
hepatitis by preventing Th1 and Th17 cell-mediated 
hepatic immune responses, promoting IL-4 production 
of CD4+ liver-infiltrating T cells, elevating the total 
number of CD4+Foxp3+ Tregs together with affecting 
the expression of apoptotic or antiapoptotic proteins[52]. 
These results suggest that the proinflammatory role of 
ILC2s in immune-mediated hepatitis is part of the action 
mechanism of IL-33. Multiple modules of the immune 
response should be taken into consideration when 
investigating its overall protective or pathogenic effect on 
the liver.

What’s more, the IL33/ST2 axis has also been 
shown to play a crucial role in driving antiviral CD8+ and 
CD4+ T cell responses[53,54]. On one hand, Liang et al[55] 
demonstrated that, as a newly discovered damage-
associated molecular pattern molecule, IL-33 can 
promote innate IFN-γ production by γδT cells and NK 
cells. It could also modulate DC responses to enhance 
the plurifunctionality of antiviral T cells in lymphocytic 
choriomeningitis virus-induced hepatitis in mice, while 
it was also further demonstrated that ILC2s were not 
involved in this process[56]. On the other hand, IL-33 
was able to directly engage multiple arms of immune 
mechanisms to mediate potent hepatoprotective effects 
in adenovirus-induced hepatitis, wherein strong CTL, 
CD4+ Th and B lymphocyte responses share common 
characteristics with a number of hepatotropic viruses, 
including hepatitis A virus, HBV, cytomegalovirus, herpes 
simplex and Epstein-Barr virus. It significantly inhibited 

the expression of TNF-α in T cells and macrophages 
and induced a strong expression of IL-5- or IL-13-
expressing-Lin- nuocytes to further down-modulate the 
hepatotoxic cytokine TNF-α[57]. An increased number of 
Lin-13+ or Lin-5+ cells were found in the livers of Lin- cells 
adoptively-transferred mice. Though the serum level of 
alanine aminotransferase and hepatic TNF-α presented 
a downward trend, there was no statistical significance 
compared with control groups[58]. These results also 
suggest that the potential protective role of ILC2s in 
viral hepatitis might only be one facet of the complex 
mechanisms of IL-33, but this still remains to be further 
elucidated (Figure 2B). 

Group 3 ILCs
Dependent on RORγt and IL-7, ILC3s induce the 
production of IL-17 and IL-22 upon stimulation by IL-23 
and IL-1β. IL-22 is a member of the IL-10 cytokine 
family and has a crucial role in inflammation, immune 
surveillance and tissue homeostasis. In the inflammatory 
context, IL-22 has both proinflammatory and protective 
properties[59,60]. The proinflammatory nature of IL-22 
has been shown in mouse models with diseases such 
as psoriasis and rheumatoid arthritis[61,62]. In contrast, 
the protective role has been shown in inflammatory 
bowel disease[63], hepatitis[64] and pathogenic bacterial 
infection[65,66]. Hepatocytes are important targets of 
IL-22, for it can induce the expression of acute-phase 
proteins, several antiapoptotic proteins and mitogenic 
proteins, to protect cells against liver tissue damage[67-69]. 
IL-22 can also act on liver stem or progenitor cells, which 
are important in chronic and severe liver injury[70].

In ConA-induced acute immune hepatitis, the ex
pression of IL-23 combined with activated Notch sig
naling resulted in an aryl hydrocarbon receptor (AHR)-
dependent production of IL-22, as well as in an RORγt-
dependent production of IL-17. IL-22 was shown to play 
a protective role, while IL-17 was shown to be critical 
for the pathogenesis in liver tissue[71]. The protective 
role of IL-22 in hepatitis was consistent with findings of 
a previous study that identified NKT and T cells, rather 
than ILC3s, as the main sources of IL-22[64]. Later, it 
was confirmed by Abe et al[72] that, combined with the 
suppression of IFN-γ from NKT cells induced by AHR, IL-
22-producing ILC3s were also involved in the protective 
process in ConA-induced acute hepatic injury, as high 
IL-22 mRNA levels were found in CD3-Sca1+Thy1+ cells 
rather than in CD3+ T cells after stimulation by IL-23. 
Besides, the same results were obtained in RORγt-/- 
mice; specifically, there was almost no IL-22 production 
in the hepatic mononuclear cells of Ahr-/- or Ahr and 
recombination activation gene (RAG) double-negative 
mice, thus further suggesting that the major sources of 
IL-22 were both RORγt- and AHR-dependent ILC3s. In 
addition, the decreased frequency of IL-22-producing 
ILC3s (Lin- SCA-1+ Thy1high ILCs) was consistent with the 
severity of carbon tetrachloride-induced hepatitis of RAG-
2-/-*RORγt-/- mice compared with that of RAG-2-/- mice[72]. 
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Taken together, all the results of these studies considering 
RORγt+ hepatic ILC3s in immune-mediated hepatitis 
suggest their protective roles against liver injury via IL-22 
production. Compared with IL-22-producing Th17 cells, 
which can play a protective role against liver injury as 
well, hepatic ILC3s may be able to act in the early innate 
immune response stage[73]. On the contrary, IL-17, 
another ILC3s-derived cytokine, has shown a pathological 
role in ConA-induced hepatitis. The overexpression of IL-
17A resulted in massive hepatocyte necrosis, and antiIL-
17A blockage significantly ameliorated liver injury[74]. 
In addition, Lafdil et al[75] showed that liver injury was 
alleviated in ConA-induced hepatitis among IL-17-
deficient mice.

On the other hand, however, IL-22 was identified as 
a potent mediator of the inflammatory response in HBV 
infection, following the recognition of HBV by T cells in the 
liver[67,76]. It was further confirmed that inhibition of Notch 
signaling in vivo would lead to decreased ILC22 and LTi4 
cells, along with down-regulated expressions of IL-22 
and related proinflammatory cytokines and chemokines 
in the liver. As a result, subsequent liver injury was 
alleviated due to blockage of the recruitment of antigen-
nonspecific inflammatory cells into the liver, without 
affecting HBV antigen production in HBV infection[77]. 
These results suggest the potential proinflammatory role 
of Notch-mediated IL-22 and provide a new potential 
therapeutic approach for the treatment of HBV. What’s 
more, intrahepatic early IL-17 was found to be important 
for activating antigen presenting cells in viral infection, 
but the sources and regulation of IL-17 surges were 
not well defined at first[78]. It was further shown that 
ILC3s, including a large proportion of NKP46- ILC3s and 
a small part of the CD4+ LTi cells, secreted IL-17A and 
IL-17F shortly after adenovirus infection, in addition to 
γδT cells. In adenovirus-induced acute hepatitis, the IL-
17A/F signaling was found to be critical for adaptive T 
response and was responsible for affected lymphocyte 
infiltration and hepatic inflammation, except in viral 
clearance. The study also revealed the existence of the 
compensatory IL-17F production for IL-17A deficiency 
underlying the previous contradictory result that IL-17A 
deficiency did not appear to thwart T cell activation and 
liver inflammation[64,79]. Though there have been studies 
showing Th17-derived IL-17 causes liver damage by 
IL-23 activation, the role of ILC3-derived IL-17 remains to 
be further clarified in chronic infection models, such as for 
lymphocytic choriomeningitis virus and HBV infections[80]. 
To conclude, the downstream effector cytokines of ILC3s 
may exert both proinflammatory and protective roles 
according to the specific microenvironment, and more 
studies are required to clarify their explicit role in liver 
inflammation (Figure 2C).  

LIVER FIBROSIS
Group 1 ILCs
NK cells can directly decrease the proliferation and 

activation as well as induce cell cycle arrest of HSCs 
through IFN-γ[81,82]. They can also induce apoptosis of 
activated HSCs through the TNF-related apoptosis-
inducing ligand (TRAIL) and Fas ligand pathways[83,84]. 
These interactions between NK cells and HSCs are 
regulated by NK cell receptors and cytokines. The 
activation of HSCs in response to hepatocyte damage 
leads to increased NK cell stimulation and decreased NK 
cell inhibition. Firstly, increased amounts of retinoic acid 
derived from activated HSCs was found to be associated 
with elevated expression of RAE-1, a ligand for the 
NKG2D-activating receptor. Together with MICA, RAE-1 
could promote the killing of activated HSCs by NK 
cells[85,86]. The NKp46 and NKp30 activating receptors 
have also been shown to be involved in the amelioration 
of liver fibrosis by inducing HSC killing by NK cells, in 
both humans and mice[87,88]. Secondly, engagement 
of Ly49 inhibitory NK cell receptors was found to be 
reduced by the mechanism of siRNA-mediated silencing, 
as a result of down-regulated major histocompatibility 
complex (MHC) class I in activated HSCs[89,90]. Besides, 
elevated surface expression of TRAIL in NK cells via 
IFN-α, simultaneous with increased expression of TRAIL 
receptors, in activated HSCs could also enhance HSC 
killing by NK cells[91,92]. Instead, tumor growth factor 
(TGF)-β down-regulates the surface expression of 
NKG2D and 2B4 to suppress the antifibrotic role of NK 
cells[93]. Whether trNK cells exert a protective role in 
liver fibrosis remains unclear. As a member of the IFN-
γ-producing group 1 ILCs, these cells may contribute to 
the activation of NK cells by their production of IFN-γ, 
which is crucial for the antifibrotic roles of NK cells[81].

Group 2 ILCs
In the study by Marvie et al[43], the over-expression of 
IL-33 was shown to be closely associated with hepatic 
fibrosis, in both human and mouse cases. Besides, 
type 2 cytokines including IL-4 and IL-13 have been 
considered as representatives of the most potent 
fibrogenic factors[94]. As the major sources of Th2-type 
cytokines, ILC2s, which also require IL-33 for activation, 
were proposed as potent profibrogenic factors in hepatic 
fibrosis[95]. It has been demonstrated that, in response to 
ST2-dependent signaling owing to chronic hepatocellular 
stress and tissue damage, IL-33 release leads to 
accumulation and activation of IL-13-producing liver 
resident ILC2s. The downstream effector cytokine IL-13 
can further trigger the activation and transdifferentiation 
of HSCs in an IL-4Ra- and STAT6-dependent manner 
to induce potent fibrogenic responses, suggesting a 
pathogenic capacity of ILC2s in the context of the tissue 
damage response[22]. In parallel, the study of human 
liver fibrosis by Forkel et al[96] has identified primary 
hepatocytes, HSCs and Kupffer cells as cellular sources of 
IL-33 and TSLP, which could further potentially cause the 
accumulation of ILC2s in fibrotic livers following TLR3-
activation, as a model for hepatitis C infection. There was 
also a direct correlation found between the increase in 
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frequency of intrahepatic ILC2s and the severity of liver 
fibrosis. The induction of IL-13 by intrahepatic ILC2s 
in response to IL-33 and TSLP was also confirmed, 
suggesting the possibility of a similar mechanism in 
humans and mice[96]. These results provide an avenue 
for investigation into the application of serum IL-33 as a 
possible noninvasive diagnostic biomarker for uncovering 
early inflammatory and fibrogenic events. Furthermore, 
targeting ILC2s may represent a novel therapeutic 
strategy for liver fibrosis treatment. 

Group 3 ILCs
As one of the ILC3s’ downstream effector cytokines, IL-22 
has been shown to promote the survival and proliferation 
of epithelial cells (e.g., hepatocytes), suggesting its 
possibility of involvement in liver fibrosis[64,68]. Upon 
binding to IL-22R1 and IL-10R2 on HSCs, IL-22 can 
induce senescence of the HSCs following the activation 
of a STAT3/SOCS3/p53 signaling axis, which represents 
an important strategy to ameliorate liver fibrosis[97]. 
It could also inhibit HSC apoptosis, without affecting 
HSC proliferation. By means of enhancement of in vivo 
clearance of senescent HSCs, most probably by NK cells, 
simultaneous to reduction of released tissue inhibitor of 
metalloprotease 2 to promote MMP activities and down-
regulate the deposition of collagen, the senescence 
of activated HSCs played an important role in limiting 
liver fibrosis[86,98]. The expression of α-smooth muscle 
actin was also down-regulated in response to IL-22, but 
this effect was not associated with senescent HSCs[97]. 
Besides, elevated systemic IL-22 level - independent 
of age, liver-related complications, C-reactive protein, 
creatinine and model for end-stage liver disease score 
- could be predictive for reduced survival prognosis 
in patients with liver cirrhosis. Thus, it is possible that 
systemic IL-22 level could be applied as a negative 
indicator for evaluating the prognosis of advanced 
liver cirrhosis[99]. Though no direct evidence has linked 
ILC3s with liver fibrosis, ILC3s may exert a protective 
role since they are the source of IL-22. Nonetheless, 
considering IL-22 can be produced by Th17 cells as well, 
it is important to use specific gene knock-out mice to 
determine which type of cell plays the pivotal role.

In experimental liver fibrosis, upon stimulation of IL-
17A, both HSCs and Kupffer cells could produce TGF-β, 
TNF-α and IL-6 following the activation of STAT3 and 
nuclear factor-κB. Accordingly, mouse models with IL-
17A and IL-17RA deficiency have displayed reduced liver 
fibrosis, suggesting a profibrotic role[100]. In addition, 
IL-17A can also exert an antifibrotic effect in normal 
fibroblast cultures directly, by down-regulating the 
expressions of collagen and connective tissue growth 
factor, which was shown to be impaired in the isolated 
primary fibroblasts from patients with scleroderma[101]. 
Considering the complicated and versatile effects in 
fibrosis, it might be necessary to determine the exact 
roles of such cytokines in different stages of liver fibrosis 
(Figure 3).

LIVER CANCER
Group 1 ILCs
Considering the potent tumor surveillance properties 
of NK cells, a group of NK cell-associated genes in 
hepatocellular carcinoma (HCC) tissues was positively 
associated with prolonged survival[102]. Evidence of 
dysfunction of NK cells in HCC has been observed, as 
well, suggesting a strong connection between NK cells 
and HCC progression[103].

Although there currently is no direct evidence re
vealing connections between ILC1s and liver tumor 
immunity, the effects of their secreted cytokines have 
been extensively investigated, among which IFN-γ was 
shown to have prominent antiproliferative, antiangio
genic and proapoptotic effects against cancer cells[104-106]. 
This cytokine can promote the up-regulation of MHC 
molecules to induce the priming as well as antigen 
processing and presentation of professional antigen 
presenting cells, and has been shown to increase the 
immunogenicity of tumor cells, thereby enhancing 
antitumor responses[107,108]. In addition to promoting 
the polarization of CD4+ T cells into Th1 cells, it can 
also boost the responses of macrophages, NK cells 
and CTLs against tumor tissues[109,110]. TNF-α, another 
cytokine secreted by ILC1s, can also play an antitumor 
role by interfering with angiogenesis, cellular growth 
and migration. Further, it can induce the recruitment of 
macrophages and DCs, as well as the generation of CTLs, 
leading to a strong antitumor immune response[111,112]. 
Combined with the previously reported research findings, 
a recent study which showed the NK1.1+CD49a+CD103+ 
ILC1-like cells could lyse tumor cells, dependent on the 
activation of granzyme B and TRAIL, in an oncogene-
induced cancer model also supports the protective 
function of ILC1s in antitumor immunity[113]. However, its 
protective function can be hampered in cancer patients, 
as ILC1s of acute myeloid leukemia patients were 
found to be dramatically impaired in their production of 
IFN-γ and TNF-α compared to those of healthy control 
subjects[114].

It was also demonstrated that both IFN-γ and TNF-α 
could play ambiguous roles in cancer immunity. The 
protumor function of IFN-γ involves increased proliferative 
and antiapoptotic signals, as well as escape of the 
tumor cells from recognition and cytolysis by CTLs and 
NK cells[115]. TNF-α is also involved in tumor formation, 
growth and spread considering its versatile impacts 
on the expression of angiogenic and growth factors, 
cytokines, adhesion receptors and proteases[111,116,117]. 
Recently, Gao et al[118] demonstrated that CD49a-

CD49b+Eomes+ NK cells could convert into intermediate 
CD49a+CD49b+Eomes+ type 1 innate lymphoid cells 
(intILC1s) and CD49a+CD49b-Eomes- ILC1s in tumor 
microenvironment in a TGF-β signaling-dependent 
manner. Strikingly, distinguishable from the potent 
tumor surveillance properties of NK cells, intILC1s and 
ILC1s were incapable of controlling local tumor growth 
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and metastasis, uncovering an unknown mechanism 
by which tumors can escape surveillance by the innate 
immune system. This study also provided a new insight 
into the phenotypic and functional plasticity of tumor 
group 1 ILCs, while the precious roles and interactions of 
ILC1s in tumor microenvironment - especially in the liver 
- still needs to be further elucidated[118,119].

Group 2 ILCs
Considering the potential profibrogenic properties of 
ILC2s elicited by IL-33 in hepatic fibrosis under the 
circumstances of tissue damage, it is possible that 
these cells are involved in the progression from liver 
fibrosis to cancer as well. The precise role of ILC2s in 
carcinogenesis remains unclear; however, it can be 
supported by the evidence that has emerged from 
studies addressing factors that trigger their activation 
and proliferation, as well as their downstream effector 
molecules.

When it comes to the liver, IL-33 was shown to be 
involved in the initiation of cancer, based on a previous 
study wherein increased expressions of Th2 cytokines 
and hepatic IL1RL1 mRNA encoding ST2 were detected 
in a subgroup of patients at the time of diagnosis of 
biliary atresia[120]. ILC2s were further identified as im
portant mediators of the IL-33-depedent proliferative 

response for their production of high levels of IL-13, 
which in turn promoted cholangiocyte proliferation 
and epithelial hyperplasia in mice by involving the 
activation of IL-4R and the downstream target Stat6. 
Administration of IL-33 with constitutive activation of 
AKT and Yes-associated protein in biliary epithelium 
would lead to the development of cholangiocarci
noma, which resembles both the morphological and 
biochemical features of human disease in a mouse 
model of experimental carcinogenesis[121,122]. Thus, the 
activation of the IL-33/ILC2s/IL-13 circuit may promote 
epithelial repair, and the disruption of IL-33 or other 
elements of the paracrine circuit may constitute potential 
new therapeutic targets against cholangiocarcinoma. 
Furthermore, the level of IL-33 was found to be 
increased in patients with HCC as well[123].

IL-33 can also increase the intratumor accumulation 
of myeloid-derived suppressor cells (MDSCs), which 
require arginase and nitric oxide synthase II from 
IL-13 for their activation[124,125]. Together with the pro
angiogenesis process, MDSCs can also produce TGF-β 
to support tumor progression[126]. Besides, IL-13 can 
induce the polarization of macrophages to the M2 
phenotype, and the production of growth and angiogenic 
factors to promote tumor initiation, progression and 
metastasis[127,128]. It has also been demonstrated that 
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amphiregulin, another cytokine secreted by ILC2s, could 
enhance the activities of Tregs in vivo, which would 
further inhibit antitumor immune responses induced by 
DC vaccination[129,130]. 

IL-33 also plays a role in antitumor immune responses 
via effector functions of both CD8+ T cells and ILC2s, 
dependent on its dose[131,132]. The latter was confirmed in 
a study by Kim et al[133], which demonstrated that ILC2s 
were involved in IL-33-mediated antitumor responses. A 
massive amount of CXCR2 ligands released from ILC2s 
interacted with CXCR2 expressed by tumor cells by 
means of a dysfunctional angiogenesis/hypoxia/reactive 
oxygen species axis triggered by IL-33, subsequently 
leading to the apoptosis of active tumor cells[133]. Taking 
these results into consideration, ILC2s could exert both 
immune suppression and antitumor functions according 
to different tumor microenvironments, while its precious 
role, especially in the context of human livers, remains to 
be further confirmed.

Group 3 ILCs
The protective role of ILC3s has been directly revealed 
for its contribution to the formation of protective 
tumor-associated tertiary lymphoid structures in non-
small cell lung cancer (NSCLC)[134]. The ILC3s are 
able to up-regulate adhesion molecules in the tumor 
microenvironment to enhance leukocyte invasion, and 
have been characterized as important mediators of 
the efficacy of a combination therapy of chemotherapy 
and tumor antigen-targeted monoclonal antibodies[135]. 
Though there is no direct evidence linking ILC3s and 
liver cancer, the connection can be inferred according to 
their role in colorectal cancer, as well as the ambiguous 
roles of their downstream effector cytokines, including 
IL-22 and IL-17.

It has been demonstrated that ILC3-derived IL-22 
is crucial for promoting bacterial inflammation-induced 
colorectal cancer in Rag-/- mice through the activation 
of epithelial cells via STAT3 signaling[136]. Furthermore, 
deficiency of soluble IL-22 binding protein (IL-22BP) 
secreted by immature DCs was found to be associated 
with increased colitis-associated colon cancer due to 
the aberrant proliferation induced by IL-22. However, 
IL-22 was demonstrated as important for colonic 
epithelial cell repair in the early stage of colitis, using 
the same model; in particular, IL22-/- mice were shown 
to have enhanced cancer development[137]. These 
results suggest that IL-22 is crucial for regulating 
intestinal tissue repair during the peak of damage, 
while prolonged IL-22 in the recovery phase would be 
expected to favor tumorigenesis.

Paralleling the dual effects of IL-22 on tumorigenesis 
of colitis-associated colon cancer, IL-22 has also been 
reported to induce tissue regeneration or tumorigenesis 
and metastasis in the liver. Firstly, characterized 
with the protective role of hepatocyte proliferation 
and tissue regeneration during hepatitis and after 
hepatectomy, the functions of IL-22 may be exploited 

in liver cancer, as suggested by the significant up-
regulation of IL-22 detected in human HCC tumor-
infiltrated leukocytes[70,138,139]. Besides, there is a 
positive correction between IL-22 expression and 
the oncogenesis and staging of tumors, according to 
the finding that both IL-23 and IL-22BP are highly 
expressed in tumor tissue[68]. Secondly, though the 
induction of MMP enables IL-22 to protect against 
tumor formation in chronic liver fibrotic diseases, by 
the same mechanism it can increase the metastatic 
capacity of established tumor cells by digesting ECM, 
invading surrounding tissue and escaping the primary 
site. This has been shown in the A549 lung carcinoma 
cell line and pancreatic cancer, while whether the same 
mechanism also exists in hepatic tumor tissue remains 
unknown[97,140,141].

The same balance also exists in the antiviral 
activity and associated oncogenesis. IL-22 disturbs the 
establishment of chronic inflammation to prevent liver 
cancer. As was shown in acute infection of HBV, IL-22 
acts as the mediator of an acute phase reaction to clear 
the virus via the recruitment of T cells[142]. However, 
it plays a contrary role in the progressive diseases, as 
IL-22 level was elevated and high serum IL-22 level 
indicated a poor prognosis both in patients with HBV 
and hepatitis C virus-associated HCC, suggesting that 
expression of IL-22 during progressive disease may 
reflect increased aggressiveness of HCC instead of 
predisposal to cirrhosis[76,143].

IL-22 can also influence the outcome of tumorige
nesis by the mechanisms of pro- and antiinflammatory 
functions, angiogenesis, epithelial-mesenchymal transition, 
dysplasia and metabolic functions that remain less clear 
in the liver[142]. All these results suggest whether the 
effect of IL-22 is tumorigenic or antitumorigenic seems to 
depend on the stage of their responses and the specific 
tumor microenvironment.

Thy1+IL-23R+ ILC3s are important for IL-23-induced 
initiation of gut tumorigenesis, as substantial inhibition 
of tumorigenesis in RAG-/-*IL17-/- double knock-out mice 
provided evidence for an important contribution of IL-17 
expression in ILC3s, which consistently occurred before 
the recruitment of overt inflammatory infiltrates[144]. 
When it comes to liver, the connection between IL-17 
and angiogenesis has emerged in the context of HCC[145]. 
Besides, it has been shown to have protumor activity 
in proliferation, immune-resistance, tumorigenesis and 
metastasis as well[146]. On the contrary, IL-17 also plays 
a vital role in antitumor activity via the stimulation 
of tumor-specific CTLs, which were associated with 
establishment of a tumor-protective immunity in he
matopoietic cancer[147]. These results also lead to the 
suggestion that there is a balance between protective 
CTLs’ formation during the acute phase of hepatitis 
and angiogenic activity during the chronic phase, which 
would determine the outcome of tumors.

Overall, ample evidence has pointed towards ILC3s 
having an important role in tumor progression. The 
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elements consisting of specific tumor microenviron
ment as well as the timing of responses count when 
considering their ambiguous roles, while their explicit 
functions in humans, especially in human liver cancer, 
are incompletely understood and remain to be fully 
elucidated (Figure 4).

CONCLUSION AND FUTURE 
PERSPECTIVES
The recent research studies on the roles of ILCs in 
development of chronic liver diseases have made great 
progress, especially for hepatitis and liver fibrosis. 
Different or even the same ILC subsets have shown 
complex functions at a certain stage of chronic liver 
diseases. Also, the same ILC subsets have exhibited 
both pathological and protective functions during the 
dynamic development of chronic liver diseases. When 
considering their effects on liver, both the downstream 
effector cytokines and the molecules involved in the 
upstream signaling must be taken into consideration 
simultaneously, and more research is required to further 
elucidate the underlying mechanisms and signaling 
pathways. Apparently, there is a balance between the 
protective and pathological properties of ILCs, according 
to the specific liver tissue microenvironment at different 

stages of liver diseases, whereby effector cytokines, 
surrounding interaction cells and functional state of cell 
receptors vary remarkably. What’s more, the basis of 
the functions of ILCs and their downstream effector 
cytokines in hepatitis and liver fibrosis can represent the 
foundation of future research interests for investigating 
their roles in tumorigenesis.

Different methods have been applied to detect 
ILCs and measure their activities. Intrahepatic as well 
as peripheral blood mononuclear cells are isolated 
for further in vitro staining with fluorescence-labeled 
antibodies according to the cluster of differentiation on 
the surface of different ILC subsets and intracellular 
contents. Flow cytometry is further applied to detect 
the frequency and cellularity of ILCs and analyse the 
expression of their transcription factors and effector 
cytokines induced by PMA/ionomycin once they have 
been sorted in vitro. By observation of the differences 
of these factors between patients with chronic liver 
diseases and healthy control groups, their changes 
before and after the inducing factors and their con
sistency with liver injury, the researchers could validate 
the activities and functions of ILCs in the liver[23,38]. 
Considering limited accessibility of primary intrahepatic 
ILCs, the expansion of cell lines of primary intrahepatic 
ILCs is also an alternative to assess the function of this 
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small cell population and to seek their secretion profile 
through the stimulation of PMA/ionomycin[96]. Besides, 
there have been studies exploring the roles of ILCs in 
initiation of liver injury including both hepatitis and liver 
fibrosis by the mechanism of in vivo depletion of ILCs 
using specific antibodies[22,73] or targeted transcription 
factor gene-deficient mice[72]. The protective or path
ological roles of ILCs are determined by comparison of 
the severity of liver injury before and after the depletion 
of ILCs as indicated by histological analysis of liver tissue 
and expression of liver injury serum biomarkers as well 
as inflammatory cytokines in RAG1-/- mice which are 
reconstituted with CD4+ T cells. In vivo experiments 
to distribute the signaling pathway of ILCs through the 
blockade of upstream cytokines and surface receptors 
of ILCs via targeted gene-knock mice are also important 
methods, in which the expansion of ILCs and their 
expression of transcription factors and downstream 
effector cytokines are further detected by flow cytometry 
and quantitative real-time PCR analysis[24,52]. Additionally, 
the activities of ILCs could also be monitored by transfer 
experiments, in which purified ILCs sorted by MACS/
FACS are adoptively transferred into recipient mice 
before the challenge of stimulus including ConA and 
carbon tetrachloride to further investigate the function of 
ILCs in the liver[22,24,58].

There still remains a lot to be fully elucidated. Firstly, 
the functions of some ILC subsets at a particular stage 
of chronic liver diseases have only been inferred by 
their downstream effector cytokines, while lacking direct 
and potent evidence. Secondly, given their distribution 
characteristics, evidence with regard to the functions 
of ILCs in tumorigenesis is emerging from studies that 
have mostly investigated chronic inflammation and 
the procarcinogenic role of secreted cytokines in skin, 
gut and lung, and less so for the liver. Thirdly, as the 
innate counterpart of CD4+ Th cells, the same effector 
cytokines can be produced by both adaptive lymphoid 
cells and ILCs. It is important to identify the sources 
of effector cytokines, while the results from the most 
recent in vivo studies were obtained from RAG-/- mice 
or antibodies that are specific to ILCs’ genes leading 
to broad immune deficiencies. Thus, it is necessary to 
apply ILCs’ specific gene-knockout or transgenic models 
to reveal the precise and direct actions of each in the 
liver.

New strategies targeting ILCs have been designed 
for diagnosis and treatment, to prevent or stop the 
progression of chronic liver diseases. The inhibition of 
NKG2A receptors on ILC1s to further promote robust 
CD8+ T cell responses has been considered a potential 
therapeutic strategy against persistent liver pathogens 
in patients with hepatitis. Besides, for liver fibrosis 
treatment, serum IL-33 may be a possible noninvasive 
diagnostic biomarker for uncovering early inflammatory 
and fibrogenic events. Targeting ILC2s may represent 
a novel strategy as well. Further in-depth studies to 
elucidate the distinct and explicit effects of each of the 
ILC subsets at different stages of chronic liver diseases 

are required in order to promote the exploration and 
realization of their therapeutic potency.
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