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Abstract
Triple-negative breast cancer (TNBC) is a long-lasting 
orphan disease in terms of little therapeutic progress 
during the past several decades and still the standard of 
care remains chemotherapy. Experimental discovery of 
molecular signatures including the ‘BRCAness’ highlighted 
the innate heterogeneity of TNBC, generating the diversity 
of TNBC phenotypes. As it contributes to enhancing 
genomic instability, it has widened the therapeutic 
spectrum of TNBC. In particular, unusual sensitivity to 
DNA damaging agents was denoted in patients with 
BRCA deficiency, suggesting therapeutic benefit from 
platinum and poly(ADP-ribose) polymerase inhibitors. 
However, regardless of enriched chemosensitivity and 
immunogenicity, majority of patients with TNBC still suffer 
from dismal clinical outcomes including early relapse and 
metastatic spread. Therefore, efforts into more precise 
and personalised treatment are critical at this point. 
Accordingly, the advance of multiomics has revealed novel 
actionable targets including PI3K-Akt-mTOR and epidermal 
growth factor receptor signalling pathways, which might 
actively participate in modulating the chemosensitivity and 
immune system. Also, TNBC has long been considered a 
potential protagonist of immunotherapy in breast cancer, 
supported by abundant tumour-infiltrating lymphocytes 
and heterogeneous tumour microenvironment. Despite 
that, earlier studies showed somewhat unsatisfactory 
results of monotherapy with immune-checkpoint inhibitors, 
consistently durable responses in responders were 
noteworthy. Based on these results, further combinatorial 
trials either with other chemotherapy or targeted agents 
are underway. Incorporating immune-molecular targets 
into combination as well as refining the standard 
chemotherapy might be the key to unlock the future of 
TNBC. In this review, we share the current and upcoming 
treatment options of TNBC in the framework of scientific 
and clinical data, especially focusing on early stage of 
TNBC.

Introduction
Triple-negative breast cancer (TNBC) is 
immunohistochemically defined by the lack 
of oestrogen receptor (ER), progesterone 
receptor and human epidermal growth factor 
receptor 2 (HER2) expression.1 2 Although it 
is generally more chemosensitive than other 
types of breast cancer, it is also characterised 

to harbour the most aggressive behaviour 
with the front-loaded risk of relapse within 
the first 3–5 years after completion of adju-
vant chemotherapy and its prevalence in 
younger women.3–6 Once metastasised, TNBC 
has a high predisposition to involve the crit-
ical visceral organs such as lung, liver and 
brain, eventually leading to a significantly 
shorter median overall survival than in other 
subtypes.7 8 Therefore, developing optimal 
therapeutic strategies for the treatment of 
early TNBC is crucial to alleviate the burden 
of TNBC. Accordingly, in the last decade, 
extensive efforts were undertaken to unravel 
newer therapeutic targets of TNBC based 
on its molecular landscape.9–15 But unfortu-
nately, there has been little clinical success 
of targeted therapy, making most of patients 
with TNBC still mainly dependent on conven-
tional chemotherapy. With the advances of 
multiomics,9–12 14–16 however, recent exper-
imental investigations revealed a variety 
of potentially actionable targets including 
the immune signatures, which are actively 
engaged in and communicating with the 
tumour microenvironment.17 These give us a 
new insight on the molecular heterogeneity 
of TNBC and ultimately herald a new ther-
apeutic horizon for TNBC beyond conven-
tional chemotherapy.8 In parallel with these 
efforts, chemotherapeutic strategies have also 
been scientifically redefined. In this review, 
we describe recent scientific and therapeutic 
progress in TNBC, particularly focusing on 
the current standard and upcoming systemic 
treatment options in early stages of disease.

Elucidating the heterogeneity of TNBC
Attempts of molecular classification in TNBC
The first established molecular classifica-
tion for TNBC was suggested by Lehmann 
et al with six subtypes based on their distinct 
gene expression profiles,9 which were the 
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basal-like (BL1 and BL2), mesenchymal (M) or mesen-
chymal stem-like (MSL), immunomodulatory (IM) or 
luminal androgen receptor (LAR)-enriched tumours. 
The BL subtypes represented BL-breast cancer (BLBC)-
like phenotypes, with expression of genes involved in 
cell cycle and DNA damage repair (DDR) in the BL1 
subtype and growth factor signalling pathways in the BL2 
subtype. The two mesenchymal-related subtypes were 
closely associated with epithelial-mesenchymal transition 
and relative chemoresistance. Immune-related signatures 
were abundantly found in the IM subtype and the LAR 
subtype highly expressed the androgen receptors (ARs) 
with luminal-like gene expression signature. Interestingly, 
while phenotype of the LAR subtype resembled that of 
luminal-like ER-positive breast cancer, it was mainly cate-
gorised as HER2-enriched or luminal B subtype by the 
PAM50 algorithm. In a correlative analysis comparing 
PAM50 and Lehmann’s classifications, the majority of 
TNBC subtypes other than MSL and LAR were classified 
as BLBC.18 Recently, Lehmann et al revised their previous 
subclassification to a more concise system consisting 
of only four subtypes (TNBCtype-4): BL1, BL2, M and 
LAR.10 A noticeable remark from this study was that the 
IM phenotype was not an isolated molecular subtype, but 
can exist within all molecular subtypes to varying degrees. 
Burstein et al similarly classified TNBC into four subtypes: 
LAR, mesenchymal (MES), basal-like immunosuppressed 
(BLIS) and basal-like immune-activated (BLIA).11 These 
substantially overlapped with Lehmann’s classifications, 
but they uniquely incorporated immune signatures to 
further divide BL-related subtypes. As expected, BLIS and 
BLIA behaved clinically in disparate ways; BLIA showed 
a better prognosis, which was mainly attributable to its 
more favourable immunological milieu. Ten integrative 
clusters (IntClust) were identified by combined transcrip-
tomics and genomics approach, and IntClust4 and 10 
were suggested as two major subgroups comprising 80% 
of BLBCs. However, they clinically behaved in different 
manners due to their distinct molecular features; IntClust4 
had a strong immune-related signature with a paucity 
of copy-number aberrations (CNA-devoid subgroups), 
whereas IntClust10 largely depended on the genomic 
instability of major chromosomal aberrations.15 Recently, 
a new classification which comprehensively incorporated 
the tumour microenvironment was proposed. With a 
hypothesis of possible intersection between immuno-
logical and metabolic signatures in tumour microen-
vironment, they suggested a subtype with enriched 
tumour-infiltrating lymphocytes (TILs) and programmed 
death ligand 1 (PD-L1) expression and activated glycolytic 
pathways.19 Despite their inherent immune-molecular 
divergence, an important commonality exists between 
the different molecular classifications of TNBC, which 
are represented by basal-likeness, abundant luminal/AR 
expression, mesenchymal potency and immune signa-
tures. Regarding the clinical relevance of the molecular 
classifications, a few retrospective studies suggested the 
potential predictive role of certain molecular subtypes 

in patients treated with neoadjuvant chemotherapy.10 20 
However, it still remains unclear whether the molecular 
classification itself could be a firm predictive biomarker 
for patients with TNBC.

BRCAness, a unique molecular trait of TNBC
The term ‘BRCAness’ describes a spectrum of pheno-
types derived from the panoply of genotypes that share 
the biological features of BRCA-deficient tumours, typi-
cally with germline BRCA1/2 mutations.21 Although it 
is yet unclear whether non-canonical alterations such 
as promoter methylation, somatic BRCA mutations and 
copy-number variations result in exactly the same func-
tional deficiency as germline BRCA1/2 mutations, these 
alterations were experimentally suggested to interact with 
BRCA-related molecules and induce the loss of function of 
BRCA proteins.22 BRCA1 signalling plays a critical role in 
prompting higher fidelity of DDR at the point of double-
strand breaks (DSBs), mainly through the process of 
homologous recombination and also by activating other 
DNA repair pathways. It is referred to transcription-cou-
pled repair,21 23–25 because BRCA1 interacts with other 
proteins of DNA repair including RAD5126 27 and  regu-
lates the whole transcriptional machinery including cell 
cycle checkpoints, chromatin remodelling and apop-
tosis.28–31 While 10%–20% of patients carry germline 
BRCA1/2 mutations in TNBC that largely overlap with 
the phenotype of BLBC,12 14 most BLBCs do not carry 
BRCA1/2 mutations. In addition, aberrant expression 
of BRCA-related proteins was more frequently observed 
in BLBC except BRCA1. These heterogeneities underlie 
the complexity of BRCAness and suggest the existence of 
intricate networks between TNBC and BLBC and BRCA-
ness.32 33 But, at the same time, it enriches the innate 
genomic instability of TNBC and contributes to thera-
peutic benefit by enhanced immunogenicity and chem-
osensitivity to DNA-damaging agents including platinums 
and poly(ADP-ribose) polymerase (PARP) inhibitors 
(PARPi).21 34 35

Current treatment options in early TNBC
The decision of treatment for early TNBC faces a great 
challenge due to the significantly higher risk of early 
relapse4 7 36–38 coupled with the lack of available treat-
ment options beyond conventional chemotherapy. In this 
context, efforts should be made to optimise treatment 
efficacy in patients harbouring greater risk of relapse or 
high tumour burden, based on the tailoring of standard 
systemic treatment and further personalization strategy.

Current standard of systemic treatment in early TNBC
Despite the molecular heterogeneity, the standard of 
systemic treatment for TNBC follows the same general 
principle with other types of breast cancer.8 39 Thus, 
neoadjuvant or adjuvant chemotherapy remains a key 
component of systemic treatment in early TNBC, which is 
determined primarily by its clinical or pathologic stage.40
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Neoadjuvant and adjuvant chemotherapy
Neoadjuvant and adjuvant chemotherapy are the 
standard systemic treatment for early TNBC, and anth-
racycline and taxane-based chemotherapy regimens 
comprise the current standard of care.41 42 In previous 
pivotal neoadjuvant trials, patients with TNBC showed 
significantly higher response rates to anthracycline and 
taxane-based chemotherapy than those of other subtypes, 
achieving pathologic complete response (pCR) rates 
of approximately 40%.42–44 Moreover, as pCR showed a 
significant correlation with therapeutic benefits, it has 
been established a robust surrogate biomarker for long-
term survival outcomes.7 44–47 Although the guideline 
for adjuvant chemotherapy is generally similar for each 
breast cancer subtype, adjuvant chemotherapy in TNBC 
is recommended for primary tumours larger than 0.5 cm 
due to their aggressive behaviour.48

Regarding the paradox that TNBC carries both higher 
chemosensitivity and the risk of early relapse,49 efforts 
have been continued to develop more effective chemo-
therapeutic regimens for both responders and non-re-
sponders. Clinical trials of newer combinations and 
dose-determination studies that evaluated metronomic or 
dose-dense regimens suggested the feasibility of refining 
conventional chemotherapy.43 50–53 More recently, patients 
with an initially high tumour burden or residual disease 
after neoadjuvant chemotherapy were identified as 
compelling candidates for intensive systemic treatment, 
as they carry higher chance of relapse and metastatic 
spread. The CREATE-X trial demonstrated the potential 
survival benefit of adding capecitabine to the standard 
adjuvant chemotherapy regimen in early TNBC with a 
residual tumour burden after neoadjuvant treatment.54 A 
meta-analysis also provided a rationale for adding capecit-
abine to either neoadjuvant or adjuvant standard chemo-
therapy in patients with TNBC.55 Despite its substantial 
toxicity, additional capecitabine might be a reasonable 
option for patients with TNBC carrying a higher risk of 
relapse. Furthermore, in these patients, postneoadjuvant 
trials based on actionable molecular targets identified 
from residual tumour tissues should also be considered. 
Molecular profiling of residual TNBC might be helpful 
to identify genetic alterations involved in drug resistance 
in the neoadjuvant setting and to further guide adjuvant 
targeted therapy to eradicate the chance of clinically 
silent micrometastases at the time of surgery. The addi-
tive benefit of platinum-based agents, which have been 
consolidated in the neoadjuvant and adjuvant setting in 
the subset of patients with TNBC which had BRCAness, 
will be discussed more in the next section.

The role of platinum-based chemotherapy in early TNBC
In many preclinical studies, an unusual sensitivity to 
platinum-based agents was suggested in certain subset 
of TNBC, mainly due to genomic instability from DDR 
impairment.31 56 Subsequent clinical trials of metastatic 
TNBC showed a modest efficacy of platinum-based mono-
therapy,57–60 consistently suggesting a greater benefit in 

BRCA1/2 mutation carriers. In early TNBC, patients 
with stage II–III treated with neoadjuvant cisplatin 
alone showed a 22% pCR rate in a small retrospective 
study, in which only 7% of patients carried germline 
BRCA mutations. Further phase II studies exclusively 
for patients  with  BRCA1  mutation demonstrated mark-
edly higher pCR rates from 61% to 90% after neoadju-
vant cisplatin monotherapy, which validated the signifi-
cance of BRCAness in predicting platinum sensitivity in 
TNBC.61–63 In another neoadjuvant study of carboplatin 
combined with eribulin, the homologous recombina-
tion deficiency (HRD) score was suggested as a poten-
tial predictive biomarker.64 As these earlier studies 
supported the rationale of adding platinum to the 
standard neoadjuvant chemotherapy in TNBC, two land-
mark phase II trials evaluated combination of platinum 
with anthracycline/taxane-based regimens, alone or with 
other targeted agents; In the CALGB40603 trial,65 the 
pCR rate was significantly improved from 41% to 54%, 
in patients who received neoadjuvant chemotherapy 
combining carboplatin and/or bevacizumab with pacl-
itaxel followed by dose-dense doxorubicin and cyclophos-
phamide (ddAC). The GeparSixto trial66 similarly showed 
significantly enhanced pCR rates from 36.9% to 53.2% 
by adding carboplatin to combinations of ddAC and 
taxane-based chemotherapy with bevacizumab. In their 
recent secondary analysis, treatment benefit was consist-
ently maintained even in patients without BRCA1/2 
mutations.67 In another phase II PreECOG 0105 study, 
however, patients with BRCA1/2 mutations achieved the 
highest pCR rate (56%) after neoadjuvant combination 
chemotherapy with gemcitabine, carboplatin and the 
PARPi iniparib, while high score of HRD-loss of heterozy-
gosity (LOH) showed a significant correlation with objec-
tive response rates (ORR) in patients without BRCA1/2 
mutations. HRD-LOH score, as suggested in the study, 
has been often regarded a powerful estimation tool of 
DNA repair capacity, thus correlating with BRCAness. 
However, the predictive value of the HRD-LOH assay for 
platinum sensitivity still remains controversial when taking 
account of discordance from prior metastatic TNBC trials 
including the TBCR009 and the Triple Negative Breast 
Cancer Trial.57 60 In later phase II neoadjuvant trials, 
paclitaxel combined either with cisplatin or carboplatin 
yielded encouraging efficacy outcomes with improved 
pCR and survival outcomes, which also suggested a 
strong relationship between clinical benefit and genetic 
alterations of DDR pathway.68 69 These results altogether 
seemed to support the notion of adding platinum to 
conventional neoadjuvant chemotherapy in the subset 
of patients with early TNBC, which might be optimised 
in the context of BRCAness. However, we should give a 
particular concern about the absence of statistically valid 
survival benefits in previous studies, for pCR might not 
always translate into a long-term survival benefit. Because 
the CALGB40603 and GeparSixto trials were somewhat 
underpowered studies to draw robust conclusions about 
the long-term survival benefit beyond pCR improvement, 
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platinum-based combination chemotherapy has been 
hampered as a new standard neoadjuvant treatment.42 
Safety concern with combination is another important 
issue that should not be overlooked. Therefore, plati-
num-based combination chemotherapy should be selec-
tively applied in the optimal candidates carrying the 
BRCAness or high risk of relapse with extensive tumour 
burden or in a younger age, who necessitate enriched 
locoregional control. Currently, several neoadjuvant 
trials of platinum-based combination chemotherapies are 
underway, including the PEARLY trial (NCT02441933), 
which is evaluating neoadjuvant taxane with or without 
carboplatin after doxorubicin/cyclophosphamide 
(AC) chemotherapy. In an adjuvant setting, a phase III 
trial of carboplatin monotherapy is about to begin for 
patients with residual TNBC after conventional neoad-
juvant chemotherapy (NCT01752686), and trials adding 
cisplatin or carboplatin to taxanes with or without doxo-
rubicin-based combination chemotherapy are underway. 
Completed and ongoing clinical trials in early TNBC are 
summarised in table 1.

Upcoming treatment options beyond conventional 
chemotherapy
The panoply of old and new targets
The advance of multiomics has introduced a vast range 
of actionable targets and accelerated the new horizon 
of targeted therapies, which could be particularly effica-
cious in TNBC subsets that are expected to be relatively 
chemoresistant (figure  1). However, widening the road 
of treatment spectrum does not always guarantee conse-
quent therapeutic benefit. Therefore, we should recog-
nise that molecular heterogeneity is a double-edged 
sword, which could be the hope or the hype for TNBC.

Targets that light the BRCAness of TNBC
PARPi
Because of their critical role in the process of DDR, PARPi 
have been thought to be a potential game  changer for 
TNBC. PARPs, specifically PARP1 and 2, are enzymes that 
facilitate DDR at sites of single-strand breaks by activa-
tion of various intracellular signalling pathways through 
auto-poly(ADP)-ribosylation.70–72 A meaningful link 
between PARP inhibition and BRCAness is demonstrated 
by the concept of synthetic lethality. As BRCA1/2 defi-
ciency leads to HRD, a dysfunction of the cell’s intrinsic 
DNA repair mechanism, repair of DNA damage solely 
depends on the action of PARP1 in BRCA-deficient breast 
cancer.73 74 Therefore, inhibiting PARP1 in patients with 
BRCAness might induce accumulation of DSBs and 
eventually result in synthetic lethality, which could in 
turn enhance the sensitivity to PARPi.73–75 Based on this 
scientific evidence, earlier clinical data suggested that a 
subset of patients with TNBC having BRCA deficiency 
might benefit from PARPi treatment.76 In the pivotal 
phase III OlympiAD trial of metastatic breast cancer,77 
investigators compared the efficacy of monotherapy with 

olaparib with that of standard single chemotherapy at 
the discretion of physician in metastatic HER2-negative 
breast cancer with germline BRCA1/2 mutations. The 
subgroup of patients treated with olaparib had nearly 
double the response rate (59.5%) as well as a longer 
median progression-free survival (PFS; 7.0 months) and a 
better toxicity profile. Based on these dramatic treatment 
outcomes, PARPi have been recently approved for breast 
cancer with BRCA1/2 mutations, which mainly constitutes 
TNBC. Other PARPi than olaparib have been also vigor-
ously investigated initially in metastatic breast cancer, 
which include veliparib, talazoparib and rucaparib. Once 
a phase I study of talazoparib showed favourable effi-
cacy and safety profiles in advanced solid tumours with 
deleterious BRCA1/2 mutations including breast cancer 
(NCT01945775),78 feasibility trials of veliparib in combi-
nation with other alkylating agents are also undergoing in 
advanced or metastatic TNBC.79–83 And recently, a phase 
III trial EMBRACA comparing talazoparib and treatment 
by physician’s choice in metastatic TNBC revealed signif-
icant benefit of talazoparib with better PFS and ORRs.84

In early TNBC, the phase III OlympiA trial 
(NCT02032823) is currently ongoing to evaluate adju-
vant olaparib monotherapy for a year after standard 
neoadjuvant chemotherapy and local treatment in high-
risk TNBC with germline BRCA1/2 mutations. PARTNER, 
another phase II/III trial of neoadjuvant olaparib in 
combination with carboplatin followed by the standard 
chemotherapy, is also under investigation in patients with 
breast cancer with TNBC or germline BRCA mutations 
(NCT03150576).85 The I-SPY 2 trial evaluated neoadju-
vant veliparib and carboplatin (VC) in addition to the 
standard chemotherapy in patients with high-risk breast 
cancer and TNBC seemed to gain the most significant 
benefit from this combination therapy (pCR rates: 52% 
vs 24%).86 In a recent biomarker analysis of the I-SPY2, a 
genomics-based signature of BRCA1ness was suggested as 
a significant predictive biomarker of response to neoadju-
vant VC.87 However, the true benefit from adding PARPi 
to platinum-based chemotherapy is still controversial, for 
platinum itself already showed its efficacy either as mono-
therapy or in combination.65 66 Another phase II neoad-
juvant trial in high-risk, residual TNBC after standard 
neoadjuvant chemotherapy failed to show a significant 
therapeutic benefit from the combination of low-dose 
rucaparib and cisplatin compared with cisplatin alone, 
in terms of both toxicity and survival outcomes, although 
the applied dose of rucaparib has been considered ther-
apeutically insufficient (NCT01074970).88 Therefore, the 
plausibility of combining these two chemosensitisers of 
germline BRCA-mutant TNBC remains questionable at 
this point. Currently, the efficacy of neoadjuvant veliparib 
with radiation therapy is under exploration in a phase I 
study for node-positive, residual breast cancer after neoad-
juvant chemotherapy (NCT01618357), and another 
phase I trial of neoadjuvant monotherapy with the novel 
PARPi niraparib is about to be initiated (NCT03329937) 
(table 2). Last, strategies for restoring BRCAness in order 
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to prevent or counteract acquired resistance to PARPi are 
now actively underway.

Revisiting the PI3K-Akt-mTOR (PAM) pathway in TNBC
Data from the Cancer Genome Atlas (TCGA) revealed 
that the major genetic aberrations observed in TNBC 
occurred within the PI3K-Akt-mTOR (PAM) pathway,12 
and accumulating data from next-generation sequencing 
(NGS) studies further confirmed the PAM pathway as an 
appealing actionable target in TNBC.89 90 PIK3CA hotspot 
mutations and aberrations in phosphatase and tensin 
homolog (PTEN) are the two most frequent but mutu-
ally exclusive alterations, accounting for approximately 
10% and 35%–50% of TNBC, respectively.8 As in other 
subtypes of breast cancer, targeting the PAM pathway 
has been heavily investigated in TNBC and expanded to 
other molecules that are in a circuit of cross-talk with the 
PAM signalling, including the epidermal growth factor 
receptor (EGFR) and mitogen-activated protein kinase 
(MAPK) pathways.

Inhibitors of the PAM pathway: from preclinical to clinical data
The PAM pathway comprehensively controls the cell cycle 
from survival to apoptosis and is therefore vitally involved 
in tumourigenesis and its progression. PAM signalling is 

primarily modulated by the key molecule PI3K, but is also 
regulated by active communication with other growth 
factor tyrosine kinase receptors, including EGFR and 
insulin-like growth factor 1 receptor (IGF1R). Activation 
of the PAM pathway often confers chemoresistance in 
breast cancer. In TNBC, PI3K was capable of enhancing 
the effects of BRCA1/2 mutations by interacting with the 
homologous recombination machinery, stabilising DNA 
DSBs. Thus, inhibition of the PI3K pathway with buparl-
isib, an oral pan-PI3K inhibitor, produced promising anti-
tumour cytotoxicity in TNBC cell lines.91 Experimentally, 
it also enhanced sensitivity to PARPi in both BRCA1/2-de-
ficient and BRCA1/2-sufficient TNBC cell lines by acti-
vation of extracellular signal-related kinase (ERK) and 
MAPK kinase (MEK1), which induced downregulation of 
BRCA1/2.92–94 Regardless of these encouraging preclin-
ical studies, subsequent clinical trials showed somewhat 
disappointing results as in the recent BELL-4 trial, which 
failed to prove a benefit from combination treatment 
with buparlisib and paclitaxel in advanced HER2-negative 
breast cancer.95 Given that efficacy of cotargeting is strongly 
supported by recent preclinical data,96 97 combining 
another targeted therapy along with PI3K inhibitors 
might be a compelling overcoming strategy. Accordingly, 

Figure 1  Signalling pathways and involved entities that are unravelling experimental therapeutic targets for TNBC. Depicted 
molecular landscape of TNBC confers an insight of novel and investigational targeted therapeutic strategy which are 
directly unlocking its heterogeneous biology. In the context of its intrinsic genetic instability which derives an immunogenic 
microenvironment, blockade of the immune-checkpoint targeting PD-1 and PD-L1 as well as CTLA-4 can boost the adaptive 
immune reaction. PAM signalling pathways are actively participating in cell cycle regulation, which are in the tight network 
with various growth factors including EGF and MAPK signalling. Platinum-based agents and PARPi is a master regulator 
of DNA damage repair and can induce synergistic inhibitory effect in TNBC harbouring BRCAness. Other multikinase 
inhibitors involving angiogenesis or developmental process are also a potential therapeutic entity of current interest. All 
these investigational but key targets are consistently interacting with cytotoxic effect of conventional chemotherapy. CTLA-
4, cytotoxic T-lymphocyte-associated protein 4; EGF, epidermal growth factor; EGFR, EGF receptor; ERK, extracellular 
signal-related kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; PAM, PI3K-Akt-mTOR; PARP, poly(ADP-
ribose) polymerase; PARPi, PARP inhibitors; PD-1, programmed cell death protein 1; PD-L1, programmed cell death  ligand 1; 
TNBC, triple-negative breast cancer. 
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a phase I study with olaparib and an oral pan-PI3K inhib-
itor, buparlisib, is ongoing in recurrent TNBC and high-
grade ovarian cancer (NCT01623349).

AKT, which is activated by PI3K, serves as another 
central node in the PAM signalling pathway. Once preclin-
ical studies demonstrated the antitumour activity of the 
AKT inhibitors in TNBC,98–100 many clinical trials were 
initiated including the phase II PAKT trial evaluating the 
combination of AZD5363 and paclitaxel. The latest phase 
II trial, LOTUS,101 evaluated the combination of pacli-
taxel and ipatasertib, a highly selective ATP-competitive 
AKT inhibitor and showed its efficacy in patients with 
advanced TNBC, demonstrating significantly improved 
PFS compared with paclitaxel alone. This trial was the 
first study showing a significant PFS benefit of anti-PAM 
pathway targeted agents in IHC-defined TNBC popu-
lation, although it was not maintained in the PTEN-low 
subset of patients, which was assumed as an appealing 
candidate for the drug. However, when PIK3CA/AKT1/
PTEN alterations were refined based on NGS, the benefit 
in the subset was greater, suggesting that NGS-derived 
genomic biomarkers might better define the target popu-
lation. Clever selection of targets might be another critical 

point of the LOTUS data, which newly highlighted AKT as 
a powerful druggable target of the PAM signalling pathway. 
Theoretically, AKT could be a preferable target to PI3K 
from the perspective of selectivity or it might act as a more 
direct functional regulator of PAM signalling, interacting 
with intertwining feedback loops across messenger mole-
cules. There is a paucity of data regarding PAM inhibitors 
in early TNBC except for a previous phase II neoadjuvant 
trial combining mTOR inhibitors with conventional FEC 
(5-fluorouracil, epidoxorubicin and cyclophosphamide) 
chemotherapy, which unfortunately did not show clinical 
benefit.102 However, in a recent phase I study, temsirolimus 
or everolimus in addition to liposomal doxorubicin and 
bevacizumab showed notable efficacy in the mesenchymal 
subset of TNBC, predominantly in patients with an aber-
rant PI3K pathway (NCT00761644).103 Summarised clin-
ical trials targeting the PAM pathway, which are currently 
ongoing, are mainly in the metastatic setting (online 
supplementary table 1) .

EGFR inhibitors and the PI3K pathway
Although amplification of EGFR is rare among patients 
with breast cancer in general, the frequency of EGFR 

Table 2  Ongoing clinical trials of PARPi for patients with early-stage TNBC

Phase NCT ID number
Defined breast cancer 
subtype Setting Stage Experimental drugs Control Primary endpoint

PARPi monotherapy

 � I NCT01618357 Node (+) BC, Residual 
after NAC

Neoadjuvant NA ►► Veliparib+radiation
►► After standard NAC

Standard NAC MTD

 � I NCT03329937
(not recruiting yet)

HER2(–), BRCA1/2mt Neoadjuvant NA Niraparib NA Preliminary 
antitumour activity
Measured by 
breast MRI

 � II NCT02282345 Invasive BC 
and deleterious 
BRCAmt

Neoadjuvant I–III Talazoparib Observation as 
per guideline

 IDFS

 � III OlympiA
(NCT02032823)

gBRCA1/2mt
High-risk HER2(–) BC 
including TNBC

Adjuvant 
(after NAC)

Olaparib up to maximum 
1 year

Placebo IDFS

PARPi-based combination

 � II/III PARTNER
(NCT03150576)

TNBC or gBRCAmt Neoadjuvant II, III ►► Olaparib+Carboplatin + 
Paclitaxel

►► Followed by standard 
NAC by physician’s 
discretion

Standard NAC pCR

 � II I-SPY 2
(NCT01042379)
*Neoadjuvant, 
personalised 
adaptive trial with 
novel agents

Locally advanced 
TNBC

Neoadjuvant II, III ►► Veliparib+Carboplatin
►► Followed by standard 
NAC (T → AC)

Standard NAC pCR: 52% vs 24% 
(*preliminary result)

 � II NCT01074970 gBRCA1/2 mt or TNBC
Residual disease after 
NAC

Neoadjuvant I–III ►► Cisplatin+Rucaparib 
(4C) → Rucaparib for 
6 months

►► After neoadjuvant A 
or T

Cisplatin after 
neoadjuvant A 
or T

2-year DFS

AC, doxorubicin and cyclophosphamide; DFS, disease-free survival; gBRCAmt, germline BRCA mutation; HER2, human epidermal growth 
factor receptor 2; IDFS, invasive DFS; MTD, maximal tolerated dose; NA, not available; NAC, neoadjuvant chemotherapy; PARPi,  poly(ADP-
ribose) polymerase inhibitors; pCR, pathologic complete response; TNBC, triple-negative breast cancer.

https://dx.doi.org/10.1136/esmoopen-2018-000357
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overexpression is markedly higher in TNBC ranging 
from 13% to 76%, which is considered a poor prognostic 
factor for TNBC.104 Based on the dynamic molecular 
network between EGFR and PAM signalling,105 preclin-
ical studies revealed a therapeutic synergism between 
anti-EGFR targeted treatment and DNA damaging agents 
such as platinum or PARPi, by increasing chemosensi-
tivity in TNBC cell-lines with BRCA1 deficiency but intact 
PTEN.105–107 Unfortunately, subsequent clinical trials 
of EGFR tyrosine kinase inhibitors, alone or in combi-
nation, were disappointing and actually showed a more 
favourable response in non-TNBC subtypes.104 However, 
in two previous phase II trials of metastatic TNBC, adding 
cetuximab to cisplatin or carboplatin improved clinical 
outcomes compared with platinum-based monotherapy 
regardless of statistical insignificance.108 109 Cetuximab in 
combination with ixabepilone or irinotecan also showed 
a slightly higher response rate, but this did not translate 
to a survival benefit.110 111 Another recent phase II trial 
also failed to prove a significant benefit of adding pani-
tumumab to the combination of gemcitabine and carbo-
platin in patients with metastatic TNBC, but the triple 
combination seemed feasible in the patient cohort.112 
Given that these studies precluded biomarker-driven 
selection of target populations, further studies of EGFR 
inhibitors, particularly anti-EGFR mAbs, should be 
performed in a molecularly predefined subset of TNBC 
cases. In this context, several trials of metastatic TNBC 
are ongoing in selected cohorts harbouring alterations of 
the EGFR and/or PAM pathways, including the afatinib 
arm of the NCI-MATCH (NCT02465060) trial (online 
supplementary table 2).

In early TNBC, combination neoadjuvant trials of 
cetuximab and panitumumab with docetaxel after FEC 
showed modest efficacy. In these trials, the number of 
TILs could predict the response to anti-EGFR mAbs, 
suggesting an important association between the EGFR 
signalling pathway and T cell-mediated immunity.113 114 
Currently, a phase II study of neoadjuvant panitumumab, 
carboplatin and paclitaxel (PaCT) is underway in patients 
with chemoresistance to standard treatment or inflam-
matory breast cancer (NCT02593175, NCT02876107). 
A phase II trial of neoadjuvant afatinib, alone and in 
combination with paclitaxel, is also recruiting patients 
(NCT02511847).

Significance of antagonising MEK activation
The mechanism of MAPK activation in TNBC and BLBC 
was initially investigated in vitro. Although these cell 
lines seldom harbour activating mutations of canon-
ical oncoproteins such as Ras or c-Myc, they frequently 
harbour copy-number variations in these oncogenes or 
show overexpression of other growth factor receptors 
such as EGFR, IGF1R, vascular endothelial growth factor 
receptor (VEGFR) or fibroblast growth factor receptor 
1. Dual-specificity phosphatase 4, a negative regulator 
of ERK1/2 and c-Jun N-terminal kinase 1/2, might also 
contribute to activation of MAPK signalling in TNBC, in 

that its loss or downregulation, either by genetic or epige-
netic mechanisms, is associated with chemoresistance. 
Based on these molecular characteristics, MEK inhibi-
tors were suggested as an attractive therapeutic option in 
TNBC, particularly in BLBC with intact PTEN, and PTEN 
itself was suggested as a potential negative predictor of 
response.115 However, in the presence of abundant signal-
ling cross-talk, MEK inhibitors alone could not efficiently 
suppress activation of the MAPK pathway. Accordingly, 
combination treatment with MEK inhibitors and other 
targeted therapies or chemotherapeutic agents have 
been proposed to overcome the consequent chemore-
sistance including a phase II COLET trial evaluating 
upfront combination of cobimetinib and paclitaxel. The 
COLET showed a promising activity to control the resist-
ance against taxane chemotherapy in the early data.116 117 
Another recent data reported a therapeutic synergy when 
combining the MEK inhibitor selumetinib with either 
buparlisib or the platelet-derived growth factor receptor 
inhibitor pazopanib, which was even effective for brain 
metastases of TNBC.118 Among numerous combina-
tion trials of MEK inhibitors currently ongoing, a phase 
Ib trial combining the MEK inhibitor trametinib with 
gemcitabine in advanced solid tumours showed a case 
of complete response in the patient with metastatic 
TNBC.119 On the other hand, phase I trials evaluating 
combination treatment of MEK inhibitors either with 
mTOR or PI3K inhibitors (NCT01476137, NCT0095573) 
revealed unacceptable fatal toxicities, prohibiting subse-
quent phase II studies.120 121 They showed the potential 
lethality of coblockade of master signalling pathways, 
including MAPK and PAM, which should be taken into 
consideration when designing future combinatorial trials 
with targeted agents.

Immunotherapy for TNBC
The immune microenvironment as a component of TNBC 
heterogeneity
The immune system plays a dual role in breast cancer, 
that is, the tumour initially induces innate immunity, but 
later suppresses adaptive immunity, ultimately resulting 
in disease progression. Due to its genomic instability and 
high mutational burden, tumour microenvironment of 
TNBC is considered to be ‘hot’ with abundant infiltrating 
immune cells, which are actively engaged in the process 
of ‘immunoediting’.8 122 TILs, mainly the CD8  +T cells, 
are the most famous immune-related player in breast 
cancer.123–125 In TNBC treated with neoadjuvant treat-
ment, TILs was identified as a robust predictive biomarker 
of long-term survival and its significance in remnant 
disease was subsequently validated,126–132 revealing an 
active communication between immune system and cyto-
toxic agents.124 126 129 131 133–136 Although relatively unex-
plored, the significance of TILs in the adjuvant setting has 
also been suggested in recent years.127 129–131 135 Of note, 
the latest study showed the prognostic significance of TILs 
even in systemically untreated early TNBC, suggesting 
that the presence of TILs may refine the candidates for 

https://dx.doi.org/10.1136/esmoopen-2018-000357
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adjuvant chemotherapy or immunotherapy.137 Schmid 
and colleagues recently showed in metastatic TNBC that 
response rate and overall survival after atezolizumab treat-
ment significantly correlated with the level of TILs.138 In 
addition, a lower level of TILs was significantly associated 
with aberrant activation of Ras-MAPK signalling, which 
can promote immune evasion in TNBC.139 Correlation 
between TILs and programmed cell death  1/ligand 1 
(PD-1/PD-L1) expression was suggested in recent exper-
iments, which assumed the existence of a feedback loop 
regulating PD-L1 expression as a means of immune 
homeostasis. Several retrospective studies of early TNBC 
demonstrated significantly worse survival outcomes in 
patients harbouring high PD-L1 expression and a low 
number of TILs or a high ratio of PD-L1/CD8 expres-
sion.140–142 By contrast, immunogenic factors potentially 
involved in the expression of neoantigens positively 
correlated with higher TILs and a more favourable prog-
nosis.141 143 144 Taken together, TILs play a significant role 
in orchestrating the immune microenvironment and 
vigorously interact with cytotoxic signals including both 
chemotherapy and immunotherapy.145 146 Taken together, 
TILs could serve as a currently available predictive and 
prognostic immune biomarker, and at  the same time, 
immune molecules could be another appealing thera-
peutic target of TNBC.

Efficacy outcomes of monotherapy with immune checkpoint 
inhibitors
Although TNBC has been assumed the potential protag-
onist of immunotherapy in breast cancer,122 147 no immu-
notherapy has yet been officially approved for breast 
cancer. However, earlier efficacy data on cytotoxic T-lym-
phocyte-associated protein 4 inhibitors148 149 and accumu-
lating recent clinical evidences demonstrated a durable 
response in a small subset of patients with metastatic 
TNBC, raising the hope of success with immunotherapy.

In earlier phase I trial of atezolizumab in advanced solid 
cancers including heavily pretreated TNBC, the response 
was strikingly durable in responders although only 10% 
of patients responded; the survival rate of patients who 
achieved an ORRs was 100% at over 2 years.150 Phase I 
(KEYNOTE-012) and II (KEYNOTE-086) studies of 
pembrolizumab in metastatic TNBC showed modest 
ORRs of approximately 20% with several complete 
responses, while the median duration of the response was 
not reached at the time.151–153 Phase II trial was performed 
in two different cohorts (A and B) according to the 
disease setting and PD-L1 expression; cohort A enrolled 
patients with any level of PD-L1 expression who would 
receive pembrolizumab as salvage therapy, while cohort 
B only included patients with positive PD-L1 expression 
treated with first-line pembrolizumab. Although PD-L1 
expression did not significantly affect the treatment 
outcomes in cohort A, patients in cohort B showed a 
higher response rate than cohort A. These studies with 
atezolizumab and pembrolizumab altogether suggest 
that the therapeutic benefit could be maximised when 

given as upfront treatment and/or possibly in patients 
with predefined PD-L1 expression. Also, in the phase I 
JAVELIN trial, patients with  heavily pretreated metastatic 
TNBC treated with the PD-L1 antibody avelumab showed 
encouraging efficacy outcomes with a 31% disease 
control rate and PD-L1 expression were closely associated 
with response.154 Currently, a phase II trial of pembroli-
zumab monotherapy for BRCA-mutated breast cancer is 
underway (NCT03025035) (table 3).

Finding new combinatorial partners
Monotherapy with immune-checkpoint inhibitor revealed 
disappointing results in the metastatic trials with ORRs 
less than 10%. Hence, current efforts are concerted on 
developing combination strategies with immune check-
point inhibitors, based on the remarkably durable 
responses in the subset of responders shown in previous 
studies (table 3).

Immune-based chemotherapy
Early data of nab-paclitaxel combined with atezolizumab 
showed a 40% ORR in metastatic TNBC, which hastened 
a phase III trial currently underway (NCT02425891). The 
combination of eribulin and pembrolizumab is being 
tested in an ongoing trial for heavily pretreated meta-
static TNBC, and the interim analysis revealed a 41.2% 
ORR to first-line treatment and a 27.3% ORR to later-
line treatment.155 These trials involving eribulin and 
paclitaxel, which are regarded modulators of immune 
priming, have once again suggested the importance of 
early application of immunotherapy in systemic treat-
ment for metastatic TNBC. However, PD-L1 status failed 
to predict treatment response to either combination. 
Currently, KEYNOTE-355, a phase III trial evaluating 
the combination of pembrolizumab plus conventional 
chemotherapy compared with chemotherapy alone as 
the first-line treatment, is running in metastatic TNBC 
(NCT02819518). The combination of durvalumab and 
nab-paclitaxel followed by dose-dense conventional 
chemotherapy as well as the combination of avelumab 
and an antibody to another immune modulator, 41BB, is 
under investigation in advanced solid tumours, including 
TNBC (NCT02489448).

In early TNBC, preliminary results from the neoadju-
vant I-SPY 2 trial demonstrated that pCR rates increased 
from 22.3% to 62.4% by adding neoadjuvant pembroli-
zumab to paclitaxel followed by anthracycline-based 
chemotherapy, which represents an approximately 40% 
improvement in pCR compared with standard chemo-
therapy alone.156 The KEYNOTE-173 trial also showed 
a remarkably increased pCR rate from 60% to 90% in 
high-risk patients by combining pembrolizumab with 
paclitaxel or conventional chemotherapy according to 
the physician’s discretion.157 In the adjuvant setting, the 
SWOG1418 phase III trial is evaluating adjuvant mono-
therapy with pembrolizumab after neoadjuvant chemo-
therapy followed by curative surgery. Another phase III 
trial for high-risk patients with early TNBC is investigating 
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the addition of avelumab for a year after standard cura-
tive treatment including (neo)adjuvant chemotherapy 
(NCT02926196). A phase I study for the feasibility of 
adjuvant durvalumab with a peptide vaccine is underway 
for patients with stage II and III TNBC after completion 
of standard adjuvant therapy (NCT02826434).

Combining targeted agents with immune checkpoint inhibitors
In recent experimental study, PARPi modulated cancer-as-
sociated immunosuppression by upregulating PD-L1 
in breast cancer cell lines, suggesting that blockade of 
PD-L1 could restore their sensitivity to PARPi. Followed 
xenograft study of combining PARPi to a PD-L1 inhib-
itor revealed significant synergistic effect compared with 
either agent alone.158 Accordingly, the feasibility of combi-
nation treatment with durvalumab with either a PARPi or 
a VEGFR inhibitor is under exploration in current phase 
II trial.159 As MAPK signalling pathway is highly activated 

and involved in regulating the level of TILs in TNBC,8 
TNBC and BLBC cell lines showed broad sensitivity to 
MEK inhibition, and  the generation of effector T cells 
was enriched by the treatment. These results suggested 
the MEK inhibitor as another weapon to harness immune 
surveillance, and more importantly, potential synergy 
with immune checkpoint inhibitors is suggested.139 On 
the basis of these experimental results, a phase Ib trial of 
MEK inhibitor in combination with a PD-L1 antibody is 
currently recruiting patients with advanced adenocarci-
noma, including TNBC (NCT02900664).

Future challenges of TNBC treatment
Although a plethora of novel immune-molecular targets 
have been experimentally validated, the challenge lies 
in transforming these preclinical and clinical bene-
fits into our daily practice and current standard treat-
ment. To design next-generation targeted therapeutic 

Table 3  Ongoing clinical trials of immune checkpoint inhibitors for patients with early-stage TNBC

Phase NCT ID

Defined 
breast cancer 
subtype Setting Stage Experimental drugs Control Primary endpoint

IO monotherapy

 � III SWOG1418
(NCT02954874)

Residual 
TNBC
(ypT>1 cm or 
ypN+)

Adjuvant after 
NAC

NA Pembrolizumab for 1 year Observation as per 
guideline

Invasive DFS (IDFS)

 � III NCT02926196 High-risk 
TNBC

Adjuvant or 
post-NAC

NA Avelumab for 1 year Observation as per 
guideline

►► Overall DFS
►► DFS in PD-L1(+) 

patients

IO-based combination

 � II I-SPY 2
(NCT01042379)
*Neoadjuvant, 
personalised 
adaptive trial with 
novel agents

LABC 
including 
TNBC

Neoadjuvant II, III ►► Pembrolizumab+Paclitaxel
►► Followed by Doxorubicin+Cyclopho
►► sphamide

Standard NAC pCR: 62.4% vs 22.3%

 � IB KEYNOTE-173
(NCT02622074)

Locally 
advanced 
TNBC

Neoadjuvant II, III (Arm A)
►► Pembrolizumab → 

Pembrolizumab+Nab paclitaxel
(Arm B)

►► Arm A+Carboplatin
►► Followed by ddAC

NA pCR (Arm A vs B): 60% 
vs 90%

 � III KEYNOTE-522
(NCT03036488)

TNBC Neo/adjuvant NA (Neoadjuvant)
►► Pembrolizumab+wPaclitaxel 

+  Carboplatin (4C) 
→Pembrolizumab+AC (4C)

(Adjuvant)
►► Pembrolizumab (9C)

Placebo rather than 
Pembrolizumab

pCR, EFS

 � I/II NCT02489448 TNBC Neoadjuvant I–III ►► Durvalumab+Nab paclitaxel for 
12 weeks

►► Followed by ddAC

NA pCR

 � II Triple-negative 
first-line study 
(NCT02530489)

TNBC (Neo)adjuvant NA ►► Neo: Atezolizumab+Nab paclitaxel 
(4C)

►► Adj: Atezolizumab alone (4C)

NA pCR

 � III NeoTRIPaPDL1
(NCT02620280)

Locally 
advanced 
TNBC

Neoadjuvant NA Atezolizumab+Nab-
paclitaxel+Carboplatin

Nab-
paclitaxel+Carboplatin

EFS

 � Ib NCT02826434 TNBC Adjuvant II/III ►► Peptide vaccine PVX-410 (six 
infusions)+Durvalumab (2C)

►► After standard adjuvant 
chemotherapy

NA DLT of PVX-410 in 
combination with 
Durvalumab

(dd)AC, (dose-dense) doxorubicin and cyclophosphamide; DFS, disease-free survival; DLT, dose-limiting toxicity; EFS, event-free survival; IDFS, invasive 
DFS;  LABC, locally advanced breast cancer;  NA, not available; NAC, neoadjuvant chemotherapy;  pCR, pathologic complete response; PD-L1, programmed 
death ligand 1; TNBC, triple-negative breast cancer.



Open Access

12 Park JH, et al. ESMO Open 2018;3:e000357. doi:10.1136/esmoopen-2018-000357

strategies, we should return to the basics to perform 
personalised tumour genotyping based on valid action-
able and druggable targets. In the era of modern immu-
notherapy, we need to figure out the optimal applica-
tion of immunotherapy in TNBC including the disease 
setting and its combinatorial partners, based on more 
robust biomarkers. In addition, overcoming strategies for 
acquired and intrinsic resistance to immunotherapy and 
salvage treatment after failure of conventional immuno-
therapy should be defined. Selection of chemosensitive 
subset and enriching the efficacy of chemotherapy in 
these patients should not be also overlooked (figure 2).

Conclusion
TNBC is a unique disease entity with intrinsic molec-
ular and immunological heterogeneity that therefore 
can manifest as a variety of clinical phenotypes. Exten-
sive investigations to surmount this heterogeneity illus-
trated several comprehensive classification systems that 
incorporate immune-molecular signatures of TNBC. An 

important discovery was the identification of the BRCA-
ness and its molecular synergism with PARPi as well as 
platinum-based agents. The BRCAness further unleashed 
inherent immunogenicity of TNBC by fostering dynamic 
tumour microenvironment, which conferred a rationale 
for immunotherapy in the subset. Witnessing a huge 
breakthrough in TNBC treatment, however, these prom-
ising scientific progresses have not yet been pertinently 
incorporated into our daily practice, and patients are still 
starved of available treatment options. To translate these 
therapeutic potentials into practical benefit, we must 
consistently and vigorously pursue the maximal opportu-
nities of clinical trials for patients with TNBC. Custom-
ised clinical trials based on individualised genotyping 
seem also inevitable to set precise personalised medicine 
against its wide evolutionary mutational spectrum. In 
parallel, optimal tailoring of conventional chemotherapy 
in the landscape of immune-molecular heterogeneity 
should also be continued to establish the most effective 
regimens. Juggling with these efforts, the next chapter 

Figure 2  Future aspects of therapeutic strategies in patients with TNBC based on its chemosensitivity and immune-
molecular heterogeneity. Future challenge in TNBC is fundamentally to enrich the therapeutic efficacy to the optimal level 
both for chemosensitive and chemoresistant population. In this context, conventional chemotherapy and these four key 
entities constitute the main domain of upcoming treatment strategies. Targeting the BRCAness, revisiting our old but 
competent targets including PAM pathway and emerging immunotherapy can be the master molecular regulators of TNBC 
tumour microenvironment. Smart refining of conventional chemotherapy should be accompanied with these molecular 
targeting. Finally, combinatorial chains between these four independent domains would be the key of future therapeutics for 
TNBC. CTLA-4, cytotoxic T-lymphocyte-associated protein 4; EGFR,  epidermal growth factor receptor; MAPK, mitogen-
activated protein kinase; PAM, PI3K-Akt-mTOR; PARPi, poly(ADP-ribose) polymerase inhibitors; PD-1, programmed cell death 
protein 1; PD-L1, programmed cell death ligand 1; TNBC, triple-negative breast cancer. 
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of TNBC treatment will be finally written on the novel 
combinatorial strategies, necessitating master refinement 
of target population and molecules.
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