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Gray matter structural networks are
associated with cardiovascular risk
factors in healthy older adults
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Abstract

While recent ‘big data’ analyses discovered structural brain networks that alter with age and relate to cognitive decline,

identifying modifiable factors that prevent these changes remains a major challenge. We therefore aimed to determine

the effects of common cardiovascular risk factors on vulnerable gray matter (GM) networks in a large and

well-characterized population-based cohort. In 616 healthy elderly (258 women, 60–80 years) of the LIFE-Adult-Study,

we assessed the effects of obesity, smoking, blood pressure, markers of glucose and lipid metabolism as well as physical

activity on major GM-networks derived using linked independent component analysis. Age, sex, hypertension, diabetes,

white matter hyperintensities, education and depression were considered as confounders. Results showed that smoking,

higher blood pressure, and higher glycated hemoglobin (HbA1c) were independently associated with lower GM volume and

thickness in GM-networks that covered most areas of the neocortex. Higher waist-to-hip ratio was independently

associated with lower GM volume in a network of multimodal regions that correlated negatively with age and memory

performance. In this large cross-sectional study, we found selective negative associations of smoking, higher blood pressure,

higher glucose, and visceral obesity with structural covariance networks, suggesting that reducing these factors could help

to delay late-life trajectories of GM aging.
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Introduction

Recent ‘big data’ analyses of structural co-variance
between brain regions revealed large-scale gray matter
(GM) networks that are linked to developmental
changes and inter-individual behavioral differences.1–4

Douaud et al.3 described a network of transmodal cor-
tical and limbic GM regions that showed correlated
shrinkage in healthy aging and links to memory per-
formance. That GM network also mirrored brain
regions that exhibit accelerated atrophy in patients
with Alzheimer’s disease (AD).3

The observed network-based effects could hint
towards a shared susceptibility of connected regions,
indicative of unique morphological properties, to
selective pathological processes.5,6 They also strengthen
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the hypothesis that fundamental mechanisms of aging
may contribute to (or result from) neurodegenerative
pathologies.7–11 A better understanding of possible
modulators of GM networks that are vulnerable to
aging would thus open a novel window towards targets
for intervention of disease progression.

Using conventional analyses, global and regional
decreases in GM volume and cortical thickness have
been linked, though not unequivocally,12 to common
cardiovascular risk factors comprising cigarette smok-
ing, hypertension, obesity and metabolic changes.13–16

However, addressing potential impact of these factors
at the network- and population-level remains a major
challenge.17

We therefore aimed to systematically assess the
effects of obesity, smoking, blood pressure, as well as
markers of glucose and lipid metabolism and physical
activity on major GM networks using linked independ-
ent component analysis of cortical volume, thickness,
and surface area estimated from T1-weighted MRIs in
a large cohort of community-dwelled healthy older
individuals. We determined the unique contribution
of each risk factor (selected according to the
Framingham study18 and additionally physical activ-
ity19) to variations in these GM networks using multi-
variable statistics that were adjusted for confounders.
Possible associations between GM networks and cog-
nition were explored using a sumscore of verbal
memory performance, known to be highly affected by
age.20 We hypothesized negative effects of cardiovascu-
lar risk factors on major GM components that are
prone to undergo age-associated changes and linked
with cognition.

Materials and methods

Participants

Data were drawn from the baseline examination of the
‘‘Health Study of the Leipzig Research Centre for
Civilization Diseases’’ (LIFE), a population-based
cohort study of adult Leipzig inhabitants, randomly
invited via the population registry. All subjects signed
an informed consent form and received a small financial
compensation. The study protocol was in accordance
with the declaration of Helsinki and approved by the
ethics committee of the University of Leipzig.

Participants underwent neuropsychological testing,
medical examinations, and a randomly selected subset
underwent magnetic resonance imaging (MRI) of the
head at 3T (n � 2600). For details on the study design,
see Loeffler et al.21 Out of a sample of 985 older
participants (� 60 years) available at the date of ana-
lyses, we excluded participants with dementia, neuro-
logical, psychiatric or immune suppressive medication

(n¼ 203), as well as major brain pathology (e.g. tumors
and stroke) (n¼ 47). Also, subjects with missing
information on confounding factors (n¼ 74), severe
movement artifacts on the MRI or other technical
problems (n¼ 32), as well as non-intact cognitive
performance (n¼ 13, defined as showing a total
cognitive sumscore of< 3 SD of the mean population)
were excluded, resulting in a sample of 616 subjects
(Figure 1). Due to the nature of our exclusion criteria,
participants excluded (n¼ 369) were on average slightly
older (mean age: 69.5� 6 (SD) years, p¼ 0.021),
more frequently women (p¼ 0.028), exhibited a higher
BMI (mean BMI: 28.4� 4.25 (SD) kg/m2, p¼ 0.001)
and were less educated compared to those included
(p< 0.001).

MRI acquisition

Anatomic T1-weighted images were acquired in a 3-
Tesla Magnetom Verio scanner (Siemens, Erlangen,
Germany) equipped with a 32-channel head array
coil, using a three-dimensional Magnetization-
Prepared Rapid Gradient Echo (MPRAGE) sequence.
GRAPPA parallel imaging technique22 was applied on
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) standard protocol with the following param-
eters: TI 900ms, TR 2300ms, TE 2.98ms, flip angle 9�,
band width 240Hz/pixel, image matrix 256� 240, 176
partitions, FOV 256� 240� 176mm3, sagittal orienta-
tion, voxel size 1� 1� 1mm3, no interpolation.

Image processing

T1-weighted images were processed using FSL-VBM,23

an optimized voxel-based morphometry (VBM)24

protocol using FMRIB Software Library (FSL) tools
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; FSL 4.
1),25 in which a symmetric study-specific GM template
was built from the images of a sub-group of 260 par-
ticipants equally matched for males and females, which
were not significantly different from the whole sample
with regard to age and BMI range and frequency of
hypertension and diabetes. Prior to the FSL-VBM pro-
cessing, the volumes were masked by the full brain-seg-
mented volume output from FreeSurfer (http://surfer.
nmr.mgh.harvard.edu/; FreeSurfer 5.0.0),26 effectively
excluding non-brain compartments. After nonlinearly
registering all of the brain-extracted, GM-segmented
images onto the symmetric study-specific GM template,
the optimized FSL-VBM protocol involved a compen-
sation (or ‘‘modulation’’) for the local contraction/
enlargement caused by the nonlinear component of
the transformation. In addition, brain structural infor-
mation was derived from vertex-wise cortical thickness
and surface area calculated in FreeSurfer by means of
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an automated surface reconstruction scheme.26 All sur-
face reconstructions were visually inspected in Freeview
and manually edited in 31 cases. For computational
reasons, we reduced the number of data points
in each modality by lowering the resolution of the
pre-processed images, while not losing any information
about global patterns of structural covariance, due
to the smoothness of the pre-processed images.
The modulated registered GM-segmented images were
first down-sampled to 4mm isotropic and then were
smoothed with an isotropic Gaussian kernel with a
s of 4mm (&9.4mm full width at half maximum
(FWHM)). Cortical thickness and surface area maps
were sampled from subject space to the fsaverage5 tem-
plate (10,242 vertices) and then smoothed with a surface
FWHM of 10mm.

Then linked-independent component analysis
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA) was applied
to measures of GM volume, cortical thickness and sur-
face area, decomposing the data into 70 components,
see Douaud et al.3 and Groves et al.27,28 for further
descriptions. Briefly, here the aim is to model the

group data as a set of interpretable features (the inde-
pendent components (ICs)), each one characterizing a
single mode of variability. Each feature consists of a
shared subject loading, which indicates which subjects
have more or less of this feature, and the corresponding
spatial pattern that is learned for each modality.
We selected 12 global networks based on the elbow in
the scree plot of the relative amount of total variance
explained by each component (similar to Groves
et al.27) and further denoted them as IC 1–12
(Table 1). Two components (IC1 and IC8) were
considered of no further interest, as their respective
variance was nearly fully explained by differences in
head size (IC1) and image artifacts (IC8). See
Supplementary Figure, for illustration of spatial maps
of the remaining ten components.

For illustration purposes, we up-sampled the linked-
ICA results to the high-resolution versions of the
smoothed input data, similar to Groves et al.27 (GM
volume images on 2mm isotropic and surface measures
sampled on fsaverage space, i.e. 163,842 cortical
vertices per hemisphere).

Figure 1. Flow chart of the study. Out of 985 older adults free of stroke, 369 were excluded due to medication intake, brain

pathology, missing covariates, non-usable MRI scans, or non-intact cognition, leaving 616 participants for main analyses. Out of this

sample, 516 participants had physical activity information.
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Cardiovascular risk factors

All subjects underwent anthropometric assessments,
donated blood after fasting overnight and were asked
to fill in questionnaires about their lifestyle habits.
Cardiovascular risk factors comprised obesity, assessed
using ‘‘waist-to-hip ratio’’ (WHR, measured using an
ergonomic circumference measuring tape (SECA 201)
to the nearest 0.1 cm) and ‘‘BMI’’ (in kg/m2, measured)
as continuous variables, ‘‘smoking status’’ (current,
past or never smokers), systolic ‘‘blood pressure’’ (in
mmHg, mean of three consecutive measurements in a
seated position at rest), fasting serum concentrations
of glucose and lipid metabolism, i.e. ‘‘glycated
hemoglobin (HbA1c)’’ (in mmol/mol), ‘‘high-density
lipoprotein (HDL)’’ (in mU/mL), and total ‘‘choles-
terol’’ (in mmol/L). By using blood pressure and
markers of glucose control (HbA1c) as continuous
variables of interest related to hypertension and
diabetes, we were able to increase statistical power
and sensitivity in a dose–response relationship.
Six subjects had missing blood values due to technical
problems (HbA1c, n¼ 5, HDL, n¼ 1), these values
were replaced by the sample’s medians. ‘‘Physical
activity’’ (self-reported according to the German
short version of the international physical activity
questionnaire, IPAQ,29 in MET-minutes/week) was
analyzed in a subgroup of 516 subjects due to
unreturned questionnaires in 100 subjects.

Memory performance and assessment
of confounders

‘‘Memory performance’’ was assessed using the
CERAD verbal learning task.30 Briefly, subjects were
asked to remember and recall immediately and after a
delay as many words as possible out of a list of 10
words. The memory performance sumscore was defined
as the standardized mean performance in the sum of (1)
immediate learning (no. of correct words across the
three learning trials), (2) delayed recall (no. of correct
words in the recall trial), and (3) recognition (no. of
correctly recognized words in the recognition trial,
minus false positives).31,32

‘‘Depression’’ was measured using the Center for
Epidemiologic Studies Depression Scale (CES-D) ques-
tionnaire,33 ‘‘arterial hypertension’’ was defined as a
systolic blood pressure� 160mmHg, a diastolic blood
pressure� 95mmHg or use of antihypertensive medica-
tion,14 ‘‘diabetes’’ was defined as none, type 1 medi-
cated, type 2 medicated, type 2 unmedicated, and
‘‘other cardiovascular conditions’’ were defined as
arrhythmia or tachycardia. ‘‘Education’’ was measured
according to the International Standard Classification
of Education (7 levels).34 In addition, ‘‘APOE4 carrier
status’’ was defined as carrying one or two E4 alleles of
the apolipopreotein E (APOE) gene (n¼ 32 missings
due to lack of DNA samples). Genotyping was per-
formed on a Roche Lightcylcer 480 using genomic

Table 1. Relative amount of explained variance by independent components (IC), according to linked-IC analysis

of gray matter volume (GMV), cortical thickness, and surface area; and correlation with age and memory

performance.

#

Component

Explained variance (%) Correlation (r, p-value)

GMV Thickness Area Age Memory

IC1 1 2 47 �0.136, 10�3
�0.075, 0.062

IC2 0 32 0 �0.115, 0.004 0.036, 0.376

IC3 9 4 14 �0.581, 10�3 0.192, 10�3

IC4 8 0 4 0.003, 0.95 �0.078, 0.053

IC5 0 12 0 0.177, 10�3
�0.082, 0.042

IC6 4 0 0 �0.165, 10�3 0.023, 0.57

IC7 3 1 4 �0.150, 10�3 0.144, 10�3

IC8 3 2 0 �0.034, 0.4 �0.061, 0.13

IC9 2 1 1 �0.086, 0.034 0.027, 0.5

IC10 3 0 1 0.001, 0.97 0.184, 10�3

IC11 3 0 0 �0.178, 10�3
�0.018, 0.65

IC12 0 8 0 �0.044, 0.28 0.047, 0.24

Note: r- and p-values are according to Spearman’s rank correlations. Significant associations are indicated by bolding the numbers

(p< 0.005).
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DNA that was isolated from peripheral leukocytes
using an automate protocol on the Qiagen Autopure
LS (Qiagen, Hilden, Germany).

Statistical analysis

To determine unique associations between the GM net-
works and cardiovascular risk factors, we conducted
partial correlations between subjects’ loading on each
of the 10 ICs and BMI, WHR, smoking, blood pres-
sure, HbA1c, HDL and total cholesterol, respectively,
in line with previous studies.35,36 When meeting the
criteria of bivariate correlation with the respective IC
(Figure 2), the remainder of the cardiovascular risk fac-
tors as well as the following confounder variables was
considered in the partial correlation models: age, sex,
depression, hypertension (except for blood pressure
analyses), diabetes (except for HbA1c analyses), other

cardiovascular conditions, white matter hyperintensi-
ties (WMH, assessed according to the Fazekas rating
scale by means of 3D-FLAIR images37), education,
total intracranial volume (TIV), and APOE4 carrier.
We repeated analyses for physical activity in the phys-
ical activity subgroup (n¼ 516).

To assess if the relation between blood pressure (or
HbA1c) and GM networks would change with medica-
tion, we repeated the analysis in those with anti-hyper-
tensive medication (or anti-diabetic medication,
respectively), and in those without. In addition, given
the link between estrogen replacement therapy and
brain aging,38,39 we excluded women with current estro-
gen medication in confirmatory analyses. All variables
were normally distributed (unimodal, jskewnessj � 1),
except IC7, HbA1c, HDL, and physical activity, there-
fore non-parametric statistics were used. For partial
correlations, missing APOE4 values (n¼ 32) were

Figure 2. Bivariate correlations among independent components (IC), cardiovascular risk factors, confounders, and verbal memory

score. Significant associations (Spearman’s correlations, p< 0.05) are color-coded in red-shaded (positive) and blue (negative).

CV: cardiovascular; WMH: white matter hyperintensities; TIV: total intracranial volume; APOE-e4: apolipoprotein E epsilon-4 carrier

status; BMI: body mass index; WHR: waist-to-hip ratio; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein.
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substituted by the sample mean. The significance
threshold of partial correlations was set to p< 0.05
(two-sided) and corrected for the number of ICs
tested (n¼ 10), resulting in pa< 0.005. All statistical
analyses were performed in SPSS 20 (PASW, SPSS,
IBM).

Results

In total, 616 older participants (258 women) were
included in the analyses, see Table 2 for demographic
characteristics. Subjects without physical activity ques-
tionnaires (n¼ 100) were slightly older (mean age:
70� 5 (SD) years; p< 0.001) and less educated
(p¼ 0.005) in comparison to those with complete infor-
mation (n¼ 516).

Structural networks and cardiovascular risk factors

Out of 10 independent GM components, global net-
works IC2 and IC7 showed an overall decrease in
cortical thickness and volume, respectively, with age
(IC2: r¼�0.115, p¼ 0.004; IC7: r¼�0.150, p< 10�3;
Table 1). IC7 was also associated with memory per-
formance (r¼ 0.144, p< 10�3).

Independent of further associated risk factors and
confounders, cigarette smoking was significantly
linked to lower thickness and volume throughout the
neocortex in these two global networks (Figure 3(a) and
(b), IC2: partial-r¼ 0.120, p¼ 0.003; IC7: partial-
r¼�0.143, p< 0.001).

Also, blood pressure was independently associated
with IC7, showing an overall cortical volume decrease
in association with increased blood pressure
(Figure 3(b), partial-r¼�0.122, p¼ 0.003).

Considering glucose metabolism, we observed that
higher serum concentrations of HbA1c were associated
with decreased cortical thickness in IC2 after control-
ling for other risk factors and confounders (partial-
r¼�0.158, p< 10�3) (Figure 4(a)). A more regionally
specific effect was noted for HbA1c in network IC5,
showing lower thickness in medial frontal, insular, cin-
gulate and inferior temporal areas and higher thickness
in the postcentral gyrus and in the intraparietal sulcus
(partial-r¼�0.206, p< 10�3) (Figure 4(b)). This network
exhibited a positive correlation with age (r¼ 0.177,
p< 10�3).

A strong negative association with age was present
in IC3 (r¼�0.58, p< 10�3), which was characterized
by changes in GM volume predominantly within the

Table 2. Sample characteristics.

Participants

n¼ 616 (258 women)

Age [y] 69� 5 (60–79)

Waist-to-hip ratio 0.96� 0.085 (0.73–1.14)

BMI [kg/m2] 27.5� 4 (17–41)

Smoking [%] (current/previous/never) 7.5/33.1/59.4

Mean Systolic BP [mmHg] 136� 17 (89–197)

HbA1c [mmol/mol] (n¼ 611) 5.4 [5.16–5.68] (3.84–12.38)

HDL [mU/mL] (n¼ 615) 1.6 [1.32–1.92] (0.45–4.17)

Total cholesterol [mmol/L] 5.9� 1.1 (2.3–10.8)

Physical activity [MET-minutes/week] (n¼ 516) 4159 [2374.5–6919.5] (33.0�16398.0)

APOE status [% e4-carrier] (n¼ 584) 20.9

Depression scale (CES-D) [score] 9.4� 5.1 (0–34)

Arterial hypertension [%] (yes) 55.7

Diabetes status [%] (none / type 1-medicated,

type 2-medicated, type 2-non-medicated)

84.4/0.5/12.3/2.8

Current estrogen supplement [% females] (yes) 7.3

Cardiovascular diseases [%] (any) 19.2

Education [%] (without SS-LD/SS-LD/advanced SS-LD /

advanced technical SS-LD / technical college ED / university ED)

0/10.7/6.3/42.7/5.2/35.1

White matter hyperintensities [%] (Fazekas score 0/1/2/3) 23.5/59.8/16.2/0.5

Note: Data are mean� SD (minimum-maximum) or median [Interquartile range] (minimum-maximum), unless indicated otherwise.

BMI: body mass index; BP: Blood pressure; MET: multiples of the resting metabolic rate; HbA1c: glycated hemoglobin A1c; HDL: high-

density lipoproteins; APOE: Apolipoprotein E; CES-D: center for epidemiologic studies depression scale; SS-LD: secondary school-

leaving degree; ED: entrance degree.
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fundus of the sulci in prefrontal, temporal and parietal
regions, as well as in limbic and paralimbic areas and in
the cerebellum (Figure 5(a) and (b)). Notably, this net-
work had a good spatial agreement with the GM com-
ponent in Douaud et al.3 (http://www.fmrib.ox.ac.uk/
analysis/LIFOþADþAOS/), showing late development
and accelerated decline in aging, and with GM atrophy
seen in AD (spatial correlation of Z-maps: r¼ 0.82,
p< 10�3; r¼ 0.67 p< 10�3, respectively). Lower GM
volume in this network correlated with worse mem-
ory performance in our sample (r¼ 0.192, p< 10�3

Figure 5(b)). In addition, lower GM was independently
associated with higher WHR in this component
(partial-r¼�0.149, p< 10�3) (Figure 5(c)).

Considering components covering parts of the cere-
bellum, GM volume in IC10 correlated with memory
performance (r¼ 0.184, p< 10�3). In addition, IC10

was independently associated with lower blood pressure
(partial-r¼�0.129, p¼ 0.001), showing decreased
GMV in the lateral cerebellum, including bilateral
Crus I, part of Crus II, area VI, VII-b, and VIII-a.

Subsample analysis

Considering physical activity in the subgroup of 516
subjects, no independent significant associations with
the GM networks were found. Additionally, controlling
for physical activity did not change the pattern of
above-described effects of cardiovascular risk factors
and GM networks, as well as when excluding women
on estrogen replacement therapy (n¼ 19) (data not
shown).

In participants with anti-hypertensive medication
(n¼ 325), higher blood pressure was associated with

Figure 3. In two global networks, lower gray matter thickness (IC2, a) and volume (IC7, b) were associated with smoking (a) and

higher blood pressure (b). Scatter plots show the individual’s loading (black dots) and the group’s median with 95% SE or linear fit.

Colors indicate positive (red/yellow) or negative (blue/light-blue) co-variations within the network (z> 4), maps are drawn on a

standard brain.
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lower GM volume in both IC7 (partial-r¼�0.176,
p¼ 0.002) and IC10 (partial-r¼�0.139, p¼ 0.013). In
those without anti-hypertensive medication (n¼ 291),
however, associations did not reach significance. In par-
ticipants without anti-diabetic medication (n¼ 534),
but not in those with (n¼ 82), higher HbA1c, similar
to the whole sample analysis, was negatively associated
with IC2 (partial-r¼�0.159, p< 10�3) and IC5
(partial-r¼�0.230, p< 10�3)

Discussion

In this large cross-sectional study, we identified unique
associations of cardiovascular risk factors, independent
from confounders, on major structural covariance
brain networks in a well-characterized cohort of 616
healthy older adults. In two age-associated networks
that covered most cortical areas, we detected lower
GM volume and thickness in smokers, in participants
with higher blood pressure, and in those with higher
long-term glucose. Also, WHR was associated with
lower GM volume in a multimodal, age- and memory-
sensitive network, known to be affected in both normal
aging and AD.3,40

Smoking

We observed a significant negative association between
smoking and global networks IC2 and IC7, pointing to
a negative impact of smoking throughout all areas of
the neocortex. Our findings are in line with recent
results of Karama,15 which linked smoking to wide-
spread cortical thinning in a similarly large sample of
older individuals (n¼ 504). Considering the pattern of
GM covariance, these networks could be indicative of
ubiquitous neuronal properties that are affected by
smoking.41 This could be due to direct and indirect
toxic effects of cigarette smoking, for example as
shown in rodents after prenatal exposure to nicotine,42

or in humans with regard to chronic effects of cigarette
smoking on cerebral perfusion.43

Blood pressure

Our results indicate that higher blood pressure exerts
negative effects on GM volume in networks that cov-
ered most parts of the neocortex and cerebellum, with
stronger associations in subjects taking anti-hyperten-
sive medication. There is consistent evidence that

Figure 4. Higher fasting serum levels of HbA1c were associated with lower cortical thickness of IC2 (a) and IC5 (b). Scatter plots

show the individual’s loading on each network (black dots) and linear fit. Colors indicate positive (red/yellow) or negative (blue/light-

blue) co-variations within the network (z> 4), maps are drawn on a standard brain.
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higher blood pressure in mid-life is a risk factor for
cognitive decline and AD,44 and medication intake
could indicate a prolonged period of elevated blood
pressure, leading to stronger effects of high blood pres-
sure in this group. A meta-analysis of neuroimaging
findings concluded that high blood pressure leads to
lower GM volume, particularly in frontal and temporal
lobes.13 Possible underlying mechanisms include cere-
brovascular lesions due to chronic high blood pressure
and GM loss.45

Glucose metabolism

Higher concentrations of the long-term marker of glu-
cose metabolism, HbA1c, were associated with two net-
works of covariance mainly in cortical thickness.
Considering the additive nature of components in our
analysis, this indicates a negative impact of higher glu-
cose on most parts of the neocortex with stronger
effects in medial frontal, cingulate and temporal
areas, in line with previous reports in young.46 Due to

neurotoxic effects of glucose and accumulation of
advanced glycation end products (AGEs),47 persistent
episodes of hyperglycemia might have led to GM
damage in subjects with higher long-term glucose.
It could be speculated that regions of higher metabol-
ism in young and higher Aß accumulation in older
cognitively normal subjects48 would show stronger
correlations; however, future studies that for example
implement AGE-receptor-PET49 are needed to expand
on these speculations.

Visceral obesity

We found an independent association of higher WHR
and lower GM volume in IC3, covering multimodal
cortices at the gray-to-white matter border as well as
limbic regions. This finding is in line with previous stu-
dies that showed negative effects of obesity on regional
and total GM volume in older cohorts,31,50 and extends
previous reports that observed more severe changes
when looking at visceral obesity measures in

Figure 5. Higher waist-to-hip ratio was associated with lower gray matter volume in a network of multimodal regions (IC3, a, c) that

also correlated negatively with age and memory performance (b). Scatter plot shows the individual’s loading on the network and linear

fit. Colors indicate positive (red/yellow) or negative (blue/light-blue) co-variations within the network (z> 11), maps are drawn on a

standard brain.
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comparison to ‘‘crude’’ BMI.51 This might be due to the
more severe negative effects of visceral adipose tissue
compared to (gluetal-) subcutaneous fat, including a
higher expression of proinflammatory cytokines.52

Chronic low-grade inflammation has been speculated
to particularly harm myelination, thus affecting white
matter tracts and intra-cortical axon collaterals.53

The network depicted by IC3 in our cohort has been
previously linked to AD and described to display a
‘‘last-in-first-out’’ trajectory.3,40 These effects had been
further ascribed to the myelination process of intracor-
tical fibers depicted by the network.3 Therefore, our
data-driven analysis supports the hypothesis that
higher visceral fat, possibly through higher inflamma-
tory activity, exerts detrimental effects on the late-mye-
linated GM. However, future studies combining
imaging techniques capable of quantifying myelin
content and AD pathology as well as more detailed
measures of visceral fat-related inflammation are
needed to test this hypothesis.

Lipid markers and physical activity

We did not observe robust association between markers
of lipid metabolism or physical activity and GM net-
works. In our sample of healthy elderly, we observed
higher HDL levels and far less individuals on anti-
hyperlipidemic medication compared to others,16,54,55

rendering a low sensitivity to detect HDL-effects on
GM structure in our cohort likely. Considering physical
activity, longitudinal studies including older adults
observed protective effects on GM volume and thick-
ness,55–57 raising the possibility that our cross-sectional
questionnaire (IPAQ short version) might not have
been sensitive enough to capture these effects.58

Furthermore, accumulated evidence suggests a positive
impact of leisure activities on cognitive function and
lowered risk of AD.59,60 Specifically, in an elderly popu-
lation, such as ours, use of standardized leisure activity
questionnaire might better depict factors with possible
beneficial effect on brain aging.

Limitations

We are unable to infer causal relationships due to the
cross-sectional nature of our study, thus we cannot
exclude that changes in GM structure were prior to
the differences in cardiovascular risk factors.
However, it has been suggested that modifiable risk
factors at middle-age are a better predictor of structural
decline and cognitive outcomes in later life,61 which
potentially imply even stronger associations of risk fac-
tors on GM networks than seen here. The effects of
smoking in our cohort could have been underestimated
as result of cortical recovery after quitting smoking15

that might have led to a higher variance within our
‘‘previous smoker’’ group. Despite possible effects of
further factors linked with higher cardiovascular risk,
such as low ‘‘cognitive reserve’’ or depressive illness, on
GMmeasures,62–65 we did not evaluate these conditions
in detail. Strengths of the study include the large popu-
lation-based sample and the data-driven multi-modal
analysis of GM networks, instead of focusing on
traditional voxel-wise associations in one modality.
This systems-view could increase the interpretability
of the effects in older populations on the brain,
especially with regard to underlying mechanisms and
potential preventive options.1,7,8

Conclusions

Using a large cohort of healthy older adults and a data-
driven approach, we were able to replicate and further
characterize large-scale, age-sensitive GM networks
that inversely correlated with major cardiovascular
risk factors, i.e. smoking, blood pressure, long-term
glucose, and visceral obesity. The spatial extent and
composition of covarying GM measures within the
different networks indicated that smoking and, to a
lesser degree, higher blood pressure affected GM
throughout the brain, which might be attributed to
direct and indirect damage of neuronal tissue. Higher
HbA1c was found to predominantly affect areas that
are known to have high glucose metabolism and early
Abeta deposition. In addition, we detected negative
effects of visceral obesity on a structural network cover-
ing areas rich in intracortical myelinated fibres, possibly
pointing to detrimental effects of visceral fat-induced
low-grade inflammation on myelin. This proposed
mechanism might also help to better understand how
a cardiovascular risk factor, in this case WHR, could be
a trigger or booster of cognitive decline and regional
AD pathology, as this network has specifically been
linked to accelerated aging and vulnerability to AD in
previous studies.3 Our additional observation of a
negative correlation of both age and memory perform-
ance with IC3 further underlines the congruency and
the functional relevance of this specific network. Future
longitudinal studies including the LIFE follow-up data
(starting in August 2017) or those that incorporate
more detailed microstructural assessments are now
needed to prove our hypotheses and to test if improving
cardiovascular risk, specifically visceral obesity, would
help to maintain the integrity of GM networks sensitive
to aging throughout old age.
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Physical Activity Questionnaire (IPAQ): a study of con-

current and construct validity. Public Health Nutr 2007;
9: 755–762.

30. Morris JC, Heyman A, Mohs RC, et al. The consortium

to establish a registry for Alzheimer’s disease (CERAD).
Part I. Clinical and neuropsychological assessment of
Alzheimer’s disease. Neurology 1989; 39: 1159–1165.

31. Kharabian Masouleh S, Arélin K, Horstmann A, et al.
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