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Original Article

While current standards of care for the management of type 
1 diabetes (T1D) rely on blood glucose monitoring based 
largely on self-monitoring of blood glucose (BGM), con-
tinuous glucose monitoring (CGM) is becoming a strong 
alternative to BGM. CGM technology has significantly 
matured since its advent in the early 2000s, and advanced 
from retrospective review of glucose variations to real-time 
display of glucose (usually every 5 minutes)1 and poten-
tially insulin dosing decision making, either through artifi-
cial pancreas like systems2-4 or through standard functional 
insulin therapy.5,6

Parallel to these advances, CGM system accuracy has 
greatly increased over the same decade, from systems com-
monly making errors of 20% to 50% of the reference value7 
to current system with 90% or more of readings within 20% 
of the reference.8,9 Despite of this, current CGM accuracy 
does not meet the required accuracy standards for regulatory 
approval of BGM systems.10,11 This is also masked by the 
reliance on MARD as a descriptive parameter. While MARD 
provides an average measure of accuracy, it does not fully 

quantify the ability of a CGM to provide trustworthy results. 
Furthermore, until additional technical and regulatory devel-
opments are introduced, CGM systems will be required to 
utilize BGM for calibration and dosing decisions.

The question of how the accuracies of BGM/CGM inter-
act is still not well understood, and while commonly accepted 
measures of accuracy for BGM are available,10,11 CGM accu-
racy remains difficult to assess.12-18 How the errors of BGM 
can propagate to CGM either through its use for insulin dos-
ing decision making in calibration, cannot be easily assessed 
in the field. In addition, the impact of BGM accuracy on the 
performance of CGMs with different accuracy levels has yet 
to be studied. Simulation technologies have made such 
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Abstract

Background: Standard management of type 1 diabetes (T1D) relies on blood glucose monitoring based on a range 
of technologies from self-monitoring of blood glucose (BGM) to continuous glucose monitoring (CGM). Even as CGM 
technology matures, patients utilize BGM for calibration and dosing. The question of how the accuracy of both technologies 
interact is still not well understood.

Methods: We use a recently developed data-driven simulation approach to characterize the relationship between CGM and 
BGM accuracy especially how BGM accuracy impacts CGM performance in four different use cases with increasing levels 
of reliance on twice daily calibrated CGM. Simulations are used to estimate clinical outcomes and isolate CGM and BGM 
accuracy characteristics that drive performance.

Results: Our results indicate that meter (BGM) accuracy, and more specifically systematic positive or negative bias, has a 
significant effect on clinical performance (HbA1c and severe hypoglycemia events) in all use-cases generated for twice daily 
calibrated CGMs. Moreover, CGM sensor accuracy can amplify or mitigate, but not eliminate these effects.

Conclusion: As a system, BGM and CGM and their mode of use (use-case) interact to determine clinical outcomes. Clinical 
outcomes (eg, HbA1c, severe hypoglycemia, time in range) can be closely approximated by linear relationships with two 
BGM accuracy characteristics, namely error and bias. In turn, the coefficients of this linear relationship are determined by the 
use-case and by CGM accuracy (MARD).
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exploration feasible, and allow for the prediction of clinical 
outcomes associated with such imperfect devices and their 
potential interactions.19,20

Materials and Methods

Data Sources

Data compiled during a National Institutes of Health/
National Institute of Diabetes and Digestive and Kidney 
Diseases grant R01 DK 085623 were the basis for replay 
simulation.21 In the study, 56 T1D patients were asked to col-
lect glucose, insulin, and meal data. Subjects were between 
the ages of 21 and 65 years old (mean of 41 and standard 
deviation [SD] of 12.1). Duration of T1D was a minimum of 
2 years, with the mean duration of 24.1 (SD 11) years. The 
study required use of an insulin pump for a minimum of 6 
months, with an average interval of 10 (SD 5.8) years. Their 
average HbA1c level was 7.7% (SD 1.2%), and 59% were 
female, with most of them white (95%), and 50% had a pro-
fessional occupation. Protocol for building the database was 
approved by the local Institutional Review Board.22 Data 
collection was designed to be unobtrusive and minimize bur-
den, distractions, or alterations to participants’ typical daily 
routines and allowed them to maintain typical daily 
behaviors.

Replay Simulators

This work is conceptually similar to a previous effort,23 
where the UVA/Padova simulator24,25 was adapted for ICU 
patients. Stress-action curves were identified via deconvo-
lution to characterize metabolic changes. A similar princi-
ple is applied to quantify unique metabolic characteristics 
of the 56 patients, obtaining an individualized simulator.21 
This approach has been successfully used in therapy 
optimization.26

The approach is illustrated in Figure 1. Given measurable 
subcutaneous glucose concentrations, model inversion is 
used to characterize the difference between the glucose pre-
dicted by a personalized linear time-invariant model and 
observed data, quantified as a rate of appearance of glucose 
in plasma.21 This rate of appearance is used to assess the 
effect of alternate dosing decisions. This naturally lends 
itself to the evaluation of sensor accuracy.19 In this work, we 
explore clinical effects of meter accuracy by simulating the 
same 56 subjects in alternate BGM/CGM use-cases.

Modeling BG Monitoring Systems

Published data on meter accuracy27,28 was used to model 
commercially available meters. The model is a mixture of 
models for high and low glucose ranges to provide more 

Figure 1. (a) Known inputs and model are used to identify metabolic response and initial state. (b) The reconstructed metabolic 
response and initial state are applied to a new set of inputs for simulation.
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accuracy. Specifically, in the low glucose range (<100 mg/
dL), the parameters of a Johnson distribution of the form
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are estimated so that P Y l plL i i≤( ) ≈ , where li  is one of the 
thresholds in 15, 10, 5 mg/dL, and pli  is the reported27,28 
percentage of measurements and N  is a standard normal 
variate. On the high range, a similar model is created for YH .  
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ideal meters, that is, meters with a Gaussian distribution with 
no bias and where 95% of measurements falling within 5% 
to 25%.

A CGM Model. This approach is based on previous CGM 
modeling approaches,20,29,30 with some modifications to pro-
vide finer error characterization. It takes the form

CGM BG t t t N t nmod = + − ( )( ) + ( ) + ( ) +α τβ T ,

where α  is a systematic bias, β  represents sensor gain, the 
series τ t( )  represents time-varying sensor lag (delay), series 
T t( )  is a polynomial trend, series N t( )  is a low frequency 
(possibly auto-correlated) noise, and n  is a high frequency 
noise, assumed to be independent with constant variance. The 
model is identified sequentially, starting signal delay τ t( ), 
followed by bias α  and gain β . At this point, residuals

res BG t t CGM tk k k= + − ( )( ) − ( )α τβ ,

are used to compute the trend T tk( ) . Once this trend is 
removed, low frequency noise is estimated using an ARMA 
process, with low frequency noise characterized from the 
residuals of this process. Note that time is assumed to refer-
enced to calibration time (t = 0).

CGM Calibration Algorithm. A simplified calibration algorithm 
was implemented. During the first calibration period bias 
and gain identified from data are used. Subsequent calibra-
tions use simulated readings from a virtual fingerstick. Given 
the last five readings, a new bias/gain pair is identified by 
solving a MSE problem.

Scaling CGM Error. To quantify the interaction between fin-
gerstick and CGM accuracies, we use a scaled CGM model 
with parameter γ > 0, is computed as

CGM t N t n

BG t t

mod η γ α

β γ τ

( ) = + ( ) + ( ) +  +

−( ) +  − ( )( )
Τ

1 1 .

Thus, a scale parameter of γ =1, will result in the original 
model, while other values were used to obtain a target 
MARD.

Behavioral Components

The simulation implements self-treatment behaviors related to 
bolusing and hypoglycemia treatment. Some simulation arms 
will use CGM for decision making. Meals and other activities 
are taken directly from the recorded activity of the patients.

Bolus Behavior. Meal corrections and corresponding finger-
sticks are skipped for 20% of the meals. Also, if glucose 
readings were consistently high (>250 mg/dL for two con-
secutive hours), patients will fingerstick and bolus if neces-
sary. There is a 2-hour postprandial correction.

Hypoglycemia Treatment. Fingersticks are triggered by CGM 
readings below 70 mg/dL (except in Arm 4). Upon a reading 
of hypoglycemia (<70 mg/dL) a rescue carb (20 g) is admin-
istered every 30 minutes until the patients recovers. In some 
simulation arms, fingerstick confirmation is required, while 
others use CGM nonadjunctively.

Low Glucose Suspend Algorithm. Arm 4 uses a low glucose 
suspend algorithm.31 In this approach, low glucose (<70 mg/
dL) leads to a 2-hour suspension of insulin infusion if patient 
ignores an alert. After this 2-hour period, insulin delivery 
resumes for 4 hours. If during this 4-hour interval glucose 
reaches the hypoglycemia threshold again, it is followed by a 
new 120-min insulin suspension cycle.31

Four In-Silico Trials

In each of the four in-silico trials described below, the 56 sub-
jects in our database use each of the 43+9 available meters27,28 
in addition to the ideal meters. Each of the trials was replicated 
a total of 16 times to obtain enough precision to significantly 
compare meters. Insulin boluses were calculated using patient-
specific carbohydrate ratio and correction factors, and per the 
following definitions, also summarized in Table 1:

•• Arm 1: BGM is used for CGM calibration and bolus 
decisions. CGM used only for alarms.

•• Arm 2: BGM is used for CGM calibration. CGM is 
used for alarms, bolus, and rescue decisions.

•• Arm 3: BGM is used for CGM calibration. CGM and 
ROC are used to make decisions.

•• Arm 4: BGM is used for CGM calibration. CGM-
based alarms, bolus decisions, and LGS.
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A CGM model with an MARD of 13% was used in the 
Arms 1-4, and was modified in two additional arms to 
assess sensitivity of the results to CGM accuracy. Arm 5, 
identical to Arm 2, uses a highly accurate CGM (8% 
MARD). Arm 6, identical to Arm 2, uses a low accuracy 
CGM (20% MARD).

Simulation Outcomes

Clinical Outcome Estimates. Each 1-month patient simula-
tion produced a month-long glucose trace. We used the 
average glucose concentration to estimate HbA1c.32 To 
estimate severe hypoglycemia events, which cannot be 
defined directly by glucose levels, we estimate the low BG 
index and used this to estimate severe hypoglycemia 
events.33

Meter Characteristics. For each meter, we computed its error 
and bias per the following definitions:

1. Error: fraction of measurements exceeding 5% of the 
reference value.

2. Bias: mean difference between meter reading and 
reference. This should be distinguished from the 
manufacturer’s definition where bias may be depen-
dent on glucose range.

Results

In Figure 2, results of Arms 1-4 are presented for all meters. 
Each bubble represents average results for a fixed meter 
across all 56 subjects and 16 replicates. The x-coordinate 
represents meter error, with HbA1c on the y-axis. Bubble 
size depicts the average number of predicted severe hypo-
glycemia per person per 6 months. Finally, fill color denotes 
systematic meter bias (as defined above) with blue, green, 
and yellow representing negative, neutral, and positive 
bias, respectively. Meters reported in 201528 are repre-
sented with a red outline. Time in range is presented in 
Figure 3, with the y-coordinate corresponding to time in 
good control (70-180 mg/dL). Actual numerical values are 
reported in Tables 2-4.

The BGM\CGM System and Its Impact on Clinical 
Outcomes

Our results show the interplay between BGM and CGM 
accuracies. To better quantify the effect of CGM accuracy, 
we fitted a linear regression model to clinical outcomes. In 
each Arm, clinical outcomes can be explained with a linear 
relationship to BGM bias and error (see Tables 5-6). 
Moreover, the coefficients of this linear relationship are 
determined by the use-case and by CGM accuracy 
(MARD). For example, consider HbA1c outcomes for 
Arm 2. A linear regression shows that, if CGM accuracy 
and use-case are fixed, HbA1c has a linear relationship to 
meter error and bias. In turn, the coefficients for this rela-
tionship (see Table 5) are determined, to a small extent, by 
the simulation arm (use-case), and by CGM MARD (see 
Table 6). For example, consider a meter with high error 
rate and large negative bias (small blue-dot on the top-
right corner of Figure 2). The combination of bias and 
error results in an increase of 0.4 in HbA1c (higher y-axis 
position), and at the same time a reduction of severe hypo-
glycemia events (smaller bubble size) with respect to an 
ideal meter. On the other hand, a meter with similar error 
but large positive bias (yellow circle at the bottom right 
corner of Figure 2), results in the opposite, namely an 
increase in severe hypoglycemia events with respect to an 
ideal meter, but also a small reduction in HbA1c of 0.3 
with respect to an ideal meter.

BGM Impact on HbA1c

Maintaining fixed CGM accuracy, meter accuracy can pro-
duce a change of up to 0.65 % in HbA1c and the range holds 
across all arms. This shift is primarily a function of bias (see 
Table 5), and confirmed by the linear regression: increases in 
error in unbiased (ideal) meters yield nonsignificant changes 
in HbA1c. We also show that newer meters will reduce the 
impact on HbA1c to a maximum range of 0.4%, down from 
0.6%.

BGM Impact on Time in Good Control

Figure 3 shows that a parallel between HbA1c and time in 
good control can be drawn. The range of time in good control 
is only 5% across all arms, primarily due to meter bias. An 
increase in meter error (Table 3) in absence of bias will not 
affect time in good control.

BGM Impact on Severe Hypoglycemia

Tables 2 and 3 show that BGM error has a significant effect 
on the rate of predicted severe hypoglycemia events. While 
the range of severe hypoglycemia increase for the 2012 
meters varies from 1.3 to 1.5 (depending on the arm), ideal 

Table 1. Use of BGM and CGM in the Different Simulation 
Arms.

Arm 1 Arms 2, 5, 6 Arm 3 Arm 4

Calibration BGM BGM BGM BGM
Dosing BGM CGM CGM+ROC CGM+LGS
Threshold alerts CGM CGM CGM CGM
CGM MARD 13% 13%

 8%
20%

13% 13%
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meters (no bias) can generate changes of 0.1 to 0.3 events per 
6 months. While small, this could be clinically significant.

Impact of CGM Accuracy

Figure 4 reports the results for Arms 5 and 6, which are iden-
tical to Arm 2, but use CGM models of two different accura-
cies replacing our standard CGM model. Arms 5 and 6 use 
CGM models with a MARD of 8% and 20% versus the 
default CGM model with a MARD of approximately 13%. 
We show in the left panel the minimal polygon enclosing the 
collection of points (error vs HbA1c). Similarly, the right 

panel shows polygon for points (error vs severe hypoglyce-
mia). The relative areas of these are a measure of variability 
introduced by inaccurate BGM devices. For example, the 
area in the (error vs HbA1c) plane goes from .02 with highly 
accurate CGM, to .04 (reference CGM), to .06 (low accuracy 
CGM).

The coefficients in Table 6 support this: higher CGM 
accuracy mitigating the effects of BGM accuracy. It is impor-
tant to note that high CGM accuracy cannot completely com-
pensate for BGM error. CGM systems with MARD larger 
than 13% seem to be more sensitive to BGM errors, an effect 
previously reported,19 where CGM with MARD larger than 

Figure 2. Influence of meter accuracy on HbA1c and the number of severe hypoglycemic events. Figure presents results for 43 m 
reported in Freckmann et al 2012, average results for 9 meters reported in Freckmann et al 2015, and 21 ideal meters. The size of 
the bubble is proportional to the number of expected severe hypoglycemia events, while its color represents meter bias, with blue 
corresponding to a negative bias, green to zero bias, and orange-yellow to positive bias. The full color range is depicted in the color bar 
to the right of the figures.
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Figure 3. Average time in good control for all arms. Figure presents results for 43 m reported in Freckmann et al 2012, average results 
for 9 meters reported in Freckmann et al 2015, and 21 ideal (Gaussian, unbiased) meters. The size of the bubble is proportional to the 
number of expected severe hypoglycemia events, while its color represents meter bias with blue corresponding to a negative bias, green 
to zero bias, and orange-yellow to positive bias. The full color range is depicted in the color bar to the right of the figures.

10% result in rapidly degrading glucose control when used 
nonadjunctively. More specifically, the effect of BGM bias 
goes from −0.00495 of (HbA1c per mg/dL) in Arm 5, to 
−0.0102 in Arm 2, to −0.0162 in Arm 6. Thus, low CGM 
accuracy (MARD = 20%) triples the impact of BGM accu-
racy. Similarly, a highly accurate CGM (MARD = 8%) can 
reduce the effect of BGM error on severe hypoglycemia to a 
sixth.

Discussion

The above results while not clinically large, show that the 
impact of BGM accuracy on CGM performance for a broad 
range of treatment paradigms is consequential, and clinically 

relevant when comparing highly accurate versus low accu-
racy BGM systems: Predicted HbA1c changes between 0.5% 
and 1% and predicted rate of severe hypoglycemia increase 
of approximately 0.5 events per 6 months. This effect was 
observed in all tested scenarios, but with different ampli-
tudes. Bias seems to be the driving factor of simulated clini-
cal outcomes in all cases, with BGM error impacting the rate 
of severe hypoglycemia, but not HbA1c (see linear regres-
sion for confirmation). Simulated zero-bias meters con-
firmed these findings as well.

Not surprisingly, the maximum effect was observed in 
Arm 1 where BGM was used for both calibration and dosing. 
The amplitude of the BGM accuracy impact seems to dimin-
ish as more CGM features were enabled (Arm 2 and 3). 
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Table 2. Average Results for Meters Reported in Freckmann et al 2012.

Meter

Meter 
characteristics Arm 1 Arm 2 Arm 3 Arm 4

Error 
(%)

Bias 
(mg/dL)

HbA1c 
(%)

Severe hypo 
(events/6m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6m)

Time in 
range (%)

1 4.3 −8.3 8.3 2.2 46.7 8.4 2.3 45.3 8.4 2.3 45.3 8.5 2.5 44.0
2 4.4 −0.1 8.2 2.4 47.7 8.4 2.5 46.1 8.3 2.6 46.1 8.5 2.8 44.7
3 4.3 −8.5 8.3 2.1 46.7 8.4 2.3 45.3 8.4 2.3 45.3 8.5 2.5 43.9
4 4.5 −1.0 8.3 2.3 47.6 8.4 2.4 46.1 8.3 2.5 46.0 8.5 2.7 44.5
5 3.9 0.7 8.2 2.5 47.8 8.3 2.5 46.3 8.3 2.6 46.3 8.4 2.8 44.9
6 4.0 −8.1 8.3 2.2 46.8 8.4 2.3 45.4 8.4 2.3 45.3 8.5 2.5 43.9
7 2.7 0.5 8.2 2.5 47.8 8.3 2.5 46.3 8.3 2.6 46.3 8.4 2.8 44.9
8 5.4 −10.9 8.4 2.1 46.4 8.5 2.2 45.0 8.5 2.3 44.9 8.6 2.4 43.6
9 6.8 −13.0 8.4 2.1 46.1 8.5 2.2 44.7 8.5 2.2 44.6 8.6 2.4 43.3

10 8.2 15.6 8.1 2.9 49.2 8.2 3.0 47.8 8.2 3.1 47.7 8.3 3.3 46.0
11 8.0 −7.4 8.3 2.3 46.5 8.4 2.3 45.2 8.4 2.4 45.2 8.5 2.5 44.0
12 11.6 17.0 8.0 3.3 49.4 8.2 3.1 47.7 8.1 3.2 47.6 8.3 3.4 46.0
13 8.1 −0.2 8.2 2.6 47.6 8.4 2.5 46.1 8.3 2.6 46.0 8.5 2.8 44.5
14 8.0 10.5 8.1 2.9 48.9 8.2 2.8 47.2 8.2 2.9 47.1 8.3 3.2 45.6
15 13.9 −27.4 8.6 1.9 44.3 8.7 1.9 42.7 8.7 1.9 42.7 8.8 2.1 41.4
16 9.7 17.2 8.0 3.1 49.4 8.2 3.0 47.9 8.1 3.1 47.9 8.3 3.3 46.3
17 6.2 −12.2 8.4 2.1 46.2 8.5 2.2 44.8 8.5 2.2 44.7 8.6 2.4 43.5
18 8.4 −8.2 8.3 2.4 46.4 8.4 2.3 45.1 8.4 2.4 45.1 8.5 2.5 43.8
19 5.5 8.2 8.1 2.7 48.6 8.3 2.7 47.1 8.2 2.8 47.0 8.4 3.0 45.6
20 8.8 14.0 8.0 3.0 49.2 8.2 2.9 47.6 8.2 3.0 47.5 8.3 3.2 46.1
21 7.2 −17.3 8.5 1.9 45.7 8.5 2.0 44.3 8.5 2.1 44.3 8.7 2.2 42.9
22 13.4 20.4 7.9 3.4 49.5 8.1 3.2 48.1 8.1 3.3 48.1 8.2 3.5 46.5
23 10.5 2.0 8.2 2.8 47.6 8.3 2.6 46.1 8.3 2.7 46.1 8.4 2.9 44.7
24 7.1 1.6 8.2 2.6 47.7 8.3 2.6 46.3 8.3 2.6 46.2 8.4 2.8 44.9
25 6.5 −0.6 8.3 2.4 47.6 8.4 2.5 46.0 8.3 2.6 46.0 8.5 2.8 44.6
26 7.1 10.2 8.1 2.8 48.8 8.2 2.8 47.2 8.2 2.9 47.2 8.3 3.1 45.7
27 4.2 −0.5 8.3 2.4 47.6 8.4 2.5 46.1 8.3 2.5 46.1 8.5 2.8 44.6
28 7.2 11.1 8.1 2.7 48.8 8.2 2.8 47.3 8.2 2.9 47.2 8.4 3.1 45.6
29 4.3 −8.0 8.3 2.1 46.8 8.4 2.3 45.4 8.4 2.3 45.4 8.5 2.5 43.9
30 7.5 −13.2 8.4 2.1 46.2 8.5 2.2 44.6 8.5 2.2 44.6 8.6 2.4 43.2
31 4.9 −0.1 8.2 2.4 47.7 8.4 2.5 46.2 8.3 2.6 46.1 8.5 2.8 44.7
32 9.6 −16.3 8.4 2.1 45.6 8.5 2.1 44.2 8.5 2.2 44.2 8.7 2.4 42.8
33 8.1 14.2 8.1 2.9 49.3 8.2 3.0 47.6 8.2 3.0 47.5 8.3 3.3 46.0
34 4.2 4.8 8.2 2.5 48.3 8.3 2.6 46.7 8.3 2.7 46.7 8.4 2.9 45.1
35 4.7 5.4 8.2 2.6 48.3 8.3 2.6 46.8 8.3 2.7 46.7 8.4 2.9 45.3
36 8.3 13.0 8.1 2.9 49.0 8.2 2.9 47.5 8.2 3.0 47.4 8.3 3.2 45.9
37 6.5 −12.6 8.4 2.1 46.3 8.5 2.2 44.7 8.5 2.2 44.8 8.6 2.4 43.4
38 4.0 −7.2 8.3 2.2 46.8 8.4 2.3 45.4 8.4 2.3 45.3 8.5 2.5 44.0
39 6.9 8.4 8.1 2.7 48.6 8.3 2.8 47.0 8.2 2.8 46.9 8.4 3.1 45.4
40 6.0 9.2 8.2 2.7 48.5 8.3 2.8 47.2 8.2 2.8 47.1 8.4 3.1 45.6
41 6.6 −13.7 8.4 2.0 46.1 8.5 2.1 44.6 8.5 2.2 44.7 8.6 2.4 43.3
42 6.6 −14.8 8.4 2.0 45.9 8.5 2.1 44.5 8.5 2.2 44.5 8.6 2.3 43.2
43 13.8 15.2 8.0 3.3 48.9 8.2 3.1 47.4 8.2 3.1 47.4 8.3 3.4 45.8

Table 3. Results for Ideal Meters (Unbiased).

Meter

Arm 1 Arm 2 Arm 3 Arm 4

Meter 
error (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

5 3.6 8.2 2.4 47.7 8.3 2.5 46.3 8.3 2.5 46.2 8.5 2.7 44.8
6 4.0 8.2 2.4 47.7 8.3 2.5 46.2 8.3 2.5 46.2 8.5 2.7 44.9
7 4.5 8.2 2.4 47.7 8.3 2.5 46.3 8.3 2.5 46.2 8.5 2.7 44.8
8 4.9 8.2 2.4 47.7 8.3 2.5 46.3 8.3 2.5 46.2 8.5 2.7 44.8
9 5.3 8.2 2.4 47.7 8.3 2.5 46.2 8.3 2.5 46.2 8.5 2.7 44.7

10 5.7 8.2 2.4 47.7 8.4 2.5 46.2 8.3 2.5 46.2 8.5 2.7 44.8
11 6.1 8.2 2.4 47.7 8.4 2.5 46.2 8.3 2.6 46.1 8.5 2.8 44.7
12 6.6 8.2 2.4 47.6 8.4 2.5 46.2 8.3 2.6 46.1 8.5 2.7 44.7
13 7.0 8.2 2.5 47.7 8.4 2.5 46.2 8.3 2.6 46.1 8.5 2.8 44.7

(continued)
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Table 4. Average Results for Meters Reported in Freckmann et al 2015.

Meter 
characteristics Arm 1 Arm 2 Arm 3 Arm 4

Meter Lot
Error 
(%)

Bias 
(mg/dL)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

1 1 4.4 −7.7 8.3 2.2 46.8 8.4 2.3 45.4 8.4 2.3 45.4 8.5 2.5 44.0
2 4.6 −7.9 8.3 2.2 46.8 8.4 2.3 45.3 8.4 2.4 45.3 8.5 2.5 43.9
3 4.9 0.4 8.2 2.5 47.8 8.3 2.5 46.2 8.3 2.6 46.2 8.4 2.8 44.8

Average 4.6 −5.1 8.3 2.3 47.1 8.4 2.4 45.6 8.4 2.4 45.6 8.5 2.6 44.2
2 1 5.0 −0.1 8.2 2.4 47.7 8.4 2.5 46.1 8.3 2.6 46.1 8.5 2.8 44.7

2 5.0 −9.5 8.4 2.1 46.6 8.5 2.2 45.2 8.4 2.3 45.1 8.6 2.5 43.8
3 6.0 −10.8 8.4 2.1 46.5 8.5 2.2 45.0 8.5 2.3 44.9 8.6 2.4 43.6

Average 5.3 −6.8 8.3 2.2 46.9 8.4 2.3 45.4 8.4 2.4 45.4 8.5 2.6 44.0
3 1 3.1 0.5 8.2 2.5 47.8 8.3 2.5 46.3 8.3 2.6 46.3 8.4 2.8 44.8

2 2.8 0.3 8.2 2.4 47.8 8.3 2.5 46.3 8.3 2.6 46.2 8.4 2.8 44.8
3 4.6 −9.0 8.3 2.2 46.5 8.4 2.2 45.2 8.4 2.3 45.2 8.6 2.5 43.9

Average 3.5 −2.7 8.3 2.4 47.4 8.4 2.4 45.9 8.4 2.5 45.9 8.5 2.7 44.5
4 1 3.9 10.0 8.1 2.7 48.9 8.2 2.8 47.4 8.2 2.8 47.2 8.4 3.1 45.7

2 3.5 0.8 8.2 2.5 47.8 8.3 2.5 46.3 8.3 2.6 46.3 8.4 2.8 44.9
3 2.3 0.3 8.2 2.4 47.8 8.3 2.5 46.3 8.3 2.6 46.2 8.4 2.8 44.8

Average 3.2 3.7 8.2 2.5 48.2 8.3 2.6 46.7 8.3 2.7 46.6 8.4 2.9 45.1
5 1 2.9 −0.3 8.2 2.4 47.8 8.4 2.5 46.2 8.3 2.5 46.2 8.5 2.7 44.8

2 3.4 −0.7 8.3 2.3 47.7 8.4 2.5 46.2 8.3 2.5 46.1 8.5 2.7 44.6
3 4.5 −10.2 8.4 2.0 46.6 8.5 2.2 45.2 8.4 2.3 45.1 8.6 2.4 43.8

Average 3.6 −3.7 8.3 2.2 47.4 8.4 2.4 45.9 8.4 2.5 45.8 8.5 2.6 44.4
6 1 10.3 −24.1 8.5 1.7 44.8 8.6 1.9 43.4 8.6 1.9 43.4 8.7 2.1 42.1

2 7.8 −6.8 8.3 2.2 46.9 8.4 2.3 45.4 8.4 2.4 45.3 8.5 2.6 43.8
3 6.5 −1.0 8.3 2.4 47.6 8.4 2.5 46.0 8.3 2.6 45.9 8.5 2.8 44.4

Average 8.2 −10.6 8.4 2.1 46.4 8.5 2.2 44.9 8.5 2.3 44.9 8.6 2.5 43.5
7 1 6.9 −5.5 8.3 2.4 46.9 8.4 2.4 45.5 8.4 2.4 45.4 8.5 2.6 44.1

2 6.9 −14.8 8.4 2.0 45.8 8.5 2.1 44.6 8.5 2.2 44.5 8.6 2.3 43.2
3 6.6 −12.4 8.4 2.1 46.2 8.5 2.2 44.7 8.5 2.2 44.7 8.6 2.4 43.5

Average 6.8 −10.9 8.4 2.2 46.3 8.5 2.2 44.9 8.5 2.3 44.9 8.6 2.4 43.6
8 1 4.9 6.8 8.2 2.6 48.4 8.3 2.7 46.9 8.3 2.8 46.8 8.4 3.0 45.3

2 4.7 −0.1 8.2 2.4 47.7 8.4 2.5 46.1 8.3 2.6 46.1 8.5 2.8 44.7
3 4.0 −0.7 8.3 2.4 47.7 8.4 2.5 46.1 8.3 2.5 46.1 8.5 2.7 44.6

Average 4.5 2.0 8.2 2.5 48.0 8.3 2.5 46.4 8.3 2.6 46.3 8.4 2.8 44.9
9 1 6.8 9.2 8.1 2.8 48.6 8.2 2.8 47.2 8.2 2.9 47.1 8.4 3.1 45.6

2 6.9 10.4 8.1 2.8 48.7 8.2 2.8 47.3 8.2 2.9 47.2 8.3 3.1 45.7
3 5.5 0.9 8.2 2.5 47.7 8.3 2.5 46.2 8.3 2.6 46.2 8.4 2.8 44.8

Average 6.4 6.8 8.1 2.7 48.3 8.3 2.7 46.9 8.2 2.8 46.9 8.4 3.0 45.4

Meter

Arm 1 Arm 2 Arm 3 Arm 4

Meter 
error (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

HbA1c 
(%)

Severe hypo 
(events/6 m)

Time in 
range (%)

14 7.4 8.2 2.5 47.6 8.4 2.5 46.2 8.3 2.5 46.1 8.5 2.8 44.7
15 7.8 8.2 2.5 47.6 8.4 2.5 46.1 8.3 2.6 46.1 8.5 2.8 44.7
16 8.3 8.2 2.5 47.6 8.4 2.5 46.1 8.3 2.6 46.1 8.5 2.8 44.6
17 8.7 8.2 2.5 47.6 8.4 2.5 46.1 8.3 2.6 46.0 8.5 2.8 44.6
18 9.1 8.2 2.5 47.5 8.4 2.5 46.1 8.3 2.6 46.0 8.5 2.8 44.6
19 9.5 8.2 2.5 47.5 8.4 2.5 46.1 8.3 2.6 46.0 8.5 2.8 44.5
20 10.0 8.2 2.6 47.5 8.4 2.5 46.1 8.3 2.6 46.0 8.5 2.8 44.5
21 10.4 8.2 2.6 47.5 8.4 2.5 46.1 8.3 2.6 46.0 8.5 2.8 44.5
22 10.8 8.2 2.6 47.5 8.4 2.5 46.0 8.3 2.6 45.9 8.5 2.8 44.5
23 11.2 8.2 2.6 47.4 8.4 2.5 46.0 8.3 2.6 45.9 8.5 2.8 44.4
24 11.6 8.2 2.6 47.4 8.4 2.5 46.0 8.3 2.6 46.0 8.5 2.8 44.4
25 12.1 8.2 2.7 47.4 8.4 2.5 46.0 8.3 2.6 45.9 8.5 2.8 44.4

Table 3. (continued)

Interestingly, the low glucose suspend (LGS) use case (Arm 
4) seemed to be particularly sensitive to high BGM bias as it 
pertains to exposure to hypoglycemia.

The relative effect of BGM accuracy, bias in particular, 
may dominate the accuracy of CGM, that is, even a highly 
accurate CGM can perform poorly if paired with an inaccurate 
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BGM. It also appears that CGM accuracy lends some robust-
ness to the overall system: that is, the changes in HbA1c 
between a high performance versus low performance meter 
are more profound in the case of an inaccurate than an accurate 
CGM. The range in HbA1c variation drops from 0.9% on Arm 
6 (20% MARD), to 0.6% in Arm 2 (13% MARD), to 0.3% in 

Arm 5 (8% MARD). At 8% CGM MARD, a point is reached 
where the predicted impact of highly accurate BGM on HbA1c 
has little clinical significance. A similar effect can be observed 
for severe hypoglycemia (see right panel of Figure 4), where 
due to changes in CGM accuracy the range of severe hypogly-
cemia values drop from 2 events per 6 months in low accuracy 

Table 5. Linear Regression Coefficients for simulation Arms 2 Through 4.

Arm 1 Arm 2 Arm 3 Arm 4

Severe hypoglycemia (Intercept) 1.246*** 1.263*** 1.202*** 1.322***
BGM bias 0.0328*** 0.0327*** 0.0295*** 0.034***
BGM error 2.816*** 2.7*** 2.023*** 2.569***

HbA1c (Intercept) 7.90*** 7.94*** 7.91*** 8.033***
BGM bias −0.00495*** −0.0102*** −0.0105*** −0.010***
BGM error 0.0655 0.0879 0.186*** 0.299***

***P < .001.

Table 6. Linear Regression Coefficients for Arms 2, 5, and 6.

Arm 5—MARD 8% Arm 2—MARD 13% Arm 6—MARD 20%

Severe hypoglycemia (Intercept) 1.171*** 1.263*** 1.430***
BGM bias 0.0152*** 0.0327*** 0.0516***
BGM error 0.651*** 2.7*** 3.927***

HbA1c (Intercept) 7.90*** 7.94*** 7.96***
BGM bias −0.00495*** −0.0102*** −0.0162***
BGM error 0.0655* 0.0879 0.602***

For instance, severe hypoglycemia outcomes associated with a specific meter in Arm 5 can be approximated by the formula Severe  
Hypoglycemia = 1.171 + 0.0152*Bias + 0.651*Error.
*P < .05. ***P < .001.

Figure 4. Results for Arms 5 and 6, low and highly accurate continuous glucose monitors using meters in Freckmann et al 2012 for 
calibration. Arms 5 and 6 are identical to Arm 2 with less (more) accurate CGM. Left panel shows impact of CGM on BGM performance 
in terms of HbA1c. Right panel reports severe hypoglycemia effects.
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CGM (MARD = 20%), to 1.2 in the reference scenario 
(MARD = 13%), and 0.7 events for a highly accurate CGM 
(MARD = 8%).

A limitation of our approach is the lack of simulated long-
term behavioral adjustments which are common in patients 
facing persistent hyper or hypoglycemia. Unfortunately, we 
are not aware of an available dataset to model this behavior 
explicitly. Another limitation is our estimation of severe 
hypoglycemia events, which are based on a result showing 
that the low blood glucose index can be used to predict severe 
hypoglycemia. The number of severe hypoglycemia events 
estimated this way is large compared to research literature 
that show an average of one severe hypoglycemia event per 
year. As mentioned above, the discrepancy may be a result of 
assuming no behavioral changes around hypoglycemia. It is 
also possible that the precision of the model has been affected 
by changes in both clinical practice and sensing technology 
since this publication.33

Finally, results assume two CGM calibrations per day, as 
required by currently available systems. We did not explore 
how the effect of BGM errors, through calibration, may 
change as the number of calibrations per day diminishes. It is 
reasonable to expect that sensitivity to BGM error will 
increase to match the bias effect as calibration frequency is 
reduced: infrequent calibrations may result in fewer opportu-
nities to quickly compensate for a larger error. Furthermore, 
the total BGM accuracy requirements may very well 
improve, resulting in fewer calibration measurements, ulti-
mately peaking at a single calibration case. Should such a 
phenomenon occur it would be important to understand the 
BGM and CGM interaction effect prior to CGM calibration 
becoming less frequent.

Conclusions

In this paper, we described an in-silico approach to charac-
terize the relationship between BGM and CGM accuracy as 
it manifests itself in clinical outcomes. Our approach lever-
ages a recently introduced simulation approach that makes it 
possible to evaluate the performance of an insulin delivery 
algorithm in close to real-life scenarios. We analyzed the 
interaction of these two glucose monitoring technologies in a 
set of use-cases (arms) that range from BGM calibration and 
bolus decisions, to scenarios where CGM is used nonadjunc-
tively to make dosing decisions, and scenarios where in addi-
tion to decision making and alarms, CGM is used to 
implement a low glucose suspend algorithm, and where 
BGM is used only for calibration.

Our results show that BGM accuracy has a significant 
effect in clinical performance of the patient as measured in 
HbA1c and the frequency of severe hypoglycemia in all sce-
narios generated for twice daily calibrated CGMs. We identi-
fied two accuracy characteristics of a meter (error and 
systematic bias) that drive clinical performance and showed 
that systematic bias has the most important effect in clinical 

performance. In the absence of bias, error has a very limited 
effect on both HbA1c and severe hypoglycemia. Our results 
also show that higher CGM accuracy mitigates, but does not 
eliminate, BGM accuracy effects on both HbA1c and more 
markedly on severe hypoglycemia.
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