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The treatment goal for patients with type 1 diabetes is near-
normalization of plasma glucose levels. Few patients achieve 
this even with intensive insulin treatment.1 New approaches 
with automatic glucose controlled insulin and glucagon 
delivery, known as a dual-hormone artificial pancreas (AP), 
may offer a solution to improve glycemic control.2-6 To 
design and tune control algorithms for AP devices prior to in 
vivo tests, a validated simulation model capturing the dynam-
ics between glucose, insulin and glucagon is needed to per-
form helpful in silico experiments.7-9

Glucagon primarily affects hepatic glucose production by 
increasing glycogenolysis, while the rate of gluconeogenesis 
seems less affected by changes in both insulin and glucagon 
concentrations.10 Currently marketed glucagon is approved as 

a 1 mg rescue-treatment for severe hypoglycemia, although 
the interest in mini-dose glucagon is increasing.11,12 Recent 

693254 DSTXXX10.1177/1932296817693254Journal of Diabetes Science and TechnologyWendt et al
research-article2017

1Zealand Pharma A/S, Glostrup, Denmark
2Department of Applied Mathematics and Computer Science, Technical 
University of Denmark, Kgs. Lyngby, Denmark
3Department of Endocrinology, Hvidovre University Hospital, Hvidovre, 
Denmark
4Danish Diabetes Academy, Odense, Denmark
5Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark

Corresponding Author:
Sabrina Lyngbye Wendt, Zealand Pharma A/S, Smedeland 36, DK-2600 
Glostrup, Denmark. 
Email: slw@zealandpharma.com

Cross-Validation of a Glucose-Insulin-
Glucagon Pharmacodynamics Model for 
Simulation Using Data From Patients 
With Type 1 Diabetes

Sabrina Lyngbye Wendt, MScBME1,2, Ajenthen Ranjan, MD3,4,  
Jan Kloppenborg Møller, MSc, PhD2, Signe Schmidt, MD, PhD3,4, 
Carsten Boye Knudsen, MSc, PhD1, Jens Juul Holst, MD, DMSc5,  
Sten Madsbad, MD, DMSc3,5, Henrik Madsen, MSc, PhD2,  
Kirsten Nørgaard, MD, DMSc3, and John Bagterp Jørgensen, MSc, PhD2

Abstract
Background: Currently, no consensus exists on a model describing endogenous glucose production (EGP) as a function of 
glucagon concentrations. Reliable simulations to determine the glucagon dose preventing or treating hypoglycemia or to tune 
a dual-hormone artificial pancreas control algorithm need a validated glucoregulatory model including the effect of glucagon.

Methods: Eight type 1 diabetes (T1D) patients each received a subcutaneous (SC) bolus of insulin on four study days to 
induce mild hypoglycemia followed by a SC bolus of saline or 100, 200, or 300 µg of glucagon. Blood samples were analyzed 
for concentrations of glucagon, insulin, and glucose. We fitted pharmacokinetic (PK) models to insulin and glucagon data using 
maximum likelihood and maximum a posteriori estimation methods. Similarly, we fitted a pharmacodynamic (PD) model to 
glucose data. The PD model included multiplicative effects of insulin and glucagon on EGP. Bias and precision of PD model 
test fits were assessed by mean predictive error (MPE) and mean absolute predictive error (MAPE).

Results: Assuming constant variables in a subject across nonoutlier visits and using thresholds of ±15% MPE and 20% MAPE, 
we accepted at least one and at most three PD model test fits in each of the seven subjects. Thus, we successfully validated 
the PD model by leave-one-out cross-validation in seven out of eight T1D patients.

Conclusions: The PD model accurately simulates glucose excursions based on plasma insulin and glucagon concentrations. 
The reported PK/PD model including equations and fitted parameters allows for in silico experiments that may help improve 
diabetes treatment involving glucagon for prevention of hypoglycemia.
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studies proved that the glycemic response to low-dose gluca-
gon is dependent on ambient insulin levels,13 but neither on 
plasma glucose level14,15 nor on prior glucagon dosing.16 At 
high circulating insulin concentrations (50-60 mU/l), the 
endogenous glucose production (EGP) is completely inhib-
ited,17 and at insulin levels exceeding ~40 mU/l the EGP can-
not be stimulated by glucagon.13

The ability of insulin to suppress the glycogenolytic 
response to glucagon at high insulin concentration is not 
reflected in previously published models of glucose-gluca-
gon dynamics.18-20 A comparative study found that a multi-
plicative relationship was needed to describe insulin’s 
inhibitory effect and glucagon’s stimulating effect on glyco-
genolysis with insulin overriding the effect of glucagon at 
high concentrations of both hormones.21 Recently, we 
extended the multiplicative model by incorporating the 
interaction between insulin and glucagon on glycogenoly-
sis.13,22 The model extension was developed using preclini-
cal data from dogs and was fitted to clinical human data in 
previous studies.23,24 In this article, we aim to validate the 
multiplicative glucose-insulin-glucagon model for simula-
tion studies in humans using data from eight patients with 
type 1 diabetes.

Methods

Data Collection

Clinical data originated from a glucagon dose-finding 
study in eight well-controlled patients with type 1 diabetes 
(5 females, age range: 19-64 years, BMI range: 20.0-25.4 
kg/m2, HbA1c range: 6.1-7.4%), who were insulin pump-
treated and had no endogenous production of insulin.25 
Table S1 summarizes the patient characteristics. In brief, 
the patients completed four similar study days in random 
order. On each study day, patients arrived at the research 
facility in the morning in a fasting state. A subcutaneous 
(SC) insulin bolus (NovoRapid®, Novo Nordisk A/S, 
Bagsværd, Denmark) was administered via the patient’s 
insulin pump, aiming to lower plasma glucose to 54 mg/dl 
if no interventions were made. The insulin bolus was cal-
culated based on each patient’s individual sensitivity fac-
tor, which was determined prior to the first study visit 
using a standard procedure.26 When plasma glucose 
reached ≤70 mg/dl, a single SC bolus of either 100 µg 
(visit B), 200 µg (visit C), 300 µg (visit D) glucagon 
(GlucaGen®, Novo Nordisk A/S, Bagsværd, Denmark), or 
saline (visit A) was administered (see Figure 1). Blood was 
sampled and analyzed for plasma glucose (YSI 2300 STAT 
Plus, Yellow Springs Instrument, Yellow Springs, OH), 
plasma glucagon27 and serum insulin aspart (Mercodia AB, 
Uppsala, Sweden). The insulin pump continuously infused 
insulin as a basal rate during the study days. The insulin 
infusion rate was adjusted before the first study day, to 
keep near constant blood glucose values in the fasting and 

resting condition. The individual insulin infusion basal 
rates were similar between study visits.

Models

When applying a pharmacokinetic (PK) model, we assume 
that all increases in insulin and glucagon concentrations are 
due to exogenously dosed drugs so that endogenous produc-
tion is constant or negligible.

Insulin Pharmacokinetic Model. Previous studies showed that a 
simple two-state model with identical time constants for 
absorption and elimination could be used to describe the PK 
of insulin aspart after SC dosing.28
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Table 1 lists the interpretations of the insulin PK model 
parameters and their units. The insulin concentration in 
serum is the sum of external rapid acting insulin dosage and 
basal infusion. The model assumes steady state insulin 

Figure 1. Schematic design of the study days. Baseline blood 
samples were taken at time –(X+Y). An insulin bolus was given 
after Y minutes. In a few cases, multiple insulin boluses had 
to be administered to lower the plasma glucose sufficiently. 
When the plasma glucose measured below 70 mg/dl, a saline or 
glucagon bolus was given depending on the study day. At 180 
or 240 minutes after the saline/glucagon bolus the experiment 
was stopped. Basal insulin infusion continued throughout the 
experiment. From t = –x to t = 0, plasma glucose was measured 
every 15-30 minutes, while plasma glucagon and serum insulin 
were measured every 60 minutes. Plasma glucose was measured 
every 5 minutes from t = 0 to t = 60, every 10 minutes from t 
= 60 to t=120 and then every 15 minutes. Plasma glucagon and 
serum insulin were measured every 5 minutes from t = 0 to t 
= 15, every 15 minutes from t = 15 to t = 60, every 30 minutes 
from t = 60 to t = 120, and then every 60 minutes.
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concentration, I
b
, maintained by the basal infusion when no 

exogenous rapid acting insulin is dosed.

Glucagon Pharmacokinetic Model. A two-state model with dif-
ferent absorption and elimination rate constants can describe 
glucagon PK after SC dosing.23
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Table 1 lists the interpretations of the glucagon PK model 
parameters and their units. The glucagon concentration in 
plasma is the sum of constant endogenous glucagon, C

b
, and 

external glucagon dosage. The model does not include an 
endogenous response to hypoglycemia.

Glucose Pharmacodynamic Model. The glucose PD model was 
originally derived by Hovorka et al29,30 and further extended 
by Wendt et al.23
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Table 1. Interpretation of Insulin PK (Top Rows), Glucagon PK (Middle Rows), and Glucose PD (Bottom Rows) Model Parameters and 
Their Units.

Parameter Unit Interpretation

X
1
(t) U Insulin mass due to exogenous dosing, in SC tissue

X
2
(t) U Insulin mass due to exogenous dosing, in serum

u
I
(t) U/minute Insulin dose

t
max

minutes Time from dose to maximum serum concentration
W kg Body weight
Cl

F,I
ml/kg/minute Apparent insulin clearance

I
b

mU/l Steady state insulin concentration
I(t) mU/l Insulin concentration in serum
Z

1
(t) pg Glucagon mass due to exogenous dosing, in SC tissue

Z
2
(t) pg Glucagon mass due to exogenous dosing, in plasma

u
C
(t) pg/minute Glucagon dose

k
1

minute-1 Absorption rate constant
k

2
minute-1 Elimination rate constant

Cl
F,C

ml/kg/minute Apparent glucagon clearance
C

b
pg/ml Steady state glucagon concentration

C(t) pg/ml Glucagon concentration in plasma
Q

1
(t) µmol/kg Glucose mass per W in the accessible compartment

Q
2
(t) µmol/kg Glucose mass per W in the nonaccessible compartment

x
1
(t) mU/l Remote effects of insulin on glucose transport

x
2
(t) mU/l Remote effects of insulin on glucose disposal

x
3
(t) mU/l Remote effects of insulin on glycogenolysis

G(t) mmol/l Glucose concentration in plasma
G

GG
(t) µmol/kg/minute Glucose production due to glycogenolysis

G
GNG

µmol/kg/minute Glucose production due to gluconeogenesis
F

01
µmol/kg/minute Insulin independent glucose flux

F
R

µmol/kg/minute Renal glucose clearance
S

T
minute-1/(mU/l) Insulin sensitivity of glucose transport

S
D

minute-1/(mU/l) Insulin sensitivity of glucose disposal
S

E
l/mU Insulin sensitivity on glycogenolysis

k
12

minute-1 Transfer rate constant from the nonaccessible to the accessible compartment
k

a1
minute-1 Insulin deactivation rate constant

k
a2

minute-1 Insulin deactivation rate constant
k

a3
minute-1 Insulin deactivation rate constant

E
max

µmol/kg/minute Maximum EGP at basal insulin concentration
C

E50
pg/ml Glucagon concentration yielding half of maximum EGP

V ml/kg Glucose volume of distribution
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Table 1 lists the interpretations of the glucose PD model 
parameters and their units. The endogenous glucose produc-
tion is the sum of glycogenolysis, G

GG
, and gluconeogenesis, 

G
GNG

. The gluconeogenesis is fixed at 6 µmol/kg/minute.10 
F

01
 is constant when plasma glucose concentration exceeds 

81 mg/dl.30 The renal glucose clearance is zero when plasma 
glucose concentrations do not exceed 162 mg/dl.30 The glu-
cose volume of distribution is fixed at 160 ml/kg.29

Model Fitting

All model fitting was executed in R version 3.1.0 Spring 
Dance using the additional packages CTSM-R and num-
Deriv.31 Additional data handling was carried out using 
Microsoft Excel 2013. Unless stated otherwise, the results 
are reported as means with 95% Wald confidence intervals 
(CIs) derived from the inverse Hessian, which provides the 
curvature of the log-likelihood function.32

We fitted the insulin PK model using ordinary differential 
equations (ODEs) and estimated the log-normally distributed 
observation noise variance using maximum likelihood 
(ML).33 Due to missing insulin data around the expected time 
of maximum insulin concentration both t

max
 and Cl

F,I
 were 

estimated using maximum a posteriori (MAP) while I
b
 was 

estimated using ML. Prior distributions of t
max

 and Cl
F,I

 were 
reported in Haidar et al28 and further information regarding 
t
max

 was extracted from the product monograph on insulin 
aspart.34 Table S2 lists the prior parameter distributions. No 
prior correlation between t

max
 and Cl

F,I
 was assumed.

Insulin PK parameters were optimized on a subject basis to 
datasets from all four visits (8 parameter sets reported). Despite 
SC infusion rates of short acting insulin (ie, the basal rates) 
were similar per subject for all study visits, the baseline insulin 
concentration varied as evident from the raw data plotted in 
Figures S1-S7. Therefore, the parameter describing the steady 

state insulin level was estimated separately for each visit. Using 
the subject specific optimized parameters, the insulin PK was 
simulated every minute and used as input to the PD model.

We fitted the glucagon PK model for visits B, C, and D 
using ODEs and estimated the log-normally distributed 
observation noise variance using ML. Plasma glucagon was 
sampled adequately to perform ML estimation of all param-
eters in the glucagon PK model. There was some uncertainty 
regarding the exact dosing time of the glucagon bolus, which 
was given after the blood sampling at time zero but before 
the next blood sampling five minutes after. Due to this uncer-
tainty, we estimated the dosing time by choosing the discrete 
dosing time within the five-minute interval yielding the fit 
with the highest likelihood value and kept this updated dos-
ing time throughout the data fitting and handling.

As the absolute elimination rate of glucagon is limited by 
the absorption rate, glucagon exerts flip-flop kinetics.35 To 
avoid the flip-flop phenomenon and to reduce the population 
variation in the two time constants, k

2
 was parameterized 

such that it was greater than k
1
 in all datasets.

The glucagon PK parameters were estimated to the datas-
ets from visits with glucagon dosing (24 parameter sets, data 
not shown) and the PK simulated every minute to be used as 
input when fitting the PD model. On a subject basis, the glu-
cagon PK parameters were optimized to datasets from all 
three glucagon visits (8 parameter sets reported). Due to the 
limited amount of data, we assumed the parameters did not 
differ between the visits.

The data following administration of saline (visit A) were 
not fitted to the glucagon PK model but described using lin-
ear interpolation between measurements. These interpolated 
data were used as inputs to the PD model.

The PD model was fitted using ODEs and the log-nor-
mally distributed observation noise variance estimated using 
ML. The remaining parameters (E

max
, C

E50
, F

01
, k

12
, k

a1
, k

a2
, 

k
a3

, S
D
, S

E
, S

T
) were estimated using MAP with priors inspired 

by literature.22,29 We used priors for the time constants rather 
than fixing the four parameters.30 The time constants and the 
insulin sensitivities were log-transformed during the param-
eter estimation. Table S2 lists the prior PD model parameter 
distributions. The PD model parameters have units yielding 
a glucose output measured in mmol/l, but the output is con-
verted and graphically displayed with units of mg/dl. We 
assumed no prior correlation between parameters. As previ-
ously mentioned, glucose volume of distribution and gluco-
neogenesis were both fixed based on literature.10,29 I

b
 was 

fixed for each subject based on their average steady state 
insulin concentration. The final PD model parameters were 
obtained by optimizing the fit to all nonoutlier visits by each 
subject (8 parameter sets reported).

Pharmacodynamic Model Validation

To quantify the simulation accuracy of the model on datasets 
not used for parameter optimization, the bias was calculated 



Wendt et al 1105

by the mean prediction error (MPE) and the precision calcu-
lated by the mean absolute prediction error (MAPE). MPE 
and MAPE were calculated as percentages.36
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The variables pred
j
 and obs

j
 are the jth predicted and observed 

value, respectively of a total of N observations. If the MPE is 
less than ±15% and the MAPE is less than 20%, we regard 
the model fit as accurate, precise and suitable for simula-
tions. Cut-off limits were based on categorizing some fits as 
“good,” “medium,” and “bad” prior to knowledge of those 
fits’ MPE and MAPE values by two independent raters. The 
limits were chosen so that all fits categorized as “good” by 
both raters would be accepted and all fits categorized as 
“bad” by both raters would not meet the acceptance criteria.

The PD model validation was carried out as a fourfold 
leave-one-out cross-validation leaving all data from one visit 
out per fold. As each subject participated in four visits, each 
subject had four training datasets comprised of data from 
three visits and four corresponding test datasets with data 
from one visit:

•• Training: B-C-D, Test: A
•• Training: A-C-D, Test: B
•• Training: A-B-D, Test: C
•• Training: A-B-C, Test: D

Thus, all four visits were used for testing once without being 
used for optimization during that fold. If the MAPE of a test 
fit exceeded 50%, the test visit was considered an outlier and 
removed from further analysis. After removal of the outlier 
dataset another round of leave-one-out was performed on the 
remaining three datasets. To validate the PD model in a sub-
ject, we required that at least one PD model test fit of a data-
set from a glucagon visit (B, C or D) was accepted.

Results

Table 2 lists the estimated insulin PK model parameters. The 
fasting steady state insulin concentration had day-to-day 
variation within patients of up to 6 mU/l and ranged from 3.0 
mU/l to 22.6 mU/l between subjects. The mean of all steady 
state insulin concentrations was 9.7 mU/l. The time to maxi-
mum concentration ranged from 40.8 to 68.5 minutes and the 
apparent clearance ranged from 14.8 to 26.8 ml/kg/minute.

Table 3 lists the estimated glucagon PK model parameters 
and the calculated time to maximum concentration. The fast-
ing steady state glucagon concentrations were similar in the 
range 7.6-11.6 pg/ml for all patients except patient 8 who had 

a concentration of 19.0 pg/ml. The absorption and elimina-
tion time constants ranged from 0.022 to 0.058 minute-1 and 
0.058 to 0.28 minute-1, yielding a calculated time to maxi-
mum concentration of 7.5-19.1 minutes. The apparent clear-
ance ranged from 91 to 200 ml/kg/minute.

Table 4 provides an overview of the leave-one-out cross-
validation procedure of the PD model. The MPE and MAPE 
for the test fits are listed together with a dichotomous decision 
of acceptance or not using the criteria outlined in the 
“Pharmacodynamic Model Validation” section. Based on the 
MAPE during leave-one-out, we excluded four outlier datas-
ets from further analysis and these four patients had a second 
round of leave-one-out including the remaining three datasets. 
Overall, the test fit was accepted two to three times out of three 
in three patients, and one to two times out of four in four 
patients. In patient 8 we did not accept any of the test fits even 
after removal of an outlier dataset. Figure 2 presents examples 
of PD model test fits and corresponding MPE and MAPE val-
ues of the test fits both passing and violating the acceptance 
criteria. In summary, the PD model successfully predicted 
unseen glucose data at least once in seven patients and there-
fore we regard the PD model as validated and suitable for 
simulation studies of these seven type 1 diabetes patients.

Table 5 lists the PD model parameters optimized to all 
nonoutlier visits in each patient with mean parameter values 
and 95% CI. The parameter describing the maximum EGP at 
steady state insulin concentration, E

max
, ranged from 56 to 84 

µmol/kg/minute. The glucagon concentration at which the 
effect is half maximum, C

E50
, ranged from 141 to 436 pg/ml. 

Extrapolated to zero insulin and at basal glucagon concentra-
tion, the EGP ranged from 7 to 13.3 µmol/kg/minute. 
According to the inverse of the parameter describing the 
insulin sensitivity to EGP, S

E
, the calculated insulin concen-

tration at which the effect of glucagon shuts off ranged from 
22 to 71 mU/l. Figures 3 and S1-S7 provide simulations of 
patient optimized PD model fits and data.

Discussion

We fitted simple PK models of serum insulin and plasma glu-
cagon after SC bolus administrations of the hormones. The 

Table 2. Summary of Insulin PK Model Parameters for Simulation 
With Range of Means and 95% CI or Mean and 95% CI.

Patient I
b
 (mU/l) t

max
 (min) Cl

F,I
 (ml/kg/min)

1 6.6-7.8 (6.0-8.3) 57.6 (50.9-64.3) 18.9 (17.3-20.6)
2 10.0-11.2 (9.1-12.0) 57.3 (48.8-65.9) 18.5 (16.1-21.2)
3 10.3-13.4 (9.7-14.0) 40.8 (37.6-44.0) 14.8 (13.6-16.1)
4 7.8-9.4 (7.4-9.9) 67.9 (63.5-72.2) 17.4 (16.6-18.3)
5 5.2-8.2 (4.8-8.8) 48.5 (44.7-52.4) 17.3 (15.7-19.0)
6 3.0-8.5 (2.3-9.4) 46.5 (41.7-51.3) 24.6 (22.9-26.3)
7 16.8-22.6 (15.6-23.6) 68.5 (60.6-76.4) 23.7 (21.3-26.4)
8 4.7-9.1 (4.4-9.6) 55.4 (49.6-61.2) 26.8 (24.8-29.0)
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simulated concentrations of insulin and glucagon were used 
as inputs to the PD model. We sought to validate the PD 
model for simulations in eight type 1 diabetes patients and 
succeeded in seven. Finally, we estimated the patient’s indi-
vidual PD model parameters.

The fitted insulin PK model assumes that all changes in 
serum insulin concentration are due to SC insulin dosing. 
This is a valid assumption as no patients had measureable 
endogenous insulin secretion after glucagon stimulation.25 
Patients’ insulin levels are at steady state when no insulin 
bolus is administered.

The clinical study focused on generating data describing 
the effect of glucagon on glucose, and therefore only few 
data points describing the insulin PK were obtained. The 
insulin PK data were sampled very sparsely around the 
expected time of maximum concentration. The missing data 
did not allow for ML estimation of the insulin PK model. 
However, using literature informed prior distributions of 
both t

max
 and Cl

F,I
 and optimizing for all four visits simulta-

neously we obtained reasonable fits by MAP estimation.28,34

As the insulin PK model was fitted to in-hospital seden-
tary patients, its application in patients with type 1 diabetes 
outside the hospital setting may be limited due to numerous 
factors affecting insulin absorption rate, sensitivity and bio-
availability. Such factors could be accounted for by introduc-
ing time-variant model parameters, which was beyond the 
scope of this work.9,37,38 Especially, differences in insulin 
absorption could explain the observed intrapatient variation 
in steady state insulin concentration despite equal basal rates 
at all four visits.

Patients with type 1 diabetes have a blunted glucagon 
response to hypoglycemia compared to healthy subjects.39 
The fitted glucagon PK model assumes that all changes in 
plasma glucagon concentration are due to SC dosing and that 
the endogenous production is constant or negligible. To verify 
this assumption, we determined the size of the endogenous 
glucagon response to hypoglycemia during the saline day and 
compared it to simulations of glucagon PK in each of the 
eight subjects (data not shown). We found that exogenous 
glucagon doses of 1-10 µg would equal the plasma glucagon 
increase to hypoglycemia. Since the endogenous glucagon 
response to hypoglycemia was at most one tenth of the admin-
istered dose during the glucagon days, this confirmed that the 

endogenous response during these days was negligible com-
pared to the exogenous dosed glucagon. However, the endog-
enous response was not negligible during the saline day and 
therefore the glucagon PK model was not applicable to those 
datasets.

The glucagon PK fit was challenged by the short time to 
maximum concentration combined with the uncertainty of 
the exact dosing time of glucagon. This could potentially 
result in an error in time to maximum concentration of up to 
±4 minutes. However, this possible deviation has minor 
impact on the PD model fit when the glucagon PK fit is used 
as an input. Despite the dosing time uncertainty, the calcu-
lated times to maximum concentration are within reasonable 
range of population averages reported in the literature.28,40 In 
the model by Haidar et al,28 the glucagon absorption rate and 
elimination rate were identical which we only observed in 
patient 4. In the remaining seven patients, the elimination 
rate was significantly higher than the absorption rate. 
Moreover, having different absorption and elimination rate 
constants we observed a higher clearance rate. Compared to 
Haidar et al, we found lower basal concentration of gluca-
gon, which could be attributed to differences in the assays for 
analysis of plasma glucagon concentration.26

Despite using informed priors for all PD model parame-
ters, some optimized parameters are very different from the 
population mean and vary considerably more than originally 
listed in Hovorka et al.29 However, the original reference is 
based on a population of only six subjects, which makes it 
unlikely that all true population variations were captured, 
and we believe, therefore, that our parameter estimates are 
still valid. Similarly, with a population of eight subjects, we 
did not fit a population model but focused on estimating 
parameters for each subject individually.

The limited human data on EGP response to glucagon are 
consistent with data from dogs.22 As the human response to 
high glucagon concentrations has not been thoroughly investi-
gated, the dog data provide best guesses of the human values. 
The maximum EGP due to glucagon and glucagon concentra-
tion at half-maximum effect at basal insulin average around 60 
µmol/kg/minute and 300 pg/ml in dogs.22 Our results match 
the reference values and therefore seem plausible.

We found that EGP at zero insulin and basal glucagon is 
somewhat lower than previous publications, which state 

Table 3. Summary of Glucagon PK Model Parameters for Simulation With Mean and 95% CI.

Patient C
b
 (pg/ml) k

1
 (min-1) k

2
 (min-1) Cl

F,C
 (ml/kg/min) t

max
 (min)

1 10.7 (9.4-12.0) 0.042 (0.036-0.048) 0.14 (0.10-0.22) 94 (83-105) 12.2
2 7.6 (6.9-8.3) 0.056 (0.052-0.062) 0.26 (0.18-0.38) 106 (96-116) 7.5
3 7.6 (5.9-9.3) 0.022 (0.018-0.028) 0.10 (0.06-0.17) 114 (96-132) 19.1
4 10.9 (9.2-12.6) 0.058 (0.011-0.313) 0.058 (NA) 159 (133-184) 17.3
5 8.7 (7.7-9.8) 0.038 (0.032-0.044) 0.19 (0.13-0.29) 200 (176-223) 10.7
6 8.9 (7.8-10.0) 0.035 (0.031-0.040) 0.28 (0.19-0.41) 125 (111-138) 8.6
7 11.6 (10.1-13.0) 0.035 (0.030-0.041) 0.25 (0.16-0.39) 136 (120-152) 9.2
8 19.0 (16.1-22.0) 0.052 (0.037-0.072) 0.090 (0.04-0.26) 91 (78-105) 14.5
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10-20 µmol/kg/minute29 and ~30 µmol/kg/minute.22 This 
might be due to the fixation of gluconeogenesis at 6 µmol/kg/

minute,10 which is increased in subjects with poorly con-
trolled type 1 diabetes compared to the present well-con-
trolled patients or healthy subjects.25,41 Assuming the 
proposed model of EGP is correct, the insulin concentration 
at which the glycogenolysis, hence the effect of glucagon, 
shuts off is reasonable compared to the limited publications 
showing glycogenolysis at various insulin concentrations.22,42 
Rizza et al found that the glucose production was suppressed 
by insulin beyond approximately 60 mU/l.17 El Youssef et al 
found that at serum insulin concentrations beyond 40 mU/l 
glucagon concentrations below 450 pg/ml did not stimulate 
EGP.13 Further clinical studies are needed to investigate 
whether high insulin concentrations completely suppress the 
effect of glucagon or whether the maximum EGP is still 
attainable though at higher glucagon concentrations.

A major limitation to some of the previously published 
models describing the effect of glucagon on glucose pro-
duction is lack of validation.18,21 We were able to mimic 
never-before-seen glucose data at least once and at most 
three times in seven of the eight subjects using the pre-
sented glucose PD model. We did not expect to accept the 
test fit of all nonoutlier datasets in each subject as the visits 
often described complimentary dynamics of the glucose-
insulin-glucagon relationship; for instance the placebo day 
had very limited information on how different glucagon 
concentrations affects EGP as glucagon levels were 

Table 4. PD Model Validation Using Leave-One-Out Cross-
Validation.

Patient
Training 

visits
Test 
visit

MPE 
(%)

MAPE 
(%)

Accept? 
(Y/N)

1 BCD A –25.0 25.0 N
ACD B –11.3 13.7 Y
ABD C 78.8 78.8 Na

ABC D 3.3 25.5 N
BD A –10.3 11.1 Y
AD B 10.4 13.1 Y
AB D 4.0 21.3 N

2 BCD A 29.1 29.8 N
ACD B –18.2 18.7 N
ABD C –6.3 7.5 Y
ABC D 6.3 10.0 Y

3 BCD A 10.3 17.4 Y
ACD B –2.3 8.6 Y
ABD C 23.4 24.6 N
ABC D –20.1 20.1 N

4 BCD A –17.3 18.9 N
ACD B –9.4 11.1 Y
ABD C –23.6 23.7 N
ABC D 38.2 38.4 N

5 BCD A –13.4 13.4 Y
ACD B –30.0 30.4 N
ABD C –16.3 21.3 N
ABC D 74.6 74.6 Na

BC A –1.7 4.5 Y
AC B –9.8 14.1 Y
AB C –7.5 17.4 Y

6 BCD A –23.5 24.2 N
ACD B –4.5 12.0 Y
ABD C 59.0 59.0 Na

ABC D –8.6 16.3 Y
BD A –13.7 16.9 Y
AD B 16.7 17.5 N
AB D 4.7 15.8 Y

7 BCD A 43.0 43.3 N
ACD B –19.0 19.0 N
ABD C –2.9 19.0 Y
ABC D 6.0 8.0 Y

8 BCD A –8.0 12.4 Y
ACD B –32.9 33.0 N
ABD C –14.5 24.2 N
ABC D 174.1 174.1 Na

BC A –26.2 26.2 N
AC B –24.6 24.6 N
AB C 42.5 42.5 N

Initially, data from three visits are used for training the model, ie, 
optimizing model parameters, and data from the fourth visit are used for 
testing the model with the optimized parameters.
aA test fit with MPE or MAPE exceeding 50% is considered an outlier. The 
outlier dataset is removed and another round of leave-one-out cross-
validation is performed on the remaining three visits.

Figure 2. Examples of validation PD model fits with “good,” 
“medium,” and “bad” MPE and MAPE. Top graph is test of 
patient 2’s visit C (accepted). Middle graph is test of patient 1’s 
visit B (accepted). Bottom graph is test of patient 8’s visit B (not 
accepted).
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changing very little. On the contrary, the placebo datasets 
were rich in information about the effects of insulin on 
plasma glucose. Some glucagon datasets had few observa-
tions of the effects of insulin on EGP as the plasma glucose 
some days reached the bolus threshold of 70 mg/dl quickly, 
for example, in subjects 2 and 7 shown in Figure S2 and 
Figure 3, respectively. As an example, this difference in 
data sampling can explain why it was not possible to vali-
date the model using subject 2’s visit B as the test dataset. 
For this particular patient, the placebo visit was stopped 
early and therefore does not contain much information 
about the insulin dynamics. Moreover, the insulin only 
phase of visit B lasted nearly five hours and only two hours 
during visits C and D. Leaving visit B out of the training 
dataset does not provide the model with enough informa-
tion to predict the insulin dynamics present in visit B. We 
noted that in most cases when the test fit was not accepted 
there was a monotone bias in the residuals yielding almost 
equal values of absolute MPE and MAPE (see Table 4). 
This bias indicates that the test fit would either over- or 
undershoot compared to data and thus both insulin and glu-
cagon dynamics of the test dataset were not well described 
by the training datasets. Analyzing the PD model parame-
ters during leave-one-out in Tables S3-S10, we observed 
that when a test fit could not be accepted, usually one or 
more parameters were outside the CI obtained when fitting 
to all nonoutlier data. Therefore, failing to accept the test 
fit during a fold is not necessarily a sign of an incorrect 

model structure. Rather it could emphasize that the test 
dataset contains unique information about the dynamics, 
which are not present in any of the training datasets.43 
However, in four patients one dataset was so different from 
the other three datasets that it had to be excluded from the 
final PD model estimation as it would otherwise affect the 
parameters and yield bad fits for all four study days.

Simulation models are rarely validated on unseen data. 
The only glucose model including glucagon that is currently 
validated and FDA approved has undisclosed parameter val-
ues and can only be accessed by payment.19,44 We believe 
that this article is a step toward more openly sharing simula-
tion models that will allow more research groups to test 
dual-hormone dosing strategies and control algorithms for 
managing diabetes before carrying out expensive simula-
tions or clinical trials.

Conclusion

We have successfully validated a model describing the 
glucose-insulin-glucagon dynamics in seven type 1 diabe-
tes subjects using leave-one-out cross-validation. We have 
reported model parameter sets with uncertainties for each 
subject, which could be used for in silico experiments. 
Simulations could also aid in optimizing treatment for 
type 1 diabetes patients such as glucagon dosing strategies 
for preventing hypoglycemia and tuning control strategies 
for an AP.

Figure 3. Data from all of patient 7’s visits (left to right: visit A to D) with insulin PK model fits (top row, logarithmic y-axes) and 
glucagon linear interpolation or PK model fits (middle row, logarithmic y-axes) both used as inputs to the glucose PD model for 
simulation built with data from all four visits (bottom row). The triangles indicate dose time of the insulin and glucagon boluses, 
respectively.
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