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Abstract
Tuberculosis (Tb) is an airborne infectious disease caused by Mycobacterium tuberculosis. Beta-carbonic anhydrase 1 (β-
CA1) has emerged as one of the potential targets for new antitubercular drug development. In this work, three-dimensional 
quantitative structure–activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulation 
approaches were performed on a series of natural and synthetic phenol-based β-CA1 inhibitors. The developed 3D-QSAR 
model (r2 = 0.94, q2 = 0.86, and pred_r2 = 0.74) indicated that the steric and electrostatic factors are important parameters 
to modulate the bioactivity of phenolic compounds. Based on this indication, we designed 72 new phenolic inhibitors, out 
of which two compounds (D25 and D50) effectively stabilized β-CA1 receptor and, thus, are potential candidates for new 
generation antitubercular drug discovery program.
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Introduction

Tuberculosis (Tb) is a highly contagious bacterial disease 
caused by Mycobacterium Tuberculosis (M.tb) (Clark-
Curtiss and Haydel 2003; Smith 2003). The lung is the 
primary target of M.tb; however, other parts of the human 
body, viz., bones, brain, urinary tracts, and lymph nodes are 
also being hit and affected by this bacterium (Ahamad et al. 
2017). Even though medical science has made an enormous 
advancement and many chemotherapeutic agents are avail-
able along with palliative care; this disease is still causing 
a significant number of mortality and morbidity across the 
globe, especially in the developing and under-developed 

countries. For example, approximately 10.4 million people 
infected while 1.8 million people died worldwide in 2017 
from this infectious disease (Centis et al. 2017; Becerra et al. 
2011). Adding to this, one out of four persons is infected 
with the one or more forms of Tb, such as multidrug-resist-
ant Tb (MDR-Tb) and extensive drug-resistant Tb (XDR-
Tb), which is caused due to incorrect treatment or by genetic 
mutation (Caminero et al. 2010; Gandhi et al. 2010). These 
issues prompted researchers to develop new drugs with 
unique and effective mechanism of action.

Beta-carbonic anhydrase 1 (β-CA1, EC 4.2.1.1, Rv1284) 
is a Zn2+ containing metalloenzyme that catalyses the 
reversible hydration of carbon dioxide (CO2) to produce 
bicarbonate (HCO3

−) and a proton (H+) and helps in inter-
mediary metabolism/respiration (Davis et al. 2011). The 
active site of β-CA1 is composed of Cys35, Asp37, His88, 
and Cys91 residue coordinated to a zinc ion. It has been 
demonstrated that β-CA1 is often up-regulated in pathogenic 
organisms (viz., such as bacteria and fungi) and serve as an 
excellent biomarker/target (Innocenti et al. 2009). There-
fore, β-CA1 emerged as a potential target to circumvent and 
control the casualties caused by different strains of M.tb. 
In the literature, several classes of molecules, viz., sulfa-
nilamides, benzolamides, carbamates, dithiocarbamates, 
phenolics, etc. have been reported with β-CA1 inhibitory 
activity (Aspatwar et al. 2017; Maresca et al. 2013; Buchieri 
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et al. 2013). Among these, phenolics have attracted a par-
ticular interest due its rich availability in nature (such as 
in turmeric, cinnamon, tea leaves, fruits, vegetables, etc.) 
(Huang et al. 2009) and easy laboratory synthesis (Hoarau 
and Pettus 2003; Sweeney 1997). Furthermore, unique bio-
logical propensity and diverse biological activities such as 
antioxidant, antibacterial, antifungal, anticancer, etc. of phe-
nolic compounds are also note worthy (Ambriz-Pérez et al. 
2016; Anantharaju et al. 2016; George and Mabon 2000; 
Hanson et al. 2002). These features are inarguably due to 
the presence of one or more hydroxyl functionality, which 
has potential to donate hydrogen, and abstract-free radical, 
coordinate with metal ions and amino acids (Del Prete et al. 
2017; Hoffmann et al. 2014; Duthie et al. 2000; Umar Lule 
and Xia 2005). In the context of β-CA1 inhibitory activity, 
it has been demonstrated that a subtle change in the core 
structure of phenolic compound leads to a significant change 
in the activity of β-CA1 enzyme (Davis et al. 2011; Buchieri 
et al. 2013). Davis and co-workers investigated a number of 
phenol-based β-CAs inhibitors (Davis et al. 2011). Some of 
the compounds displayed high selectivity for β-CAs over 
α-CA enzyme, which is very rare among non-sulfonamides. 
This work strongly supported the fact that phenolic com-
pounds could serve as an excellent fragment/starting point 
for the development of selective β-CA1 inhibitors. However, 
synthesis and biological screening of compounds in lab are 
a tedious, time-consuming and cost-ineffective job, and 
require a sound coordination between medicinal chemists 
and biologists. Therefore, it is highly desirable and demand-
ing to develop alternate method/technique to screen newly 
designed drugs in cost and time effective way. In this quest, 
computational techniques have emerged as excellent meth-
ods are being used worldwide, especially in the areas of drug 
designing (Faizi et al. 2018; Haque et al. 2017a). Recently, 
Cau and co-workers employed MD simulation techniques to 
investigate the structural features/requirement important for 
the inhibition of β-CAs by phenolic acids and related esters 
(Cau et al. 2016). They showed that some of the compounds 
inhibit the activity of CA by interfering with the nucleophilic 
attack of the metal ion on the substrate.

Inspired from these, we decided to carry out three-
dimensional quantitative structure activity relationships 
(3D-QSAR), molecular docking, and MD simulation 
studies of 22 phenolics compounds endowed with activ-
ity against Rv1284 of β-CA1. The developed 3D-QSAR 
model (r2 = 0.94, q2 = 0.86 and pred_r2 = 0.74) indicated 
the importance of steric and electrostatic factors required 
for the activity, leading to the designing of 72 new phenolic 
inhibitors. Results of the docking studies and MD simula-
tions corroborate each other. Two new derivatives (D25 and 
D50) were found to be most potent inhibitor that effectively 
stabilized β-CA1 receptor. The results of the study are pre-
sented herein.

Materials and methods

Compounds selection and structure preparation

Compounds used in this study shown in (Chart S1) along 
with their biological data (Table 1) were taken from earlier 
published work (Davis et al. 2011), whereas 1–13 (Chat S1) 
was of natural origin, compounds 14–21 (Chart S1) were 
of synthetic origin. The 2D chemical structure of the com-
pounds was drawn and converted to 3D using ChemDBS 
module within software package VLife_MDS 3.5(VLife).

Biological activity (Ki = 0.71–12.2 µM) of the com-
pounds was converted into logarithmic pKi using the equa-
tion pKi = log1/Ki (Sharma et al. 2013).

Energy minimization and geometry optimization were 
performed using Merck molecular force field (MMF) under 
the following conditions: a distance-dependent dielec-
tric constant of 1.0, convergence criterion, or root-mean-
square (RMS) gradient set at 0.01 kcal/mol Å with iteration 

Table 1   Library of natural and synthetic phenolic compounds used in 
this study along with its antibacterial activities

a = compounds values taken in the training and test set of 3D-MLR 
QSAR model
*Against Rv1284
a Test set compound of the 3D-QSAR model

Com-
pound s. 
no.

Ki (µM)* pKi Predicted value Residual value

1a 0.85 0.071 0.014 − 0.057
2 10.8 − 1.033 − 1.106 − 0.073
3 0.85 0.071 0.244 0.173
4a 10.3 − 1.013 − 0.617 0.396
5 10.5 − 1.021 − 0.882 0.139
6a 0.84 0.076 − 0.065 − 0.141
6b 0.71 0.149 − 0.109 − 0.258
7a 11.8 − 1.072 − 0.737 0.335
8 0.91 0.041 0.06 0.019
9 10.5 − 1.021 − 1.119 − 0.098
10a 0.99 0.004 − 0.373 − 0.377
11 0.82 0.086 0.055 − 0.031
12 0.80 0.097 0.199 0.102
13 0.85 0.071 0.14 0.069
14 12.2 − 1.086 − 0.968 0.118
15 0.80 0.097 − 0.016 − 0.113
16a 1.27 − 0.104 − 0.124 − 0.02
17 1.78 − 0.25 − 0.375 − 0.125
18 1.16 − 0.064 0.035 0.099
19a 11.0 − 1.041 − 1.218 − 0.177
20 12.3 − 1.09 − 0.964 0.126
21 11.6 − 1.064 − 1.069 − 0.005
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limit set at 10,000. After assigning charges (partial) to the 
atoms, the energy minimization was carried out by steepest 
descent method 1000 steps and conjugate gradient method. 
Among all generated molecular conformers, one with lowest 
energy was used for the calculations. To generate a validated 
3D-QSAR model, the library was divided into training set 
and a test set comprising 16 and 6 compounds, respectively.

Molecular alignment

Molecular alignment gives an idea about the shape variation 
and is an essential task for any 3D QSAR model develop-
ment. In the present study, we used VLife_MD software-
based alignment module, which requires 3D structure and 
template core structure of the compounds (VLife 2008). For 
this study, 2D structure of all compounds was converted 
to 3D, followed by energy and geometry optimization and 
alignment into a separate folder (Bhatia et al. 2009; Sharma 
et al. 2013). All aligned compounds were further utilized for 
molecular descriptors calculation.

Molecular descriptor calculation and QSAR model 
building steps

The molecular descriptor calculation is an important task in 
building any 3D QSAR model. Building of any 3D QSAR 
model is evaluating the required descriptors for the set of 
molecules under consideration. To establish the relationship 
between molecular shape and biological activity, molecules 
were opened in QSAR module worksheet and biological 
activity was inserted in a separate column to calculate the 
relationship between molecules local shape and the biologi-
cal activity.

3D field descriptor values were calculated using Tripos 
force field with electrostatic and steric cutoffs set at 10.0 and 
30.0 kcal/mol, respectively. The charge type was selected as 
by Gasteiger and Marsilli with dielectric constant set to 1.0.

Since some of the descriptors have constant value, they 
were removed from the descriptor sheet to generate a robust 
QSAR model. A total of 2888 descriptors were placed in 
the separate column for each compound. Further step is 
the selection of ‘training’ and ‘test set’; the training and 
test sets were created manually and composed of 16 and 6 
compounds respectively. During selection of training and 
test set compounds, care should be taken such as biological 
activities values of test set compound (six compounds) must 
lie within the minimum (min) and maximum (max) value 
range (biological activities) of training set (16 compounds) 
compounds. To ensure that the selection of training and test 
compounds is correct or not, it was verified by Uni-Column 
statistics values (Table S1). The min and max values of the 
training and test set have been performed under conditions: 
(1). The max value of predicted inhibition constant ‘pKi’ 

(µM) of test set will be less than or equal to a max value 
of pKi (µM) of the training set, and (2). The min value of 
predicted inhibition constant ‘pKi’ (µM) of test set will be 
higher than or equal to a min value of pKi (µM) of the train-
ing set (Sharma et al. 2013). These observations indicated 
that the test set values estimated and derived within the 
min–max range of the training set. Hence, the mean and 
standard deviation (SD) of pKi values of both sets (training 
and test) provided useful information of the relative differ-
ence between mean and point density distribution (PDD) 
by two sets. Finally, QSAR model was necessary to select 
the variable selection by which we can build the model, so 
that we selected forward–backward model building wizard 
as well as stepwise parameter cross correlation limit fixed 
as 0.5. The Ftest values set to be In, 4; out is 3.99 that is a 
default parameter. Furthermore, the number of max neigh-
bour choose as 5 or min neighbour as 2 and distance-based 
weighted average (DBWA) method selected.

Molecular docking and drug‑likeness studies

In this study, we employed both the Linux based Autodock4 
(version 4.2.6) and AutoDock vina (version 1.1.2) software’s 
(Trott and Olson 2010; Mushtaque et al. 2017; Haque et al. 
2017b; Ali et al. 2014, 2013). Initially, required input files 
of the ligands (compounds) and receptor (4YF4) were pre-
pared by converting .pdb to .pdbqt format. Blind docking 
was performed the grid dimensions of 116 × 112 × 112 Å and 
grid space of 0.375 Å. Default parameters for Lamarckian 
Genetic Algorithm (LGA) were used to generate the best 
molecular conformation of the ligands (Kumari et al. 2016; 
Nasreen et al. 2017; Morris et al. 1998). After completion 
of run, output files (.dlg format) were analyzed with PyMol 
(DeLano 2002). 2D plot of the most suitable docked con-
formation was constructed using discovery studio Visualizer 
(version 2.5) (Studio 2009). The physico-chemical proper-
ties (Lipinski parameters) of the compounds were predicted 
using online swiss admet server (https​://pread​met.bmdrc​.kr) 
(Daina et al. 2017) and pkCSM (http://biosi​g.unime​lb.edu.
au/pkcsm​/).

Molecular dynamics simulation

MD simulation was carried out using GROMACS 4.6.5 
software package (Pronk et al. 2013; Hess et al. 2008). 
Native β-CA1 and most suitable docked conformations (i.e., 
with lowest binding energy) were selected for the simula-
tion. Among 22 selected and 72 designed compounds, we 
selected four (6A, 6B, 12, and 15) and two (D25 and D50) 
compounds, respectively. Isoniazid (INH) was used as 
standard. The crystal structure of β-CA1 (PDB-ID: 4YF4) 
complexed with H2O, Mg2+, and Zn2+ (as cofactor) at reso-
lution 1.80 Å was selected. Except to the water molecule 

https://preadmet.bmdrc.kr
http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
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required for β-CA1 activity, all other water molecules and 
metal ions were removed from chain A (2-163 amino acids) 
for the simulation (Rowlett 2010). The native protein topol-
ogy parameter files were created using GROMOS96 43a1 
force field. The intermolecular (non-bonded) potential, rep-
resented as the sum of Lennard-Jones (LJ) force and pair-
wise Coulomb interaction and the long-range electrostatic 
force, were determined by particle mesh Ewald approach. 
The velocity Verlet algorithm was used for the numerical 
integrations and the initial atomic velocities were gener-
ated with a Maxwellian distribution at the given absolute 
temperature. Then, the system immersed with SPC/E water 
model, and protein was placed at the centre of cubic grid box 
(1.0 nm). The neutralization was performed by adding three 
Na+ counter ions into the grid box. The neutralized system 
was then subjected to energy minimization using the steep-
est descent and conjugate gradient (CG) algorithms utiliz-
ing a convergence criterion i.e. 0.005 kcal mol−1 Å−1. The 
two-standard equilibration phase was carried out separately 
NVT and NPT ensemble conditions such as constant volume 
and constant pressure for each complex similar time scale. 
We applied Berendsen thermostat and Parinello–Rahman 
barostat to maintain the temperature and the pressure of the 
system were constant at (1 bar and 300 K) with a coupling 
times of τP = 2 ps, and τT = 0.1 ps, respectively.

The periodic boundary condition (PBC) used for the inte-
grating the equation of motion by applying the leap-frog 
algorithm with 2 fs time step. Finally, to make the system 
ready for production, the fixing of constraints is achieved 
with the relaxation of grid box with water along with the 
counter ions.

PRODRG server was used for the generation of topolo-
gies-coordinate files of the selected compounds (SchuÈt-
telkopf and Van Aalten 2004). After successful topology 
generation, all docked β-CA1-phenolic complexes (i.e., 
β-CA1-6A/6B/12/15/D25/D50/INH) were used in MD 
production. In addition, all the simulation performed at 
60,000 ps (60 ns) totalling of 480 ns in this study.

Results and discussion

3D‑QSAR statistical analysis

A backward–forward stepwise variable selection method 
was used for 3D-MLR QSAR model generation (Liu et al. 
2002). A QSAR model is considered best when the resid-
ual value (difference between theoretical and experimen-
tal biological activities) is not more than one (Jain et al. 
2012). After attempting a number of models with different 
compound combinations, a statistically significant model 
was achieved. As can be seen from (Table 1), the residual 
values lie between 0.396 and − 0.377 indicating quite good 

nature of the developed model. The QSAR fitness plot was 
constructed to compare experimental versus (vs) predicted 
activity and is shown in (Fig. 1).

We selected three parameters, i.e., q2 (internal predic-
tive ability of the model/cross-validation), r2 (correlation 
coefficient of the model), and pred_r2 conformed (quality/
ability of the model can be predicted by the activity of 
external test set); the model selection criterion is correct 
or not. Considering the values of these three parameters, 
(r2 = 0.94, q2 = 0.86, pred_r2 = 0.74) that identify the statis-
tically most significant model was found for anti-Tb activ-
ity. The correlation coefficient gives indication about the 
model reliability and its accuracy is given in Table 2. The 
optimizations of electrostatic and static requirements of 
the phenolic nucleus responsible for anti-Tb activity and 

Fig. 1   3D-QSAR Models, Fitness plot comparison between experi-
mental vs predicted activity for training (red balls) and test set (blue 
balls) compounds

Table 2   3D-QSAR backward–forward stepwise variable selection by 
MLR model equation generated and for contributing descriptors sta-
tistical results shown in table

S. no. Statistical parameter 3D-QSAR 
results by MLR

1 r2 0.94
2 q2 0.86
3 pred_r2 0.74
4 r_ 2 se 0.14
5 q2

_se 0.23
6 pred_r2se 0.29
7 F test 50.79
8 N 16
9 Degree of freedom 11
10 Contributing descriptors E_854, 

E_877,S_118, 
and S_567
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phenolic pharmacophore generated from 3D data points 
were used.

The contribution plot represent descriptor participated 
in model building as shown in (Fig. 2a) and the similarity 
between of training and test set by the experimental and 
predicted set is shown in (Figure S1). These data points 
were used most active compound and its nearest neigh-
bours used for validation of the field values. 3D-QSAR data 
points are electrostatic E_854 (0.0736253, 2.74616e−006), 
E_877 (0.0815714, 5.09489e−006), static interaction field 
S_118 (− 516.532, 75.4965), and S_567 (− 0.0147166, 
6.84306e−007) at lattice points shown in the (Fig. 2b).

These data points indicated the significance of steric and 
electrostatic properties (mentioned in parenthesis) for struc-
tural activity relationship (SAR) of the phenols derivatives. 
3D-QSAR model suggests that the descriptors like elec-
trostatic effects of E_854 and E_877 with positive values 
as well as negative steric S_118 and S_567 controlled the 
activity of the molecule. Best 3D-QSAR regression model 
by MLR method is represented by the following equation:

The cross-validated correlation coefficient (q2) indicated 
about the model reliability and accuracy. The structural 
properties of compounds that lead to experimental bio-
logical activity usually determined by non-covalent forces 
like steric and electrostatic that produced by the compound 
data set of the model (Patel et al. 2014). The steric (S_118, 
S_567) and electrostatic (E_854, E_877) descriptors sig-
nify the SAR properties and maximum biological activities 
of 4-(2-hydroxyethyl) phenol derivatives. The steric and 
electrostatic field energy and interactions are shown at their 
corresponding spatial grid box; on the other hand, all four 
descriptors values of S_118, S_567, E_854, and E_877 are 
mention in Table S2 (Sharma et al. 2013). The electrostatic 

(1)Ki(�M) = + 0.0736(± 0.0000)E854
+ 0.0816(± 0.0000)E877

− 516.5315(± 75.4965)S118 − 0.0147(± 0.0000)S567.

E_854 and E_877 with positive values suggested that elec-
trostatic substituent’s are favourable at this site, the most 
potent compounds (compounds 6A, 6B and 12) with greater 
activity causing by electronegative substitution (Cl) atom at 
the phenolic ring strongly support the above statement. As 
we know steric and electrostatic (S_118, S_567, E_854 and 
E_877) field’s effects on the compounds could be enhance 
activity of phenolic compound.

On the basis of above-discussed results, total of 72 new 
phenolic compounds was designed as β-CA1 inhibitors 
(Chart 1). The designed compounds possess functionality 
like hydroxy, nitro, amino, esters, etc. All these heteroatomic 
fragments are responsible for producing polarity, resulting 
in the enhancement of electrostatic factors. To introduce 
hydrophobicity and steric hinderance, alkyl groups as well 
as four and five membered rings were incorporated. In addi-
tion, polar groups also increase the solubility in aqueous 
medium, while aliphatic and an aromatic fragment enhances 
the lipid affinity.

Our study revealed that, out of 72 designed compounds, 

D25 and D50 displayed enhanced theoretical properties 
compared to parent INH. Both D25 and D50 have basic core 
of coumarin with alkyl group attached through amide and 
carbamate bonds. In compound D25, both carbamate and 
amide bonds are present which are responsible for hydro-
philicity, and tertiary butyl group and cyclobutyl ring are 
responsible for producing steric hinderance and hydropho-
bicity. Probably, due to the presence of these, compound 
D25 displayed comparable/similar properties to the standard. 
However, in case of compound D50 electrostatic groups, 
sulphonamide and amide are present which are responsi-
ble for hydrophilicity, and benzene ring and ethyl groups 
are steric hinderance producing groups and responsible for 

Fig. 2   Contribution plot of 
the E_854, E_877, S_118, and 
S_567 descriptor participated 
in the model (a), stereo view 
of molecular grid around the 
superposed molecular units of 
phenols series of compounds 
using 3D-MLR method (b)
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hydrophobicity, resulting the potential candidature to be a 
drug candidate like standard INH. Out of these, two com-
pounds D25 and D50, compound D50 is more potent than 
compound D25, due to probably the presence of free sul-
phonamide group and aromatic ring.

Docking studies

Phenolic compounds used in this study were based on both 
the natural (1–13, Chart S1) and synthetic (14–21, Chart S1) 
sources. We investigated both electron donor and acceptors 
embedded phenolic cores. In addition, phenolic systems sep-
arated by cyclic or acyclic linkers have also been included. 
The results of autodock 4 and autodock vina are almost the 
same, so we have used autodock 4 results for further study; 
Audtodock 4 and autodock vina results in terms of bind-
ing energy mention in (Table 3 and S3). In addition to the 
docking tools, we also used CASTp server to predict the 
preferred binding site of protein (Fig. 3). Interestingly, we 

noted that both tools give same result and predicted same 
binding site for the compounds (Dundas et al. 2006). Dock-
ing analysis revealed that almost all compounds bind at the 
active pocket A* and few of them bind into another pocket 
B*. On the basis of binding energy profile, we selected 4 
out of 22 compounds with lowest energy profile, i.e., com-
pound 6A, 6B, and 12, 15, and INH drug interact and predict 
binding energy profile − 7.59, − 7.54, − 5.70, − 6.50 and 
− 6.94 kcal/mol reported in (Table S3). The results of dock-
ing study indicated that all these compounds fit nicely and 
interacted with the receptor (β-CA1 isozyme) via expected 
polar and non-polar interactions. This study also provides a 
few important clues/features which might affect/control the 
biological activity: (a) the presence of a chlorine atom ortho 
to phenolic hydroxyl group, (b) the presence of methylene 
spaced carboxamides moiety at para position, and (c) the 
presence of methoxy group (except 15). It is also interesting 
to note that a change in stereochemistry did not show any 
appreciable affect the binding energy as well as mode.

Chart 1   Chemical structures of 72 newly designed phenolic compounds with the help of QSAR study
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For example, compound 6A and 6B which are stere-
oisomers of each other, 6B had slightly higher binding 
energy than 6A (binding energy = − 7.79 kcal/mol for 6B 
vs − 7.54 kcal/mol for 6A). Both ligands fit intimately into 
the active site and coordinated with Zn2+ while forming 
three hydrogen bonds (H-bonds) between Gly60, Gly92, 
and Arg37 with β-CA1 and secondary alcohol groups of 
compound 6B and supported by hydrophobic side chains of 
surrounding residues (Fig. 3a, 2D plot of same complex, as 
shown in Fig. 4a). The binding energy of compound 12 and 
15 is −5.70 and −7.50 kcal/mol, but they interacted through 
less number of polar bonds. For instance, in addition to the 
coordination with Zn2+, compound 12 formed two H-bond 
with Met36 and Asp37. Similarly, compound 15 formed two 

H-bonds with Asp37 and Gly92 as shown in (Figure S2 B, C 
and 2D plot of same complex E and F respectively).

In this way, we found improved binding energy as well 
as expected polar and non-polar interactions are enhanced 
(Table 3; Fig. 3). As we can see, binding mode of interaction 
predicted for compound D25 (binding energy − 10.8 kcal/
mol) which interact with active site residues and coordinated 
Asp37, Arg39, and Asp90 H-bonds and Zn2+ bond along 
with 1.8, 2.8, 2.5 Å distance respectively (Figs. 3b, 4b). Sim-
ilarly, predicted compound number D50 which have least 
binding energy − 12.1 kcal/mol is coordinated with three 
H-bonds Arg36, Asp37, and Asp92 and Zn2+ 2.1, 2.6, 2.7, 
and 2.5 Å distance, respectively (Figs. 3c, 4c). Therefore, 
compound D25 and D50 are the most stable conformation 

Chart 1   (continued)
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also proved from MD simulation. On the other hand, the 
standard drug INH interacted with the receptor via two 
H-bonds Met36 and Asp37 binding energies − 6.94 kcal/mol 
(Figs. 3d, 4d, respectively). The docking result of another 
binding pocket did not effectively bind to the β-CA1, the 
binding interaction of compound D17 interact with Arg44 
which carried binding energy − 9.4 kcal/mol along distance 
3.4 Å, which is quite higher, as shown in (Figure S3 A and 
C), whereas another compound D27 interacts with Gly51 
and Tyr43 that has binding energy − 8.7 kcal/mol and cal-
culated distance 3.4 and 3.1 Å, respectively, as shown in 
(Figure S3 B and D). Therefore, newly designed compound 
D25 and D50 are the most stable conformation also proved 
from MD simulation as well as Ro5.

Drug‑likeness

Despite organic and organometallic chemists develop 
plethora of pharmacophore every year, it fails to enter into 
clinical use (Kobak et al. 2007). This is mainly attributed 
to the poor pharmacokinetic performance, solubility, and 
physico-chemical properties of the molecules (Amiri-
Kordestani and Fojo 2012). To circumvent these issues, 
researchers employ computational tools to determine pos-
sible fate of a molecule. Such studies help in screening of 
the ideal drug candidate and thus significantly reduce the 

burden of clinical trials (Ferreira and Andricopulo 2017). 
The drug-likeness study of a compound gives its physico-
chemical properties and hints towards whether it could act 
as oral drug or not (Leeson 2012). Ideally, an orally active 
drug/molecule should not possess more than one violation; 
however, exception exists too (Lipinski 2004). Here, we 
found that all the compounds obeyed this rule fairly well 
(Table S3).

Three compounds (6A, 6B, and 13) violated one rule 
(number of rotatable bonds 11, 11, and 13, respectively), 
which is still acceptable to consider them as drug. Simi-
larly, compound 7 has a very large PSA, possibly due to the 
presence of more electronegative atoms. Compounds 15–17, 
which were found to interact moderately with the receptors 
in docking studies, also showed a slightly higher logP value, 
though it is under the set limit.

The designed compounds also followed the rule very 
well, but few of them did not follow (break out the barrier) 
such as increase in M.W of compound D44–D49 is greater 
than 500. Similarly, compound D44 to D49, D52, and D53 
rotatable bond more than ten it means these compound not 
following the criteria for the drug candidate. The compound 
D52 and D53 H-bond acceptor, donor, and topological polar 
surface area are beyond the normal condition. Overall, study 
indicated that the compounds D25 and D50 have potential 
to pass all the criteria follow the rule very well, as well as 

Chart 1   (continued)
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Table 3   Docking results of β-CA1 with newly phenolic designed derivatives gives binding energy and Ro5

Compound 
S. no.

Docking studies Ro5

AutoDock4 (kcal/mol) Vina (kcal/mol) MW Rot. 
bonds

H-bond 
accep.

H-bond 
donar TPSA iLogP

D1 − 7.6 − 6.60 356.37 4 6 1 85.97 3.47
D2 − 8.0 − 6.60 342.34 4 6 1 85.97 3.34
D3 − 9.0 − 6.40 356.37 5 6 1 85.97 3.05
D4 − 8.4 − 7.10 355.38 4 5 2 88.77 2.90
D5 − 8.5 − 7.00 341.36 4 5 2 88.77 2.79
D6 − 8.7 − 7.00 355.38 5 5 2 88.77 2.72
D7 − 8.4 − 6.30 427.45 8 7 2 115.07 2.51
D8 − 9.3 − 7.30 413.42 8 7 2 115.07 3.17
D9 − 9.2 − 6.60 427.45 9 7 2 115.07 3.40
D10 − 8.6 − 6.90 383.39 3 6 2 100.21 0.83
D11 − 8.9 − 7.40 467.51 6 7 1 106.28 3.04
D12 − 10.2 − 7.30 453.48 6 7 1 106.28 3.11
D13 − 9.3 − 6.80 467.51 7 7 1 106.28 3.22
D14 − 9.2 − 7.30 383.39 3 6 2 100.21 2.49
D15 − 8.9 − 7.00 467.51 6 7 1 106.28 3.58
D16 − 9.3 − 6.90 453.48 6 7 1 106.28 3.31
D17 − 9.4 − 5.90 467.51 7 7 1 106.28 3.47
D18 − 9.4 − 7.90 444.48 4 5 1 83.22 3.33
D19 − 8.7 − 6.90 474.51 5 6 1 92.45 3.09
D20 − 8.1 − 6.90 355.34 3 6 2 100.21 2.11
D21 − 8.0 − 6.70 439.46 6 7 1 106.28 3.21
D22 − 8.8 − 6.80 425.43 6 7 1 106.28 3.29
D23 − 9.2 − 6.80 439.46 7 7 1 106.28 3.22
D24 − 8.7 − 8.90 440.45 7 7 2 118.31 3.10
D25 − 10.8 − 9.60 454.47 7 7 2 118.31 3.04
D26 − 9.1 − 7.80 454.47 8 7 2 118.31 3.52
D27 − 8.7 − 6.50 482.53 7 7 2 118.31 3.53
D28 − 9.6 − 6.30 468.5 7 7 2 118.31 2.74
D29 − 9.2 − 6.30 482.53 8 7 2 118.31 3.20
D30 − 7.9 − 6.10 372.37 5 7 2 106.20 3.16 
D31 − 8.2 − 6.40 358.34 5 7 2 106.20 3.03 
D32 − 8.7 − 6.50 372.37 6 7 2 106.20 3.05 
D33 − 7.9 − 6.70 371.38 5 6 3 109.00 2.73 
D34 − 8.2 − 6.40 357.36 5 6 3 109.00 2.39 
D35 − 8.6 − 6.60 371.38 6 6 3 109.00 2.73 
D36 − 9.2 − 6.60 442.46 9 7 4 138.10 2.86 
D37 − 9.2 − 6.60 428.44 9 7 4 138.10 2.83 
D38 − 9.6 − 6.30 442.46 10 7 4 138.10 2.78 
D39 − 9.5 − 7.10 497.54 7 9 3 126.92 2.99 
D40 − 7.5 − 6.40 469.48 7 8 2 126.51 2.62 
D41 − 9.1 − 6.70 455.46 7 8 2 126.51 2.85 
D42 − 9.7 − 6.90 469.48 8 8 2 126.51 2.95 
D43 − 9.0 − 7.00 468.5 8 7 3 129.31 2.80 
D44 − 10.2 − 6.90 540.56 11 9 3 155.61 2.12 
D45 − 10.7 − 6.90 526.54 11 9 3 155.61 2.36 
D46 − 10.1 − 7.00 525.55 11 8 4 158.41 2.64 
D47 − 10.5 − 7.80 539.58 11 8 4 158.41 2.33 
D48 − 11.1 − 7.10 555.58 12 9 4 167.64 2.29 
D49 − 10.9 − 9.10 542.53 12 10 3 164.84 3.70 
D50 − 12.1 − 10.20 498.51 8 9 4 177.54 2.03 
D51 − 11.2 − 9.00 482.51 7 8 3 157.31 2.42 
D52 − 13.2 − 10.60 624.7 11 11 4 184.02 3.88 
D53 − 12.0 − 7.70 640.7 12 12 5 204.25 2.86 
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have lowest binding energy from docking results as shown 
in (Table 3).

MD simulation analysis

The MD simulation of the trajectory analysis by monitoring 
the root-mean-square deviation (RMSD), radius of gyra-
tion (Rg), solvent-accessible surface area (SASA), root-
mean-square fluctuation (RMSF), and secondary structural 
changes were performed with one native protein and in the 
presence of four selected, and two newly designed com-
pounds as well as INH. Moreover, essential dynamics analy-
sis to find the atomic movement of native β-CA1 and each 
complex through covariance matrix and eigenvector build 
by g_covar and g_anaeig modules. These analysis values 
will decipher the conformational changes induced by the 
compounds.

Comparable root‑mean‑square deviation

We observed that the RMSD value for native β-CA1 
increases till ~ 18 ns and then achieves the equilibrium and 
remain stable during the 60 ns simulation. This indicated 
that β-CA1 remains stable during the MD simulation. In 
comparison to native protein, β-CA1 compounds’ complex 
achieved equilibrium quickly (within ~ 2 ns) except com-
pound 12 and 15 well equilibrated at the 10 ns of the simu-
lation. The magnitude of fluctuations of compound 12 and 

15 is quite higher than native and all other compounds com-
plexes; the average RMSD values are reported in (Table 4).

Interesting to note that, compounds 12 and 15 displayed 
a large RMSD with the average value of 0.91 and 0.94 nm 
causing the destabilization of the protein; however, all other 
compounds have lower average RMSD value than native 
protein; indicating the stabilization of the protein by during 
inhibitor binding. The maximum stabilization is observed 
for newly designed compound D25 and D50 which has aver-
age RMSD of ~ 0.66 and ~ 0.59 nm, respectively (Fig. 5a; 
Table 4). The average RMSD of complex with compound 
6B is ~ 0.73 nm that carries least biological activity 0.71 µM 
and inhibition profile of pathogenic M.tb. The designed com-
pound D25 and D50 average RMSD are less than compound 
6B and INH drug. In this regards, the average RMSD value 
and fluctuation peaks of compound D25 and INH drug 
are almost the same, which is the evidence of compounds 
effectiveness. Therefore, compounds D25 and D50 are the 
most potent compounds which could be considered as drug 
candidates.

Radius of gyration (Rg)

The radius of gyration (Rg) measures the protein compact-
ness/stability and the results are shown in (Fig. 5b; Table 4). 
The value of Rg was found to be lower for compounds D25 
(Rg = 1.47 nm) and D50 (Rg = 1.46 nm) than the control 
used in this study (INH, Rg = 1.52 nm). A closer analysis 
of Fig. 5b indicates that the studied compounds endowed 

Table 3   (continued)

D63 − 10.1 − 6.30 430.88 9 5 2 95.94 3.18
D64 − 6.9 − 5.90 269.72 3 3 2 60.77 2.26
D65 − 7.4 − 6.10 353.84 6 4 1 66.84 3.40
D66 − 7.7 − 6.20 339.81 6 4 1 66.84 3.32
D67 − 9.7 − 6.20 353.84 7 4 1 66.84 3.53
D68 − 8.1 − 6.10 341.79 7 5 1 76.07 3.00
D69 − 8.0 − 6.30 305.71 5 4 3 86.63 1.83
D70 − 9.2 − 6.30 389.83 8 5 2 92.70 2.87
D71 − 9.1 − 6.40 375.8 8 5 2 92.70 2.70
D72 − 9.4 − 6.40 361.78 8 5 2 92.70 2.13

D54 − 5.8 − 4.80 186.59 2 3 2 57.53 1.38 
D55 − 6.3 − 5.30 241.71 4 2 2 49.33 2.43 
D56 − 7.0 − 5.10 227.69 4 2 2 49.33 1.87 
D57 − 6.7 − 5.60 241.67 3 3 2 60.77 1.81 
D58 − 7.0 − 5.90 325.79 6 4 1 66.84 3.19 
D59 − 7.7 − 5.90 311.76 6 4 1 66.84 3.01 
D60 − 8.1 − 5.80 325.79 7 4 1 66.84 2.82 
D61 − 9.4 − 6.80 360.79 6 4 2 92.86 2.02 
D62 − 9.2 − 7.10 444.91 9 5 2 95.94 3.92 

Compound 
S. no.

Docking studies Ro5

AutoDock4 (kcal/mol) Vina (kcal/mol) MW Rot. 
bonds

H-bond 
accep.

H-bond 
donar TPSA iLogP

The selected compounds for the MD simulation are D25- and D50-binding energy − 10.8 and − 12.1 from Table 3, and compounds 6A, 6B, 12, 
15, and INH along the binding energy − 7.59, − 7.55, − 5.7, 7.5, and − 6.94 from table S3 (ΔG in kcal/mol), respectively
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more compactness and rigidity to the protein than the con-
trol, leading to overall stabilization of protein complex. The 
Rg values of native and all complexes variation trend similar 
pattern of RMSD.

Comparable hydrophobic burial

In Table 4, we have also compiled the solvent accessi-
ble surface area (SASA) of native β-CA1 as well as its 
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Fig. 3   Interaction of phenolic inhibitors with β-CA1. The binding 
mode of β-CA1 (line model) with compound 6B (green ball and stick 
model) (a), compound D25 (purple ball and stick model) (b), com-

pound D50 (green ball and stick model) (c), and INH drug (green ball 
and stick model) interact with the active site residues of β-CA1 (d)
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complex with the studied compounds. As can be seen, 
SASA value of native protein (51.32 nm2) decreases upon 
complexation with 6A (50.67 nm2), 6B (50.93 nm2), 12 
(51.20 nm2), 15 (50.60 nm2), D25 (49.91 nm2), and D50 
(49.61 nm2). Furthermore, the lowering of SASA was 
more pronounced in cases of the designed compounds 
than the control (INH, 51.03 nm2). Overall, this study 

indicated that the overall protein stability and dynamics 
gets modulated in the presence of designed compounds 
D25 and D50 (Fig. 5c).

Fig. 4   2D plot of the docked complexes of β-CA1 with compound 6B, D25, D50, and drug INH as shown in a, b, c, and d respectively. The 2D 
plot constructed by discovery studio 2.5

Table 4   Average values of 
RMSD, Rg, and SASA

Values measured from Fig. 5
± Error

β-CA1-complex Average RMSD (nm) Average Rg (nm) Average SASA (nm2)

Native protein 0.77 ± 0.02 1.57 ± 0.02 51.32 ± 0.02
6A 0.74 ± 0.01 1.51 ± 0.01 50.67 ± 0.01
6B 0.73 ± 0.01 1.51 ± 0.01 50.93 ± 0.01
12 0.91 ± 0.02 1.55 ± 0.01 51.20 ± 0.01
15 0.94 ± 0.02 1.44 ± 0.02 50.60 ± 0.02
D25 0.66 ± 0.01 1.47 ± 0.01 49.91 ± 0.01
D50 0.59 ± 0.01 1.46 ± 0.01 49.61 ± 0.01
INH 0.66 ± 0.01 1.52 ± 0.01 51.03 ± 0.01
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Fig. 5   MD simulation of native β-CA1 and β-CA1-inhibitor complexes. Root-mean-square deviation plot (a), radius of gyration plot (b), solvent-
accessible surface area plot (c), and root-mean-square fluctuations plot (d). The colors of all curves are indicated in the figure
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Residual fluctuation

The mobility of β-CA1 amino acids residues (1–163) was 
examined through root-mean-square fluctuation (RMSF), 
which is the measure of flexibility/stability of individual 
residue of a protein. We found that the throughout the simu-
lation studies, complexes of D25 and D50 showed less fluc-
tuation compared to 12 and 15 (Fig. 5d).

The residues in complex with compounds 12 and 15 
showed fever fluctuation at Asp99, Arg103, Asp107, 
Glu108, Thr109, Gly110, and Ile111, these residues not 
involved in molecular docking studies. The binding pocket 
and Zn2+ metal are coordinating residues Cys35, Asp37, 
His88, and Cys91 indicating stable conformation; it means 
phenolic compounds not interrupting in stability and provid-
ing strength to β-CA1. However, in comparison of all the 
complexes RMSF fluctuation peaks compound 12 and 15 
showed quit higher fluctuation, than all other complexes, 
which are indicating satisfactory stability during the MD 
simulation. These results suggesting that the designed com-
pounds D25 and D50 make β-CA1 stabilized throughout the 
MD simulations (Fig. 5d).

Secondary structure changes

Average secondary structure fluctuations values are given 
in the Table S4. The secondary structure of protein assign-
ments such as (α-helix, β-sheet, turn, bend, and coil) were 
broken down into individual residues for each provided 
time step, i.e., pico-second (ps) to quantifying the data in 
meaningful result. The observed changes in the secondary 
structure of native protein and its all complexes are shown 
in Figure S4. A pronounced change is seen in the presence 
of compound 6B, D25, and D50 increase in the α-helix, 
β-sheet, and decrease in coil, bend, and turn like content as 
compare to all other complexes (Figure S4 F and G).

Whereas, compound 12 and 15 increases the coil and 
bend-like structure, and decrease α-helix and β-sheet struc-
ture, suggesting that secondary structures are lost. Further-
more, the presence of compound 6A and INH drug with pro-
teins did not underwent any significant changes in secondary 
structure. Overall results suggest that secondary and tertiary 
structures are minimally perturbed in the presence of com-
pounds 12 and 15. Furthermore, newly designed compounds 
D25 and D50 displayed an increase in secondary structure 
as compared to other complexes, which are also validated 
RMSD, Rg, and SASA analysis.

Principal component (PCA) analysis

Principal component analysis (PCA) was performed to mon-
itor the conformational changes over the backbone atoms 
of protein and in the presence of compounds. The g_covar 

module employed and diagonalizes the covariance matrix 
using atomic fluctuation in Cartesian coordinate space. This 
module also provides a set of eigenvectors and correspond-
ing eigenvalues that define a vectorial depiction of every 
single atom’s collective motions along directions. The pur-
pose of covariance matrix analysis is to find whether the pair 
of atoms behaving level of dominant correlated and anti-
correlated motion. This matrix represents red and blue color; 
red-colored region means residues moving together as well 
as blue colored region showing residues moving in oppo-
site order. Here, we have constructed covariance matrices 
and analyzed all trajectories that provide an idea about the 
correlated and anti-correlated conformational motion of the 
native β-CA1 and complexes with total seven phenols inhibi-
tor along with Mtb first-line drugs INH used as a control. In 
this study, we observed the reduction of negative correla-
tion largely found in compound D25 and D50 complexes as 
compared to native protein and other complex trajectories 
such as compounds 6A, 6B, 12, 15, and INH, as shown in 
(Fig. 6a–h) respectively.

The significance of covariance matrix has been ana-
lyzed by the set of projection on eigenvectors 1 (ev1) and 
eigenvectors 2 (ev2). Each eigenvector has a corresponding 
eigenvalue that described the energetic involvement of each 
component to the motion. The protein and the compounds 
cover a well-stable cluster spanning in the range between 
− 10 and 5 nm2 (Fig. 7a).

We can see that all the studied compounds explore a small 
conformational space as compared to the native protein. 
The compound D25 and D50 covers more restricted phase 
space among all the compounds (Fig. 7a). We have identi-
fied reasons of anti-correlated motion appeared in covari-
ance matrix by the conformation deportment by atom-wise 
level of motion. The two principal eigenvector ev1 and 
ev2 showed the displacement region of each atom fluctua-
tion confirmed the behavior of motion. These observations 
mainly focus on the difference in flexibility of protein resi-
dues. This accumulating evidence concluded that complexes 
with compound D25 and D50 structures observed least fluc-
tuation behaviors as compared to the native protein (Fig. 7b, 
c), and the clear comparison shown in the Figure S5 B and 
C. The steep curves of eigenvalues were obtained after plot-
ting eigenvalues against the eigenvectors of native β-CA1 
and all the complexes are shown in Fig. 7d and S5 D, which 
suggest that more than 70% of eigenvalues covered in first 
two eigenvectors.

Conclusions

In this work, we have studied the potential of phenol deriva-
tives as β-CA1 inhibitors for next generation tuberculosis 
treatment. We employed ligand-based QSAR method to 
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Fig. 6   Diagonalized covariance matrix depicted the correlated and 
anti-correlation motions of the β-CA1 and β-CA1-complexes within 
the residues. The matrix representing red-colored means residues 
moving together along with blue colored showing residues moving 

in opposite order. Matrix arranged native β-CA1 (a), β-CA1-6A com-
plex (b), β-CA1-6B complex (c), β-CA1-12 complex (d), β-CA1-15 
complex (e), β-CA1-D25 complex (f), β-CA1-D50 complex (g), and 
β-CA1-INH complex (h)
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screen a library of compounds and found that the activ-
ity of a phenolic compound could be modulated via steric 
and electrostatic modifications. Based on this notion, we 
designed 72 new phenolic compounds. Among these, two 

compounds (D25 and D50) showed interesting results with 
improved predicted activity and drug like properties. These 
two molecules have strong affinity and ability to stabilize 

Fig. 7   2D projection graph plotted between eigenvector 1 vs eigen-
vector 2 for the conformational space through the covariance matrix 
(a), graph plotted for the comparison between vec 1 and vec 2 vs 
atomic fluctuations (c and b), comparison of eigenvalues (nm2) plot-

ted against the corresponding eigenvector index of the backbone by 
covariance matrix for the β-CA1 and its complexes (d). Same color 
scheme is applicable to all figures
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β-CA1 conformation. Overall, compounds D25 and D50 are 
two promising candidates and should be assessed clinically.
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