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The key regulatory enzymes of glycogenolysis are phosphory-
lase kinase, a hetero-oligomer with four different types of sub-
units, and glycogen phosphorylase, a homodimer. Both enzymes
are activated by phosphorylation and small ligands, and both
enzymes have distinct isoforms that are predominantly
expressed in muscle, liver, or brain; however, whole-transcrip-
tome high-throughput sequencing analyses show that in brain
both of these enzymes are likely composed of subunit isoforms
representing all three tissues. This Minireview examines the
regulatory properties of the isoforms of these two enzymes
expressed in the three tissues, focusing on their potential regu-
latory similarities and differences. Additionally, the activity,
structure, and regulation of the remaining enzyme necessary
for glycogenolysis, glycogen-debranching enzyme, are also
reviewed.

As discussed throughout this Minireview series, glycogenol-
ysis, especially in astrocytes, is central to a variety of biological
processes carried out in brain. Thus, the regulation of glycogen-
olysis is critical for understanding control of these processes.
There are but three enzymes devoted solely to glycogenolysis:
phosphorylase kinase (PhK),2 which activates glycogen phos-
phorylase (GP); GP, which phosphorolyzes �-1,4 glycosidic
bonds to form glucose-1-P; and glycogen-debranching enzyme
(GDE), which is both a glucosyltransferase and a glucosi-
dase that hydrolyzes �-1,6-glycosidic branch point bonds to
release glucose. The first two enzymes constitute an unusually
selective pair, in that PhK is the only known protein kinase to
activate GP, which in turn is the only generally acknowledged
physiological substrate for PhK. As will be discussed, however,
it is possible that glycogen synthase (GS) may also be a biolog-
ical substrate for PhK. Besides being activated by phosphoryla-
tion, PhK and GP respond to small-molecule signals to regulate
glycogenolysis, whereas GDE is directly involved in regulating
glycogen synthesis.

The structure, activity, and regulation of PhK

Almost everything known about PhK has come from 6
decades of study on the enzyme from rabbit fast-twitch skeletal
muscle, which fortunately has turned out to be a relatively
homogeneous isoform. This form of the enzyme will be referred
to as mPhK, to distinguish it from the liver (lPhK) and brain
(bPhK) forms, which at first approximation seem to share sim-
ilar subunit compositions and regulatory features as mPhK,
albeit with distinguishing differences in their regulation (1).
The mPhK is a hexadecameric oligomer composed of four cop-
ies each of four distinct subunits, (����)4, that tightly associate
in a 1.3-MDa complex. The �, �, and � subunits are regulatory
and exert fine control over the activity of the catalytic � subunit
(1). Within the complex each type of subunit directly interacts
with the three remaining types, consistent with extensive qua-
ternary interactions (2). Moreover, cryo-EM reconstructions
and subunit localizations show the three regulatory subunits to
be arrayed around the catalytic subunit (Fig. 1) (3–7), and their
interactions with it are, at least in part, through the � subunit’s
C-terminal regulatory domain (�CRD) (8). Adding the masses
of the �CRD (12.7 kDa) and the three regulatory subunits (�,
138 kDa; �, 125 kDa; �, 16.7 kDa) indicates that 90% of mPhK’s
mass is involved in its regulation. It is assumed that the regula-
tion of the bPhK will be equally complex if not more complex
than mPhK, given that there are a greater variety of subunit
isoforms in the brain.

There are two primary activators of mPhK, one being Ca2�

(9) and the other phosphorylation (10), with that catalyzed by
cAMP-dependent protein kinase (PKA) as part of the fight or
flight response being the most thoroughly characterized (1).
The mPhK is a calmodulin (CaM)-dependent protein kinase;
however, in this regard it is atypical of that kinase family
because of four features. The first is that CaM, its integral �
subunit (11), does not associate and dissociate from the com-
plex depending on the concentration of free Ca2�. The second
is that CaM (�) binds to the �CRD in a novel mode using a
salt-bridge involving its third EF-hand (12). The third is that
mPhK is activated by and binds only three Ca2� ions per �
subunit (13), consistent with its third EF-hand being involved in
the binding of � to �. The fourth difference between mPhK and
other CaM-dependent kinases is that Ca2� remains an obliga-
tory cofactor even after the enzyme has been activated via phos-
phorylation (14), although the sensitivity to Ca2� does change
(9, 15, 16). It should be remembered, however, that Ca2� and
phosphorylation are co-dependent activators, in that neither
alone causes significant activation, at least at neutral pH (15).
This last point is important, because activation schemes show-
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ing the glycogenolysis cascade often imply that Ca2� alone can
significantly activate PhK, which is not true for mPhK, at least at
neutral pH values or below. As for other PhK isoforms, includ-
ing brain, their overall Ca2� dependence will require similarly
thorough analyses. At alkaline pH values, which activate mPhK
by eliminating its need for phosphorylation, its requirement for
Ca2� ions for expression of that activity remains (15).

It might also be noted that PhK directly binds to glycogen,
which stimulates its protein kinase activity (17). Moreover,
acarbose, which is a transition-state analogue inhibitor of
�-glucosidases, binds tightly to PhK and stimulates its catalytic
activity, presumably through glycogen-binding site(s) on its �
and/or � subunit(s) (18).

Besides phosphorylating GP, mPhK from rabbit has also
been shown by numerous groups to phosphorylate rabbit mus-
cle GS in vitro (19 –22). The characteristics of this PhK-depen-
dent phosphorylation completely mirror those with GP as sub-
strate, including Ca2� dependence. Moreover, the kinetic
parameters for both substrates are quite similar: equivalent Km
values, with Vmax twice as high for GP (21). As is the case with
GP, the GS phosphorylation site is near its N terminus (Ser-7),
which occurs within a sequence similar to the GP phosphory-
lation site (21). Most importantly, this phosphorylation of GS
also leads to its inactivation (19, 20, 22, 23). It is not known
whether PhK also phosphorylates GS in vivo, although they
both bind glycogen (19) and thus may be proximal. The diffi-
culty in establishing whether GS is a physiological substrate for
PhK is that there are five other protein kinases that phosphor-
ylate Ser-7 of GS (19).

In contrast to mPhK, very little is known about the structure,
activity, and regulation of bPhK. The PhK activity in brain
lysates is �7% that of muscle, normalized by protein concen-
tration (24). It should be noted, however, that these lysates
would represent glial, neuronal, endothelial, and smooth mus-

cle cells. The mass of bPhK does not appear to have been esti-
mated; however, it most likely has the same quaternary struc-
ture as mPhK and lPhK, because all four subunits are expressed
in brain (25). Moreover, both Ca2� and PKA have been shown
to activate bPhK in lysates, further suggesting a similar subunit
composition and regulation of the PhK from various tissues,
although there were significant qualitative differences in the
activation profiles (24). It should be noted, however, and is
detailed in subsequent sections, transcripts of the muscle iso-
forms of the �, �, and � subunits are all found in brain, but the
brain additionally has transcripts corresponding to the � sub-
unit isoform associated with liver and a � subunit isoform that
predominates in brain.

Regarding these isoforms of PhK, multiple genes and alter-
native splicing give rise to a wide variety of potential complexes
containing different subunits. There are two genes for the �
subunit on the X-chromosome: PHKA1 and PHKA2 (26, 27).
The A1 gene encodes the � subunit found in mPhK (28); how-
ever, alternative RNA splicing removes an internal segment of
59 amino acids to form �� (29), which predominates in PhK
from cardiac and slow-twitch muscle. The A2 gene encodes the
predominant � subunit in lPhK (30). There is but a single gene
for the � subunit on chromosome 16 (27), but its RNA can
undergo two different types of alternative splicing, resulting in
� subunits with different N termini and two different mutually
exclusive internal segments of 28 residues (29). Of the four pos-
sible � permutations, one predominates in brain (�B) (29), and
it is significantly different from that of muscle (�M) (29). There
are two genes for the � subunit: PHKG1 on chromosome 7 (31)
and PHKG2 on chromosome 16 (32). As for the � subunit, there
are three different genes for CaM on chromosomes 2, 14, and 19
(33); however, all three genes encode the identical protein, and
of course, CaM has multiple targets. Because of all the different
potential combinations of subunits in the hexadecameric com-
plex, only mPhK, which is nearly all (�1�M�1�)4, and to a much
lesser extent heart PhK (��1�M�1�)4 have been characterized as
purified, mostly homogeneous isoforms (1). Liver PhK has been
purified and studied (34, 35); however, those enzyme prepara-
tions likely contained multiple isoforms. No purified bPhK with
any identified isoform has ever been characterized; however, in
this regard, it should be noted that an expression system that
would allow this is now available, as hexadecameric mPhK that
mimics the enzyme purified from skeletal muscle has now been
expressed (36).

The relative amounts and types of RNA characterized by
whole-transcriptome high-throughput sequencing of skeletal
muscle, liver, and brain tissues is shown in Table 1. Comparing
hippocampus and astrocytes, one sees similar expression of the
different isoforms, albeit in somewhat different ratios. It should
be noted, however, that the hippocampal data are from
humans, and the astrocytic data are from mice (25). Consider-
ing the � subunit in astrocytic PhK, �1 predominates over �2.
No ��1 was observed, and it is not known whether ��2 is produced
in any tissue. The � subunit exhibits a similar ratio of the muscle
to liver forms as observed for � in astrocytes, with �1 predom-
inating. Of the three genes for the � subunit (CaM), only one is
significantly transcribed in astrocytes. The greatest difference
between bPhK and PhK from other tissues occurs in the � sub-

Figure 1. PhK structure and subunit locations. The cryo-EM reconstruction
of the (����)4 mPhK complex (6) shows the relative locations of the four
subunits within a single ���� protomer determined by immunoelectron
microscopy or nanogold derivatization (3–5). The bridges between the octa-
meric lobes are composed of � subunits (94). The lobe tips, which contain a
C-terminal region of the � subunit (4), are separated by 176 Å (intralobal) and
213 Å (interlobal) (6).
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unit. The �B isoform predominantly contains the mutually
exclusive internal exon found in �L (29); however, its N termi-
nus is distinct from the other � isoforms in being seven residues
shorter and having altered phosphorylatable regulatory
sequences (29), as described in detail below. Thus, the predom-
inant makeup of astrocytic PhK is (�1�B�1�)4. It must be noted,
however, that the RNA for �2, �M, and �2 isoforms is also pres-
ent and could give rise to a large variety of PhK complexes, likely
having different regulatory, or even catalytic, properties. More-
over, that complexity would be even further increased if all
subunit isoforms could freely associate within a given hexa-
decameric complex, e.g. different � isoforms within the same

complex, different � isoforms, etc. The selectivity of association
of subunit isoforms within an individual PhK complex is simply
not known.

One of most salient differences between the brain and mus-
cle PhKs concerns their potential regulation by phosphoryla-
tion. In the case of mPhK, its activation by PKA occurs mainly
through phosphorylation of Ser-26 (37) of the � subunit (Fig. 2);
but once this residue is phosphorylated, additional activation
occurs through phosphorylation of multiple seryl residues in
the C-terminal region of the � subunit (38). Phosphorylation of
mPhK is associated with an increased self-association of the �
subunits within the (����)4 complex (8, 39) and a concomi-

Table 1
Isoforms of PhK Subunits and PhKaa

a Expression in human skeletal muscle, liver, hippocampus, and mouse astrocytes was estimated from RNA-sequence data sets, with FPKM shown in the separate heat maps
for PHK and CALM/GP by the central double line (52). PhK subunit splice variants were evaluated using previously reported values from rabbit (29).

b Deletion of 59 amino acids (AA’s) (654 –712) through alternative splicing (29).
c Residues 779 – 806 are unique due to mutually exclusive exons (29).
d Residues 779 – 806 are the same in the � subunits of all non-muscle tissues (29).
e N.D. means not determined.
f Data are similar to �L, but with a unique N terminus (29).
g All three CALM genes encode the identical protein (33).
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tantly large increase in the kcat of its � subunit (40). From results
with zero-length oxidative cross-linking and a phosphomi-
metic peptide of the N terminus of �M (8), a structural model
was recently proposed to explain the phospho-activation of
mPhK (41). The model posits that the nonactivated conformer
of PhK is stabilized by interactions between the � subunit and
the nonphosphorylated N terminus of � and that phosphoryla-
tion of � weakens this inhibitory interaction, leading to the
activation of �. The �B isoform has a very different primary
structure at its N terminus than at �M (Fig. 2), which makes it
highly probable that bPhK is regulated by phosphorylation dif-
ferently from mPhK. The difference could be potentially man-
ifested in three different ways: autophosphorylation, phosphor-
ylation by PKA, and phosphorylation by Pro-directed protein
kinases. The first two potential differences were explicitly noted
by Harmann et al. (29) in their groundbreaking study on the
isoform diversity of PhK’s � and � subunits created by alterna-
tive RNA splicing. They noted that Ser-11 of �M, which is an
autophosphorylation and autoactivation site in vitro (8, 42), is
eliminated in �B (Fig. 2), although it is not known whether
mPhK autophosphorylation occurs in vivo. They also noted
that the primary structure immediately surrounding Ser-26 in
�M, the activation site during phosphorylation by PKA (37), is
conserved in �B as Ser-19 and surrounding residues (Fig. 2);
however, N-terminal to that, only one of the six basic residues
present in �M is retained in �B, which would undoubtedly neg-
atively affect phosphorylation by the basophilic PKA. The third
and most intriguing difference between �M and �B in their
N-terminal regions is the introduction of three additional seryl
residues in the latter (five total versus two), with two of the
residues in �B occurring as Ser-Pro pairs (Fig. 2). These pairs
could be targets for members of the large superfamily of Pro-
directed protein kinases, e.g. GSK3, JNKs, MAPKs, ERKs, etc.
No Pro-directed protein kinase has been previously shown to
phosphorylate PhK from any tissue. The location of these Ser-
Pro pairs at the N terminus of �B makes it highly likely that their
phosphorylation would lead to activation of that PhK, and thus
glycogenolysis. Thus, conditions or receptor agonists acting in-
dependently of cAMP could stimulate brain glycogenolysis.

To fully understand the regulation of bPhK by phosphoryla-
tion and Ca2� ions, it will be necessary to co-express defined
isoforms of the relevant subunits found in brain and then to
purify and characterize the resultant complexes using the brain
isoform of GP as substrate. All studies to date examining bPhK
activity in lysates or slices have utilized only the muscle isoform
of GP as substrate; as discussed in the below, there are signifi-
cant differences in these two GP isoforms.

Intracellular degradation of glycogen

Release of glucosyl monomers from glycogen occurs through
the concerted actions of GP and GDE, which produce glucose

1-phosphate and glucose, respectively, through phosphorolysis
and hydrolysis of 1,4 and 1,6 glycosidic bonds in glycogen. Reg-
ulatory mechanisms governing the activity of GP are for the
most part well characterized through extensive studies of rabbit
mGP (43), whereas the regulation of GDE activity is less well
understood.

The structure, activity, and regulation of GP

GP (1,4-�-D-glucan:orthophosphate �-D-glycosyltransferase,
EC 2.4.1.1) is a member of the clan 35 family of retaining glyco-
syltransferases (GT), which in the case of GP transfer sugar
moieties (glucose) from donor (glycogen) to phosphate accep-
tor molecules (44). Each GP monomer (97.4 kDa) contains a
pyridoxal phosphate prosthetic group that is attached through
a Schiff base with a Lys in its active site (45). The phosphate
group of pyridoxal phosphate protonates Pi in the GP-active
site, which in turn protonates the hemiacetal oxygen of the
�-1,4 glycosidic bond, resulting in its cleavage and the forma-
tion of a glucosyl carbocation that bonds with phosphate to
form glucose 1-phosphate. Biologically, GP exists as a
homodimer of subunits associated in a nonactive conforma-
tion, in which both subunits’ catalytic sites are partially buried
(46). To achieve full activation, GP undergoes tiered conforma-
tional changes in response to phosphorylation of Ser-14 by PhK
and/or the binding of the allosteric activator AMP, promoting
active conformations in which moderate changes in tertiary
structure lead to large changes in quaternary structure, rotating
the subunits �10° with respect to each other to expose fully
solvent-accessible active sites (46 –48).

As is the case with PhK, there are three structurally related
mammalian isoforms of GP, named for the tissues in which they
predominate: muscle (mGP), liver (lGP), and brain (bGP). Each
of the isoforms is encoded by a unique gene, and the three genes
are located on different chromosomes (49 –51). In addition to
liver, lGP is expressed, at least at low levels, ubiquitously in
other tissues, including brain (52). In contrast, mGP is
expressed to a great extent only in muscle, with low levels of
expression observed in brain, primarily in astrocytes (52–54).
For lGP and mGP, RNA levels mirror protein expression in
most tissues (52). The bGP isoform is expressed predominantly
in fetal tissues, with its expression levels attenuating in most
tissues to different extents after birth, giving rise to tissue-spe-
cific ratios of GP isoform expression (55). In brain, bGP is
expressed in both astrocytes and neurons (53).

The activity of GP is tightly controlled by activating (AMP)
and inhibiting (glucose, glucose-6-P, and purine nucleosides)
allosteric effectors (56). As revealed by X-ray crystallographic
analyses of mGP–ligand complexes, each allosteric ligand binds
to a distinct region of the GP dimer, except glucose-6-P and
AMP, whose binding sites partially overlap (57). It has also been
suggested that glycogen itself may act as an allosteric activator
through binding at a glycogen storage site distinct from the
active site (46). GP is also activated, as described above, by
upstream signaling through phosphorylation of Ser-14 by PhK
in response to hormonal stimuli and increased intracellular
Ca2� ions. Nonphosphorylated GP is termed GPb, and phos-
phorylated GP is termed GPa.

Figure 2. N-terminal domains of �M and �B. Serines in red represent known
PKA phosphorylation sites for �M (1, 37) and the putative PKA site for �B. The
green residues in the �B sequence show the potential Pro-directed protein
kinase phosphorylation sites.
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There are significant differences in the allosteric activation of
the three GP isoforms in response to AMP and phosphory-
lation. Crystal structures of all GPs show that the phosphoryla-
tion and AMP-binding sites are proximal (12 Å) and close to the
subunit interface in the dimeric complex (58). Activation of GP
through these two sites is thought to involve similar conforma-
tional changes (47, 48, 58 – 60), involving specific rearrange-
ments in tertiary and quaternary structure, confined primarily
to a region comprising residues 1–120, termed the activation
subdomain (61). Phosphorylation results in nearly full activa-
tion of mGP and lGP; however, bGP is less potently activated by
phosphorylation (61–64) and also requires the binding of AMP
to achieve the extent of activation observed with mGPa and
lGPa (63). The three isoforms also respond differently to AMP,
with lGP showing little to no activation by the nucleotide (61).
In contrast, bGPb is sensitive to AMP activation and has a
greater affinity for the nucleotide than does mGPb; however, it
binds AMP noncooperatively (61, 65), whereas the binding of
AMP by mGPb is highly cooperative (61). Additionally, AMP
significantly lowers the Km value of bGP for glycogen, which
otherwise would be much greater than that for the muscle iso-
form (62).

Although likely not as problematic as for PhK, the simulta-
neous presence of multiple isoforms of GP in brain complicates
understanding the overall regulation of the enzyme. In astro-
cytes, where the bulk of glycogenolysis occurs, both the mGP
and bGP isoforms are expressed (65); however, there is also
evidence for the expression of lGP in cultured astrocytes (53),
and low levels of RNA for this isoform have been detected in
brain by whole-transcriptome shotgun sequencing (52). Thus,
there is the possibility that all three isoforms exist in brain,
allowing for isoform-dependent variations in response to acti-
vation by AMP and other effectors, as well as to phosphoryla-
tion by PhK (65). As discussed above, upstream signaling by
phosphorylation is further complicated by the presence of the
�B subunit of PhK in astrocytes. Moreover, AMP signaling may
also be complicated by the susceptibility of bGP to reactive
oxygen species (ROS) (66). Two Cys residues (318 and 326) are
conserved within all brain isoforms of GP in higher vertebrates
and occupy positions in the adenine loop that is part of the
AMP-binding site (60). Oxidation of bGP with H2O2 has been
shown to reduce AMP-induced activation by 75% and activa-
tion by phosphorylation by 20%. Both effects were reversible, in
line with several redox proteomics studies (67–69) that sug-
gested potential regulation of bGP by ROS (66). Because only
bGP is expressed in neurons (53, 54), its exposure to ROS could
potentially limit its activation to predominantly extracellular
signaling pathways through phosphorylation, rather than in
response to neuronal intracellular AMP.

Another potential allosteric activator of bGP is Rac1,
although this particular activation mechanism has yet to be
examined with the brain isoform. Rac1 (77), a member of the
Rho family of small GTPases, does however activate mGP (70).
Moreover (78 –83), muscle contraction has been shown to
increase activation of Rac1, leading in turn to activation of the
protein kinase PAK1, a Rac1 target, and to increased glucose
uptake through actin cytoskeletal remodeling and GLUT4
translocation (71). PAK1 is activated by the binding of Rac1 to

its auto-inhibitory domain, which shares homology with resi-
dues 191–270 of mGP, a region required for the binding and
activation of mGP by active Rac1 (70). The Rac1-binding region
of mGP is near the dimer interface, proximal to the tower heli-
ces, which undergo large conformational changes upon activa-
tion (46). These results suggest that glycogenolysis may be stim-
ulated during muscle contraction through multiple activators
that target GP, including Rac1.

Because Rac1 is expressed widely and to a great extent in
brain (52) and because bGP essentially conserves the entire
Rac1-binding site found in mGP (70), it is possible that (73–76)
brain glycogenolysis may also be mediated by Rac1 similar to its
effect in muscle. In a recent report, Fernandez et al. (72) dem-
onstrated that glucose uptake in forebrain through GLUT1
translocation is synergistically stimulated by insulin and insu-
lin-like growth factor-1 (IGF1) through mitogen-activated pro-
tein kinase/protein kinase D activation of Rac1 in astrocytes,
which have been reported to express insulin, IGF1, and insulin
receptors (73, 74). In response to sensory stimulation, blockade
of IGF1 receptors in the somato-sensory cortex was shown to
diminish neuronal activity and glucose uptake by astrocytes
(72). Correspondingly, both Rac1 and mGP levels were dimin-
ished in post-mortem samples of the dorsolateral prefrontal
cortex of patients with schizophrenia and in astroglia-enriched
cultures from rodent models of schizophrenia, with samples
from both exhibiting changes in energy-regulating pathways
(75–77). Together these studies provide evidence for altered
regulation of the glycogenolytic pathway in chronic schizo-
phrenia, leading Pinacho et al. (78) to hypothesize the potential
down-regulation of Rac1 and mGP as a mechanism for dimin-
ishing the transfer of astrocytic energy stores to neurons (77, 79,
92). Rac1 activation through Wnt5a signaling in brain influ-
ences synaptic plasticity and memory formation (79), and
through its binding and activation of GP it may potentially cou-
ple actin dynamics and glycogenolysis, both linked to memory
consolidation (80). Furthermore, as a modulator of actin
dynamics (81), Rac1 also plays an important role in neuronal
migration and synaptic plasticity (79, 82, 83).

The activity, structure, and regulation of GDE

In the breakdown of glycogen, GDE expresses both GT and
glycosidase (GC) activities following the reactions of GP. Phos-
phorolysis by GP of �-1,4 glycosidic bonds in the glycogen poly-
mer halts at four glucose units from an �-1,6 branch point, with
those remaining four glucosyl residues targeted by GDE. First,
three glucose units are cleaved from the branch and transferred
as a trisaccharide to the reducing end of a nearby outer chain by
the GT activity, and then the �-1,6 branch point glucose is
hydrolyzed by the GC activity. Together, these two activities of
GDE produce a linear polyglucose outer chain that is accessible
to further phosphorolysis by GP.

Until recently, little was known structurally about eukaryotic
GDEs, including whether GT and GC catalysis was carried by a
single or separate catalytic sites; however, the first crystal struc-
ture of GDE from Candida glabrata (cgGDE), which shares
38% sequence similarity with human GDE, unequivocally dem-
onstrated the presence of N- and C-terminal catalytic domains
that possess, respectively, 4-�-D-glucotransferase (GT: EC
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2.4.1.25) and amylo-�-1,6-glucosidase (GC: EC 3.2.1.33) activ-
ities (84). The N-terminal GT domain contains three sub-
domains and is structurally similar to glycosyl hydrolase (GH)
13 family members (44), which contain conserved catalytic Glu
and Asp residues. Structural analyses of the GT site with oligo-
saccharide model substrates demonstrated that it is highly
selective for glycogen branches with four glucose units, i.e. the
end products of glycogen digestion by GP (85). Mutation of
either of the predicted GT site catalytic residues abolished the
enzyme’s glucotransferase activity without affecting its gluco-
sidase activity. The C-terminal catalytic domain is a structural
homolog of the GH15 family, which contains funnel-shaped
active sites with two carboxyl-containing catalytic residues
(86). Using the methodology described above, the C-terminal
GC domain was shown to be selective for single branch oligosac-
charides mimicking the �-1,6 branches of glucose that are
resistant to phosphorolysis by GP. Mutation of either of the
catalytic residues in the GH site abolished glycosidase activity,
but not GDE’s transferase activity. In addition to the catalytic
sites that bind glycogen, an intervening domain contains a gly-
cogen contact region that is conserved among GDEs from other
organisms (84).

Kinetic analyses of native and mixed catalytically dead CT
and GC combinations of cgGDE suggest a mechanism whereby
the GT hydrolysis product must first dissociate from the GDE
before the enzyme binds to an �-1,6 branch for hydrolysis by its
GC domain (84). Besides being substrates, the binding of oligo-
saccharides by GDE has been reported to stimulate its GT activ-
ity (87, 88).

Tissue-specific regulation of GDE and the extent and num-
ber of its interactions with other cellular proteins remain poorly
understood. GDE levels may be influenced by fluctuations in
glycogen stores through signals that, in part, alter its association
with glycogen. Cheng et al. (89) demonstrated that conditions
possibly leading to down-regulation of cAMP/PKA signaling
and dissociation of GDE from glycogen influence the translo-
cation of GDE from the cytosol to the nucleus to form GDE–
malin complexes, ultimately leading to a decrease in GDE lev-
els. Because malin is a ubiquitin ligase (90), its association with
GDE suggests a potential model for regulating GDE levels by
ubiquitination (89). Moreover Liu et al. (91) later showed that
degradation of lafora bodies requires an assembly of proteins
that include malin, GS, and bGP, plus the most common splice
variant of the GDE gene (91), suggesting additional potential
binding partners for GDE in polyglucan degradation pathways
in brain and other tissues.

GDE may target other proteins that associate with glycogen,
e.g. it reportedly binds the � subunit of AMP-activated kinase
(AMPK), resulting in the stimulation of AMPK activity (92).
Phosphorylation of GS by AMPK reportedly inhibits GS activity
in concert with GSK (93), potentially down-regulating glycogen
synthesis.

Summary

Continuing work on the regulation of glycogenolysis indi-
cates that it is more complex than previously appreciated, espe-
cially in brain. In part, this is because of the probable wide
variety of PhK and GP isoforms in brain, representing those

enzymes from all tissues. Furthermore, the specific brain iso-
forms of both enzymes are regulated differently from their iso-
forms of other tissues, e.g. the unique N-terminal regulatory
phosphorylation region of bPhK’s �B subunit and the oxidation
of bGP. To better understand the allosteric regulation of glyco-
genolysis in brain, the actual amounts of the different subunit
isoforms of PhK and GP present in the different regions of brain
must be determined, as well as their association, followed by
determination of their resultant activities under controlled
conditions. It would also be necessary, of course, to estimate the
relative contributions to overall activation by the various allos-
teric activators acting on the two enzymes (phosphorylation,
Ca2�, AMP, Rac-1, oxidation, etc.). The rapidly accessible
energy source supplied by glycogenolyis in supporting numer-
ous brain functions requires few enzymes, but they are under
complex control.
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