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ABSTRACT
Background. Alzheimer’ disease (AD) is an ultimately fatal degenerative brain disorder
that has an increasingly large burden on health and social care systems. There are only
five drugs for AD on the market, and no new effective medicines have been discovered
for many years. Chinese medicinal plants have been used to treat diseases for thousands
of years, and screening herbal remedies is a way to develop new drugs.
Methods. We used molecular docking to screen 30,438 compounds from Traditional
Chinese Medicine (TCM) against a comprehensive list of AD target proteins. TCM
compounds in the top 0.5% of binding affinity scores for each target protein were
selected as our research objects. Structural similarities between existing drugs from
DrugBank database and selected TCM compounds as well as the druggability of our
candidate compounds were studied. Finally, we searched the CNKI database to obtain
studies on anti-AD Chinese plants from 2007 to 2017, and only clinical studies were
included.
Results. A total of 1,476 compounds (top 0.5%) were selected as drug candidates. Most
of these compounds are abundantly found in plants used for treating AD in China,
especially the plants from two genera Panax andMorus.We classified the compounds by
single target and multiple targets and analyzed the interactions between target proteins
and compounds. Analysis of structural similarity revealed that 17 candidate anti-AD
compoundswere structurally identical to 14 existing approved drugs.Most of themhave
been reported to have a positive effect in AD. After filtering for compound druggability,
we identified 11 anti-AD compounds with favorable properties, seven of which are
found in anti-AD Chinese plants. Of 11 anti-AD compounds, four compounds 5,862,
5,863, 5,868, 5,869 have anti-inflammatory activity. The compound 28,814 mainly has

How to cite this article Chen et al. (2018), A strategy to find novel candidate anti-Alzheimer’s disease drugs by constructing interaction
networks between drug targets and natural compounds in medical plants. PeerJ 6:e4756; DOI 10.7717/peerj.4756

https://peerj.com
mailto:daishaoxing@mail.kiz.ac.cn
mailto:daishaoxing@mail.kiz.ac.cn
mailto:huangjf@mail.kiz.ac.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4756
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.4756


immunoregulatory activity. The other six compounds have not yet been reported for
any biology activity at present.
Discussion. Natural compounds from TCMprovide a broad prospect for the screening
of anti-AD drugs. In this work, we established networks to systematically study the
connections among natural compounds, approved drugs, TCM plants and AD target
proteins with the goal of identifying promising drug candidates.We hope that our study
will facilitate in-depth research for the treatment of AD in Chinese medicine.

Subjects Bioinformatics, Computational Biology, Cognitive Disorders
Keywords Alzheimer’s disease, Molecular docking, Candidate drugs

INTRODUCTION
Alzheimer’s disease (AD), a progressive and ultimately fatal degenerative brain disorder,
is thought to be one of the main causes of dementia in senior citizens (Fan & Chiu,
2014; Song et al., 2015) (Fan & Chiu, 2014; Song et al., 2015). The psychiatric symptoms
observed in AD patients, include irritability, changes in mood or personality, paranoid
delusions and hallucinations (Coyle, Price & DeLong, 1983). The pathological features of
AD include senile plaques and neurofibrillary degeneration (Dickson, 1997). Degeneration,
caused by neurofibrillary tangles (intracellular fibrous aggregations of tau protein), mainly
occurs in brain regions involved in learning, memory, and emotional behaviors, such as
the hippocampus, basal forebrain, entorhinal cortex and amygdala (Mattson, 2004). The
various hypotheses regarding AD pathogenesis suggest the involvement of many pathways
and target proteins, such as the amyloid (Goedert & Spillantini, 2006), cholinergic (Craig,
Hong & McDonald, 2011), oxidative stress (Pratico, 2008), glutamatergic (Bezprozvanny
& Mattson, 2008), inflammatory (Trepanier & Milgram, 2010) and metal hypotheses
(Bonda et al., 2011). However, the causes of AD remain unclear due to the complexity
of this multifactorial disease (Armstrong, 2013). To date, five symptom-relieving drugs are
available to AD patients in a clinical setting, including four cholinesterase inhibitors and
one N-methyl-D-aspartate (NMDA) receptor antagonist. However, there is currently no
method for reversing or curing AD (Cummings, Morstorf & Zhong, 2014; Peng et al., 2016),
and Tacrine has been discontinued in the United States market. Thus, the discovery of new
drugs for treating AD patients remains a challenge.

Traditional Chinese Medicines (TCMs) have been used in therapy and for treating
various diseases for several thousand years of Chinese history, and some natural ingredients
in TCMs have been successfully developed into drug, such as artemisinin. Screening
natural ingredients or compounds from herbal remedies and TCMs may be an effective
way to develop new drugs (Normile, 2003; Sanderson, 2011; Sucher, 2013). For example,
interactions between some ingredients from anti-AD herbs and corresponding anti-AD
target proteins (Sun et al., 2013) as well as between 12 ginger components and 13 anti-AD
target proteins have been reported (Azam et al., 2014). Many AD target proteins have
previously been validated, including AchE (Yiannopoulou & Papageorgiou, 2013), BchE
(Darvesh, 2016; Mushtaq et al., 2014), RAGE (Cai et al., 2016; Deane, 2012), TNF-alpha
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((Leszek et al., 2016); (Wyss-Coray & Rogers, 2012), PLA2 (Gentile et al., 2012; Lee et al.,
2011) and others. These proteins are involved in a variety of AD-associated pathways.
Because we wanted to study a comprehensive range of AD target proteins, we selected
30 target proteins with protein crystal structures (including ligand present in the crystal
structure) from all of the validated AD therapeutic target proteins provided by Thomson
Reuters Integrity database as our research objects. To explore the interactions between
the 30 validated AD therapeutic target proteins, which represent a variety of hypotheses
regarding AD pathogenesis, and compounds in TCM plants, we established interaction
networks among the target proteins, compounds, approved drugs and TCMs. Finally, we
identified 11 structurally novel candidate anti-AD compounds with favorable druggability
properties, seven of which are found in anti-AD Chinese plants. The 11 compounds
identified in this study may be valuable in future anti-AD drug development, though
further experiments are needed to prove their usefulness as drugs. The results suggest that
the strategy of interaction network-based drug discovery may be very helpful for drug
development.

MATERIALS AND METHODS
Data collection and preprocessing
More than 60,000 natural compounds from 8,529 different plants were from the TCM
Database@Taiwan (http://tcm.cmu.edu.tw/). This web-based database is the most
comprehensive non-commercial database of TCM(Chen, 2011). We obtained the 3D
structures of the compounds from the database as mol2 files and converted them to the
pdbqt format and SMILES string using Open Babel toolbox v2.3.1(O’Boyle et al., 2011).

The validated therapeutic AD target proteins and pathways were provided by Thomson
Reuters Integrity database (https://integrity.thomson-pharma.com/integrity/). Studies on
the target proteins were obtained using Pubmed and PMC (https://www.ncbi.nlm.nih.
gov/pubmed). The target proteins structures were obtained from the Protein Data Bank
(PDB) database (http://www.rcsb.org/pdb/home/). We selected target proteins of interest
by determining whether studies relating them to AD and crystal protein structures (with
ligand present) were available. Inhibitors or agonists were used to confirm the ligands in the
references we identified. We ultimately selected 30 target proteins. Information regarding
the 30 target proteins, such as the Integrity name, corresponding name in the Uniprot
database (http://www.uniprot.org/), Uniprot ID, PDB ID, ligand ID and document IDs in
Pubmed and PMC are available in Table S1. The 3D structures of the proteins are available
as files in the pdb format. This format was converted to the pdbqt format using AutoDock
tools v1.5.6 (Morris et al., 2009), and the 3D view was generated by Discovery Studio v3.1
(http://accelrys.com/products/collaborative-science/biovia-discovery-studio/).

Molecular docking between natural compounds and AD target
proteins
Docking is tantamount to position the ligand in different orientations and conformations
within the binding site to calculate optimal binding geometries and energies. Interactions
between natural compounds and the AD target proteins were previously predicted using
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AutoDock Vina 1.1.2 (Trott & Olson, 2010). The docking binding site center for each target
protein is the structural binding center of the ligand present in the crystal structure. The
ligands were confirmed by the studies we identified. The coordinates of the docking center,
ligand ID in PDB database and supporting documents are shown in Table S1. To allow
free rotation of the compounds, the search space was set to 25×25×25 Å in each axis.
The default settings were used for all of the other docking parameters. Each docking was
performed by a command that contained the space size and three-dimensional coordinate
of the docking center. For each compound, the binding pose with the lowest energy for
each docking test was considered the best binding mode. A lower energy score indicated
a stronger binding affinity between the ligand and receptor. The compounds with the top
0.5% docking score were chosen as the candidate ligands for each target protein.

Validation of the docking results
To validate the docking results, three methods were used. First, we manually checked the
docking results and visualized the interaction between the compound and receptor to verify
that the compound was in the binding pocket. Second, the original ligand in the crystal
structure was set as the reference. The docking energy of candidate anti-AD compounds
should be better than or comparable to that of original ligand. Third, we check whether
the top 0.5% TCM compounds are similar to the existing drugs that have been reported in
anti-AD research.

Interactions among the target proteins, compounds and plants
The interaction between each target protein and its best-binding TCM compound was
displayed using the PyMOL (PyMOL Molecular Graphics System, version 1.7) program
(https://pymol.org). The pharmacophore was displayed using Discovery Studio v3.1.

The target-compound and target-plant networks were constructed using Cytoscape
v3.4.0 (Shannon et al., 2003). In these networks, the target protein and compound were
considered to be connected if the compound successfully docked to the target protein,
and the target protein and the plant were considered to be connected if the plant with
the compound was able to interact with the target protein. The strength of the links is
represented by the line’ thickness, which indicates the number of compounds shared
between the target protein and plant.

Collection of anti-AD plants from Chinese medicine prescription
The term ‘‘senile dementia’’ was searched in the subject column of the CNKI database
(http://www.cnki.net/) to retrieve Chinese medicine prescriptions for anti-AD from the
relevant Chinese articles. Articles from clinical studies between 2007 and 2017 were
selected. Chinese medicine prescriptions and the usage frequency were also obtained from
these articles. The common anti-AD plants in traditional Chinese clinical medicines were
identified from the prescriptions. For reference, Table S2 shows information regarding the
Chinese version of the raw prescription data with corresponding English, the Latin name of
the anti-AD plants in each prescription, the patient number (male and female if available),
the article title of the study, published data (years) and the article format.
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Similarity between candidate compounds and existing drugs
The Tanimoto coefficient (Tc) and Pybel (O’Boyle, Morley & Hutchison, 2008) Python
package were used to measure the structural similarities between compounds. The
fingerprint FP2 implemented in Pybel was generated for each structure and used to
calculate Tc. Tc is defined as Tc = C(i, j)/U(i, j), where C(i, j) is the number of common
features in the fingerprints of molecules i and j and U(i, j) is the number of all of the
features in the union of the fingerprints of molecules i and j. If the fingerprints of two
compounds are Tc = 1, even if they differ among themselves by isolated instances of C, N
or O atoms, they will be considered structurally identical.

Cytoscape v3.4.0 was used to construct a network linking the candidate compounds,
their target proteins and structurally identical drugs. A natural compound and an existing
drug in the DrugBank database (Wishart et al., 2006) were considered to be connected if
their Tc score was 1. The natural compounds and their target proteins were also connected
in this network.

Clusters of potential candidate compounds for AD
One-thousand-four-hundred-seventy-six compounds located in the top 0.5% of all
compounds that docked with 30 target proteins were regarded as potential candidate
compounds for AD. The cluster ligands protocol in BOVIA Pipeline Pilot V8.5
(http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/) was used to
cluster the compounds. During clustering, a set of compounds was assigned to different
clusters based on the similarity of their properties. Clustering was based on the root-
mean-square (RMS) difference of the descriptor properties or the Tanimoto distance for
fingerprints. In our study, we clustered the compounds based on the Tanimoto distance
using the fingerprint FP2. Cluster ligands were performed by the number of size or the
number of molecules per cluster. The default parameter in Pipeline Pilot V8.5 was set
to fixed number of 10 clusters. For simplicity, we used default parameters to cluster our
compounds. The molecule with the lowest total distance to all other members of the cluster
was considered the cluster center.

ADMET and logP properties for candidate compounds for AD
The ADMET and logP properties of candidate compounds for AD were estimated using
Discovery Studio. ADMET refers to absorption, distribution, metabolism, excretion
and toxicity and logP refers to the logarithm of the partition coefficient. The ADMET
properties, including aqueous solubility, blood brain barrier penetration (BBB), human
intestinal absorption (HIA), plasma protein binding (PPB) and hepatotoxicity, as well
as logP were used to filter the compounds. The values of these properties were set as the
controlled parameters, which were 3∼4 (3: good; 4: optimal) for aqueous solubility, 1∼2
(1: high; 2: medium) for BBB, 0 (0: good) for HIA, FALSE for both PPB and hepatotoxicity
and logP <5.
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RESULTS
Molecular docking of natural compounds and embedded ligands to
the 30 AD target proteins
Of the 60,000 compounds in the TCM Database, 30,438 contain plant information, and
these compounds were docked with the 30 selected AD target proteins. The original ligands
of each target protein were also docked to their corresponding target proteins. The docking
results are shown in Table 1. The docking scores of ligands embedded in the protein crystal
structure ranged from −3.31 to −12.65 (kcal/mol). The lowest docking energy scores for
the 30 target proteins ranged from −8.44 to −14.5 (kcal/mol). Some target proteins, such
as Caspase-3, QC, IDO and GLP-1R, were able to bind over 20,000 natural compounds
with docking scores superior to those of their embedded ligands. However, the docking
scores of the target RAR with natural compounds were inferior to those of its embedded
ligand.

Because many TCM compounds can bind to AD target proteins, for each target protein,
only the top 0.5% of compounds in terms of docking scores (a total of 1,476 compounds)
were selected as candidate compounds for AD. The original study of AutoDockVina
showed that the success rate of Vina is 80% (RMSD < 2) for an independent validation
dataset. Furthermore, Vina achieves a low standard error of 2.85 kcal/mol compared with
the experimental free energies. There is a highly positive correlation between the predicted
and experimental free energies of binding. In our study, almost all of the docking energies
of the top 0.5% of compounds bound to target proteins were superior to those of their
embedded ligands (Fig. 1). Thus, the 1,476 compounds are likely candidate compounds
for AD.

Analysis of the interactions between target proteins and ligands
including TCM compounds, original ligands and approved AD drugs
The docking pose interactions between the target proteins and ligands including their
best-binding TCM compounds and original ligands are shown in Fig. 2A and Figs. S1 to
S29. The figures show side-by-side-comparisons of best TCM ligands and original ligands.
The best TCM ligands and original ligands are located in the same binding pocket for each
target protein and they all have some common residues. Taking AchE as an example: the
best-binding TCM compound for AchE is 24,829, the original ligand is Huperzine A, and
their common residues are TYR-124, PHE-297, PHE-338, TYR-337, ASP-74. Furthermore,
we compared the structures of the best-binding TCM compounds and previously known
ligands (Table S3) and found the structures to be different. The Tc scores are between 0.06
and 0.48. Therefore, most of the best-binding TCM compounds are novel scaffolds.

We analyzed the pharmacophore of SIRT1 using the top 10 TCM compounds binding
the target protein (Fig. 2B). The pharmacophore model consists of one hydrogen bond
acceptor (HBA, green) and five hydrophobic centers (blue); therefore, we think that
compounds that have this model may easily bind with SIRT1.

We also compared the docking energy scores between the approved AD drugs and the
candidate compounds for the protein AchE (Table S4). The approved AD drugs that we
analyzed were Donepezil, Galantamine and Rivastigmine. All the three drugs were AchE
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Table 1 Details of the docking results of 30 anti-AD targets with the number of successfully docked TCM compounds.

RCSB ID Protein name Original
ligands ID

Binding energy
of original
liganda

Lowest
docking
energy

Compound
numberb

1DB4 PLA2(Phospholipase A2, membrane associated) 8IN −7.31 −11.55 5,290
1DQA HMG-COA(3-hydroxy-3-methylglutaryl-coenzyme A

reductase)
NAP −7.42 −9.78 437

1NME Caspase-3 159 −4.57 −10.24 21,028
1OJA MAOB(Amine oxidase [flavin-containing] B) ISN −6.58 −12.2 11,173
1TB7 PDE4(cAMP-specific 3′,5′-cyclic phosphodiesterase 4D) AMP −6.47 −14.5 17,375
1TN6 Ftase(Protein farnesyltransferase subunit beta) FII −6.59 −11.9 14,437
2AFW QC(Glutaminyl-peptide cyclotransferase) AHN −4.48 −11.11 23,635
2AZ5 TNF(Tumor necrosis factor) 307 −5.66 −9.53 9,261
2D0T IDO(Indoleamine 2,3-dioxygenase 1) PIM −5.71 −12.4 20,739
2DQ7 Fyn(Tyrosine-protein kinase Fyn) STU −10.28 −12.41 63
2VQM HDAC(Histone deacetylase 4) HA3 −7.11 −11.33 5,356
2Z5Y MAOA(Amine oxidase [flavin-containing] A) HRM −7.96 −12.8 5,299
3A4O lyn(Tyrosine-protein kinase Lyn) STU −9.4 −12.53 431
3G9N JNK(Mitogen-activated protein kinase 10) J88 −7.19 −10.36 1,606
3IKA EGFR(Epidermal growth factor receptor) 0UN −7.64 −11.45 6,324
3KMR RAR(Retinoic acid receptor alpha) EQN −12.65 −11.4 0
3O3U RAGE(Advanced glycosylation end product-specific

receptor)
MLR −7.76 −14.08 13,309

4DJU BACE-1(Beta-secretase 1) 0KK −7.12 −12.2 14,161
4EY5 AchE(Acetylcholinesterase) HUP −8.5 −10.6 329
4MS4 GABA(B)(Gamma-aminobutyric acid type B receptor

subunit 1)
2C0 −5.73 −10.6 13,107

4OC7 RXR(Retinoic acid receptor RXR-alpha) 2QO −8.48 −11.3 708
4XAR MGLUR(Metabotropic glutamate receptor 3) 40F −4.98 −8.5 9,244
4YLK DYRK1A(Dual specificity tyrosine-phosphorylation-

regulated kinase 1A)
4E2 −8.13 −12.54 7,167

4ZGM GLP-1R(Glucagon-like peptide 1 receptor) 32M −3.31 −9.06 24,782
4ZZJ SIRT1(NAD-dependent protein deacetylase sirtuin-1) 4TQ −6.89 −8.86 108
5A46 FGFR1(Fibroblast growth factor receptor 1) 38O −8.54 −12.8 699
5AFH α7NACHR(Neuronal acetylcholine receptor subunit alpha-7) L0B −6.02 −9.64 6,934
5H8S AMPA(Glutamate receptor 2) 5YC −5.3 −8.44 8,926
5HK1 SIG-1R(Sigma non-opioid intracellular receptor 1) 61W −9.29 −12.8 1,281
5IH5 CKI-δ(Casein kinase I isoform delta) AUE −7.62 −12.5 5,998

Notes.
a‘Binding Energy of Original Ligand’ indicates the docking energy of the ligand embedded in the crystal structure.
bThe number of compounds with better docking scores than that of the original ligand embedded in the crystal structure.

inhibitors. The average docking energy score of the candidate compounds was superior to
that of the approved AD drugs for the protein AchE. The docking pose interaction of the
three drugs and the best-binding TCM compound with the protein AchE is shown in Fig.
S30. The three drugs and best-binding TCM compound were located in the same binding
pocket, and their docking poses were different because their structures were different.
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Figure 1 The docking energy scores of the top 0.5% TCM compounds and original ligands for 30 tar-
gets. Red boxes represent the top 0.5% of compounds for each target protein. Blue points represent the
target proteins’ embedded ligands.

Full-size DOI: 10.7717/peerj.4756/fig-1

Analysis of single-target and multi-target compounds
Among the 1,476 candidate compounds for AD, there were 850 compounds with a single
target and 626 compounds with multiple targets (see Figs. S31 and S32). The single-target
compounds corresponding to each target varied widely in number. For example, in
single-target networks, target SIRT1 corresponds to 30 compounds, whereas target lyn
just corresponds to four compounds. The multi-target compounds were classified into 18
networks based on their corresponding target numbers, which ranged from 2 to 24. As the
number of targets per compound increased, the number of compounds in that category
decreased. For example, the two-target network contained 260 compounds, whereas the
three-target and four-target networks contained 90 and 77 compounds, respectively.
Finally, we observed that compound 24,508 could bind to 25 AD target proteins. The
structure and network of compound 24,508 are shown in Fig. S32.

Candidate AD compounds and their enrichment plants
We mapped 1476 candidate AD compounds (corresponding to 30 AD target proteins) to
the 334 plants. The plant numbers for each target protein ranged from 42 to 71, whereas
the compound numbers for each target protein ranged from 62 to 132 (Fig. 3 and Fig. S33).

We selected 101 clinically related studies out of over 10,000 senile dementia-related
articles and identified 141 anti-AD traditional Chinese plants from the clinical prescriptions
in these articles. The 141 traditional Chinese anti-AD plants were classified based on their
functional properties in the TCM database. Most of the 141 anti-AD plants were in the
‘Tonifying, Replenishing’ category, and the plants in this category accounted for 28.45%
of all anti-AD plants (Fig. S34).

The best-associated plant for each target protein contained the greatest number of
compounds capable of docking with the target protein (Table 2 and Fig. 4). The number
of compounds in Table 2 was based on the top 0.5% of compounds successfully docking
to each target protein. Thus, 30 target proteins corresponded to 16 best-associated plants,
of which the top five plants were anti-AD traditional Chinese plants, including Panax and
Morus, which corresponded to 7 and 5 target proteins, respectively, as well as Salvia, Rheum
and Paeonia.
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Figure 2 The docking pose interactions between the target proteins and ligands including their best-
binding TCM compounds and original ligands and the pharmacophore of SIRT1. (A) The 3D struc-
tures and binding model of ligands including best ligand and original ligand to the target protein AchE.
The best ligand is green and the original ligand is magenta. The top panel shows the amino acid residues
lying within 5 Å from the best ligand, and the bottom panel shows the amino acid residues lying within 5
Å from the original ligand. (B) The pharmacophore of SIRT1 using top 10 TCM compounds binding for
the target protein. The hydrogen bond acceptor is in green and the hydrophobic centers are in blue.

Full-size DOI: 10.7717/peerj.4756/fig-2
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Figure 3 The exact number of candidate anti-AD compounds and their plants associated with each
anti-AD target protein. The number is tagged above each column, and the target proteins are displayed
on the horizontal axis.

Full-size DOI: 10.7717/peerj.4756/fig-3

Table 2 AD targets and their best-associated plant with the most compounds docking with the target.

Target Top1 Plant Target Top1 Plant Target Top1 Plant

PLA2 Bletilla(5)a HMG-COA Morus(9) Caspase-3 Paeonia(4)
MAOB Corydalis(16) PDE4 Isatis(4) Ftase Panax(8)
QC Panax(4) TNF Panax(10) IDO Morus(7)
Fyn Papaver(11) HDAC Bletilla(5) MAOA Corydalis(11)
lyn Claviceps(5) JNK Morus(8) EGFR Artemisia(7)
RARb Rauwolfia(8) RAGE Fritillaria(7) BACE-1 Lonicera(6)
AchE Piper(6) SIRT1 Panax(18) GABA(B) Morus(11)
RXR Salvia(10) MGLUR Morus(4) DYRK1A Strychnos(6)
GLP-1R Panax(9) FGFR1 Rheum(6) α7NACHR Panax(8)
AMPA Panax(7) SIG-1R Corydalis(7) CKI-δ Salvia(11)

Notes.
aThe numbers in this table are compound numbers which the best-associated plant for each target protein contains.
bThe docking energy of TCM compounds is higher than that of the original ligand for RAR protein.

Similarities between candidate compounds and existing drugs
A structural comparison between all existing approved drugs recorded in the DrugBank
and the top 0.5% of the natural compounds tested demonstrated that some compounds
were identical to existing drugs (Tc = 1). The connection network among candidate
compounds, existing drugs and AD target proteins was established, and the chemical
structures of the compounds are also shown in Fig. 5. There were 17 candidate compounds,
14 existing drugs and 25 AD-associated target proteins in the network. The 14 drugs
included Lutein (DB00137), Vitamin A (DB00162), Vitamin E (DB00163), Azelaic
Acid (DB00548), Ergotamine (DB00696), Estradiol (DB00783), Menthol (DB00825),
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Figure 4 The network containing the target proteins and their best-associated plants. Pink boxes rep-
resent target proteins. Green boxes represent compounds.

Full-size DOI: 10.7717/peerj.4756/fig-4

Drostanolone (DB00858), Glyburide (DB01016), Tubocurarine (DB01199), Metocurine
(DB01336), Yohimbine (DB01392), Lactose (DB04465), Artemether (DB06697).

Most of the drugs listed above have been reported to have a positive effect in AD. Some
studies have shown that Lutein is involved in preventing cognitive decline and decreasing
the risk of AD; thus, Lutein may contribute to the treatment of AD (Kiko et al., 2012;
Min & Min, 2014; Xu & Lin, 2015). Similarly, Vitamin A, Vitamin E, Estradiol, Menthol,
Glyburide and Yohimbine are also considered useful in the prevention and treatment of AD
(Bhadania et al., 2012; Dysken et al., 2014; Lamkanfi et al., 2009; Lan et al., 2016; Mohamd
et al., 2011; Ono & Yamada, 2012; Peskind et al., 1995; Takasaki et al., 2011). Therefore,
compounds with structures similar to the existing drugs may also have anti-AD function
by interacting with similar target proteins.

Of the 17 candidate compounds, 11 can only bind with one target protein, whereas the
rest, which are similar to the 14 drugs discussed above, can interact with more than one
target protein. For example, compound 18491 which is similar toMenthol can only interact
with the target Ftase and compounds 19,476 and 19,477 are similar to Tubocurarine and
Metocurine, respectively, whereas compound 18,582 which is similar to Ergotamine can
bind with 17 target proteins.
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Figure 5 The network containing the anti-AD target proteins, TCM compounds and structurally iden-
tical drugs. Pink boxes represent targets. Yellow boxes represent compounds. Blue boxes represent drugs.
The structures of TCM compounds are also shown.

Full-size DOI: 10.7717/peerj.4756/fig-5

Structure clusters of candidate AD compounds
To compare the structural features of the candidate AD compounds, the 1,476 candidate
compounds were assigned to 10 clusters. The structures of the cluster center compounds
and maximal common substructure of each cluster are shown in Fig. 6. The Generate
Maximal Common Substructure component must contain the proportion of the cluster
molecules. The proportion was set to 0.5 to find the largest maximal common substructure
that was contained in at least 50% of the cluster molecules. All of the compounds in
the center of the cluster contained the carbocyclic structure, similar to the five approved
drugs for AD. The cluster sizes varied, with the largest containing 464 compounds and the
smallest containing only six compounds. Every cluster had a primary target protein that
could better combine with the compounds in the cluster. The binding of the best member
of the cluster to the primary target protein and their structures are also shown in Fig. 6.

To see if there were similar or different scaffolds able to bind each target protein, clusters
in the sets of ligands that bind to each individual protein were shown in Tables S5 to S35.
Each set of ligands was assigned to 10 clusters. The compounds in the center of the cluster
do not have the same scaffolds for each individual protein.
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Figure 6 The 10 clusters of anti-AD TCM compounds and their primary targets. The Generate Max-
imal Common Substructure component must contain the proportion of the cluster molecules. The pro-
portion was set to 0.5 to find the largest maximal common substructure contained in at least 50% of the
cluster molecules.

Full-size DOI: 10.7717/peerj.4756/fig-6
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Table 3 ADMET and logP properties of 11 candidate drugs.

Name(ID) Solubility
Level

BBB
Level

Hepatotoxic
Prediction

Absorption
Level

PPB
Prediction

logP Targets

(3S)-1-(3,4-Dihydroxyphenyl)-7-(4-
hydroxyphenyl)heptan-3-ol(5862)

3 2 FALSE 0 FALSE 4.578 AchE

(3S)-1-(3,4-Dihydroxyphenyl)-7-(4-hydroxyphenyl)-
(6E)-6-hepten-3-ol(5863)

3 2 FALSE 0 FALSE 4.134 AchE,GABA(B),
MGLUR

(3R)-1-(3,4-Dihydroxyphenyl)-7-(4-
hydroxyphenyl)heptan-3-ol(5868)

3 2 FALSE 0 FALSE 4.578 GABA(B)

(3R)-1-(3,4-Dihydroxyphenyl)-7-(4-hydroxyphenyl)-
(6E)-6-hepten-3-ol(5869)

3 2 FALSE 0 FALSE 4.134 AchE

pallidine(9593) 3 2 FALSE 0 FALSE 1.913 MAOB
4,5-di-o-caffeoyl,quinic,acid(10639) 3 2 FALSE 0 FALSE 3.477 PDE4
Anagyrine(16167) 3 1 FALSE 0 FALSE 2.053 AchE
Blestrin D(26629) 3 2 FALSE 0 FALSE 4.578 PLA2,QC,HDAC,

JNK,GABA(B)
Dibothrioclinin II(28468) 4 2 FALSE 0 FALSE 1.222 Ftase,QC,HDAC,

GLP-
1R,AMPA

5,7-Dihydroxy-6,8-dimethyl-3-(4′-hydroxy-3′-
methoxybenzyl)chroman-4-one(28814)

3 2 FALSE 0 FALSE 1.144 RAR

Glabroisoflavanone A(30713) 3 2 FALSE 0 FALSE 1.913 MAOA

Eleven candidate compounds for AD with favorable ADMET and logP
properties
Most orally approved drugs have favorable druggability properties. After ADMET and logP
filtering, 11 compounds from 1,476 candidate anti-AD compounds possessed favorable
properties (Table 3). The 11 compounds all have good HIA and don’t have PPB and
hepatotoxicity. Compound 28,468 has optimal aqueous solubility, and compound 16,167
has highBBB.Of the 11 compounds, eightwere single-target compounds, and the remaining
three were multi-target compounds. For example, compounds 5,868, 9,593, 10,639, 28,814
and 30,713 could only bind with one target protein (GABA(B), MAOB, PDE4, RAR and
MAOA, respectively), whereas compounds 5,862, 5,869 and 16,167 shared one common
target (AchE). Compound 5,863 was able to bind with three target proteins (AchE,
GABA(B) and MGLUR), and compound 26,629 and 28,468 were able to interact with
five target proteins. These 11 compound structures and their corresponding plants are
shown in Fig. 7. The plants corresponding to seven of these compounds are regarded as
anti-AD plants in TCM, including Curcuma kwangsiensis, Poria cocos, Lindera aggregate,
Ophiopogon japonicus (L. f.) Ker-Gawl. and Glycyrrhiza glabra. Eleven compounds belong
to different organic compound classes. Compounds 5,862, 5,863, 5,868, 5,869 belong to
linear diarylheptanoids. Compound 10,639, 16,167, 26,629, 28,468, 28,814, 30,713 belongs
to guanidines, pyridines, hydrophenanthrenes, angular pyranocoumarins, naphthyridines,
8-prenylated isoflavanones, respectively. We also checked the 11 comopund structures
and existing research in pubchem database. Compounds 5,862, 5,863, 5,868, 5,869 have
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Figure 7 2D structure and corresponding plants of 11 compounds with favorable ADMET properties.
Full-size DOI: 10.7717/peerj.4756/fig-7

anti-inflammatory activity and compound 28,814 mainly has immunoregulatory activity.
The other 6 compounds have not yet been reported for any biology activity at present.

DISCUSSION
Candidate compounds from traditional Chinese plants provide a broad prospect for
screening anti-AD drugs. We established a network between compounds in traditional
Chinese plants and a comprehensive list of anti-AD target proteins involved in various
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hypotheses. This network, which links compounds, TCM plants and target proteins, may
be very helpful for anti-AD drug design.

During our manual assessment of the binding pockets and modes of compounds, we
discovered that some receptor had a large binding pocket and some had their binding
pocket exposed on the surface. Therefore, the number of successfully docked compounds
for these receptors is more than that of other receptors. This result suggests that for these
receptors, there may be many false positive compounds that do not bind to the receptor.
Thus, we choose TCM compounds with top 0.5% docking scores as our objects to avoid
false positive compounds that do not bind to the receptor.

ADMET is an important index in drug development. After filtering the compounds
according to five ADMET properties, 11 candidate anti-AD compounds with novel
structures remained. Among the 11 compounds, eight were single-target compounds and
the remaining three had more than two target proteins. The structures and target proteins
of these compounds are known, so they can be easily studied in future drug development,
because these compounds have favorable druggability properties, they may become the
promising candidate drugs for AD. Of course, further experiments are necessary to establish
their viability as real candidate drugs.

Many compounds that bind to AD-associated target proteins were observed in plants
that have not been used to treat AD in traditional Chinese clinical prescription. Thus, some
previously non-anti-AD plants may become the anti-AD plants, which will provide more
natural compound resources for AD drug discovery and be will also be beneficial for the
development of TCMs.

CONCLUSION
In summary, this study offers one strategy to find novel candidate anti-AD drugs from
traditional Chinese plants by constructing interaction networks between AD target proteins
and natural compounds in TCM plants. We got a total of 1,476 drug candidates (top 0.5%
docked compounds for each target) using this strategy. Of 1,476 drug candidates, 17
candidate anti-AD compounds were structurally identical to 14 existing approved drugs.
In addition, 11 anti-AD candidate compounds with favorable ADMET and logP properties
were identified. Of 11 identified compounds, four compounds have anti-inflammatory
activity, including compounds 5,862, 5,863, 5,868, 5,869 and compound 28,814 mainly has
immunoregulatory activity. Other six compounds have not bioassay research in pubchem
database at present. Further experiments are needed to verify our drug candidates. This
strategy and identified drug candidates may be helpful for anti-AD drug discovery.
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