Table 5.
Chosen results of the best subset multiple regression methodology.
| VRmax | VRcont | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Sample | R2 | Xi | p | β | Sample | R2 | Xi | p | β |
| FH1 | 0.794 | FH1 | 0.763 | ||||||
| VcontPTilt | 0.000 | -0.245 | VmaxRKFE | 0.000 | -0.373 | ||||
| VcontRShIE | 0.000 | -0.535 | VmaxRHIE | 0.000 | -0.296 | ||||
| VmaxRShAA | 0.000 | 0.376 | VmaxPObli | 0.000 | 0.293 | ||||
| VminRHFE | 0.000 | -0.434 | VminSObli | 0.000 | -0.553 | ||||
| VminRAFE | 0.000 | 0.486 | VminRHFE | 0.000 | -0.622 | ||||
| FH2 | 0.803 | FH2 | 0.818 | ||||||
| VcontRHAA | 0.000 | -0.296 | VcontRHAA | 0.000 | -0.291 | ||||
| VcontLShIE | 0.000 | 0.851 | VcontLShIE | 0.000 | 0.800 | ||||
| VcontRShAA | 0.000 | -0.449 | VcontRShAA | 0.000 | -0.390 | ||||
| VcontRShIE | 0.000 | -1.372 | VcontRShIE | 0.000 | -1.398 | ||||
| VminLShFE | 0.000 | -1.003 | VminLShFE | 0.000 | -1.088 | ||||
| FH3 | 0.905 | FH3 | 0.892 | ||||||
| VcontLShAA | 0.000 | -0.274 | VcontLShAA | 0.000 | -0.266 | ||||
| VcontRShIE | 0.000 | -0.816 | VcontRShIE | 0.000 | -0.781 | ||||
| VmaxLHFE | 0.000 | -0.312 | VmaxLHFE | 0.000 | -0.284 | ||||
| VmaxRAFE | 0.000 | -0.234 | VmaxRAFE | 0.000 | -0.240 | ||||
| VminRHFE | 0.000 | -0.498 | VminRHFE | 0.000 | -0.511 | ||||
| BH1 | 0.833 | BH1 | 0.755 | ||||||
| VcontRWIE | 0.000 | 0.417 | VcontSRot | 0.000 | -0.447 | ||||
| VcontSRot | 0.000 | -0.540 | VcontRShFE | 0.000 | -0.261 | ||||
| VmaxRShAA | 0.000 | 0.584 | VcontRShAA | 0.000 | 0.440 | ||||
| VmaxLEFE | 0.001 | -0.152 | VmaxRShAA | 0.000 | 0.817 | ||||
| VminLHFE | 0.000 | -0.308 | VminLShAA | 0.002 | 0.203 | ||||
| BH2 | 0.666 | BH2 | 0.465 | ||||||
| VcontREFE | 0.000 | 0.295 | VcontREIE | 0.001 | -0.253 | ||||
| VmaxLHAA | 0.000 | 0.599 | VmaxLHAA | 0.000 | 0.457 | ||||
| VmaxPTilt | 0.000 | -0.347 | VmaxLKFE | 0.001 | -0.277 | ||||
| VmaxRShAA | 0.000 | 0.701 | VmaxRShAA | 0.000 | 0.486 | ||||
| VminRHAA | 0.000 | 0.327 | VminRHAA | 0.005 | 0.296 | ||||
| BH3 | 0.816 | BH3 | 0.744 | ||||||
| VmaxLAFEm | 0.000 | 0.288 | VmaxLAFE | 0.000 | 0.224 | ||||
| VmaxRShIE | 0.000 | 0.237 | VmaxRShAA | 0.000 | 0.511 | ||||
| VmaxRShAA | 0.000 | 0.433 | VmaxLShFE | 0.000 | -0.258 | ||||
| VminRShIE | 0.000 | -0.223 | VminRShIE | 0.000 | -0.349 | ||||
| VminLHAA | 0.000 | -0.402 | VminLHAA | 0.000 | -0.418 | ||||
In used regression methodology (Y) is related to predictors (Xi) according to the mean function: Y = α + bi . Xi +, where alfa is the intercept, bi are the coefficients of regression for the i-predictor and β is the standard error of the estimation. The squared multiple correlation of the model (R2) explains % of the variability of the data. p - the level of significance, β= the beta correlation coefficient.