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Abstract

The p-median clustering model represents a combinatorial approach to partition data sets into 

disjoint, non-hierarchical groups. Object classes are constructed around exemplars, manifest 

objects in the data set, with the remaining instances assigned to their closest cluster centers. 

Effective, state-of-the-art implementations of p-median clustering are virtually unavailable in the 

popular social and behavioral science statistical software packages. We present p-median 

clustering, including a detailed description of its mechanics, a discussion of available software 

programs and their capabilities. Application to a complex structured data set on the perception of 

food items illustrate p-median clustering.

Introduction

In general terms, clustering might be characterized as a collection of methods concerned 

with the identification of homogenous groups of objects, based on whatever data are 

available. Cluster analysis represents an obvious choice for developing a taxonomy for any 

kind of object domain, be that subjects, psychological disorders, test and questionnaire 

items, experimental stimuli, behavioral patterns, and so on. Cluster analysis can also serve as 

a preliminary means to identify potential group differences in a sample, subsequently 

addressable through hypotheses-driven statistical analysis. However, for many statisticians, 

the “shady history” of early approaches to clustering, “usually just convenient algorithms 

devoid of any associated representational model or effort at optimizing a stated criterion”, 

was a long-standing cause of concern and reservation, as Arabie and Hubert (1996, p. 9) 

observed more than a decade ago.

The situation today is markedly different: a researcher can choose among a large variety of 

clustering methods ranging from the ‘standard’ algorithms still found in some commercial 

software packages to state-of-the-art, high-end implementations. Many non-casual cluster 

analysis users in Psychology have moved to sophisticated statistical computational 

environments such as MATLAB or R (the latter is freely available). Both platforms provide 
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the flexibility to program special purpose routines/toolboxes that are often ‘open-source’. As 

examples, we mention the mclust toolbox in R for model-based clustering (Fraley, 1998; 

Fraley & Raftery, 1999, 2002, 2003, 2006; see McLachlan & Basford, 1988; McLachlan & 

Peel, 2000, for a comprehensive presentation of model-based clustering), or the suite of 

MATLAB routines for combinatorial (graph-theoretic) clustering through fitting ultrametric 

and additive tree structures by Hubert, Arabie, and Meulman (2006, Chapters 5–8; see also 

Hubert, Köhn, & Steinley, in press — for a thorough treatment of graph-theoretic clustering 

methods, see Barthélemy & Guénoche, 1991). The books by Martinez and Martinez (2004, 

2008) provide detailed technical descriptions and user instructions for the up-to-date 

mainstream clustering algorithms implemented in the MATLAB statistics toolbox, as well as 

less common clustering routines available in their own toolboxes. Lastly, we reference the 

software packages Mplus (Muthén & Muthén, 1998–2007), and Latent GOLD (Vermunt & 

Magidson, 2005) offering model-based clustering, and a diverse collection of (discrete) 

latent-class models that can fairly be subsumed as special instances of clustering.

Among advanced (multivariate) statistical methods, clustering probably represents the least 

abstract and intuitively most accessible procedure, since its rationale emulates a major 

cognitive process: concept-based object categorization. In fact, the classic dichotomy of 

theories in concept research, prototype and exemplar models (see Murphy, 2002; Ross, 

Taylor, Middleton, & Nokes, 2008), attribute to classificatory acts distinct structures and 

principles of operation having direct counterparts in the logic and computational mechanics 

of certain clustering algorithms.

Prototype models conceptualize object categorization as the result of evaluating and 

integrating information about all the possible properties of an item in reference to the 

prototype of a category, an abstraction of the features shared by all its instances. 

“Mathematically, the prototype is the average or central tendency of all category members” 

(Love, 2003, p. 648). A novel object is postulated to be assigned to the category centered 

around the prototype most similar to the item. The observation of additional instances of a 

category can induce an update of the prototype feature profile. Eventually, in case of a poor 

match to all existing prototypes, a newly encountered object might establish a category of its 

own. Most notable, the prototype of a category can be a virtual object that does not even 

need to exist. Consequently, the prototype model of object categorization corresponds 

exactly to the computational logic of the popular K-means clustering method (Forgy, 1965; 

Hartigan & Wong, 1979; MacQueen, 1967; for a comprehensive review, see Steinley, 2006) 

that produces a partition of a set of objects into exhaustive and disjoint/non-hierarchical 

groups based on measures on some variables characterizing the objects.

The exemplar view on object categorization refutes the idea of a representation 

encompassing an entire concept that summarizes all individual instances of a category. 

Rather, a person’s concept is postulated to consist of the entire set of category members ever 

encountered and remembered. A novel object is classified in the category where the total 

sum of its similarities to all recalled exemplars is largest. As Murphy (2002) illustrates:

“The Irish terrier in my yard is extremely similar to some dogs that I have seen, is 

moderately similar to other dogs, but is mildly similar to long-haired ponies and 
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burros as well. It has the same general shape and size as a goat, though lacking the 

horns or beard. It is in some respects reminiscent of some wolves in my memory as 

well. How do I make sense of all these possible categorizations: a bunch of dogs, a 

few goats, wolves, and the occasional pony or burro? — When you add up all the 

similarities, there is considerably more evidence for the object’s being a dog than 

for its being anything else” (p. 49).

Does the exemplar model of object categorization translate directly into a statistical 

clustering method like the prototype model into K-means? Not exactly. Yet, techniques 

known as exemplar-based clustering represent the closest equivalent to object categorization 

in light of the exemplar view: given a set of objects, a subset is selected as cluster centers 

(‘exemplars’), and the remaining objects are allocated to their most similar exemplar such 

that a given loss criterion is optimized (for instance, maximizing the total sum of similarities 

between exemplars and ‘satellites’).

In this case, the corresponding clustering method for exemplar-based categorization is the p-

median model (alternatively referred to as Partitioning Around Medoids [PAM], Kaufman & 

Rousseeuw, 1990). As K-means, p-median clustering generates a disjoint, non-overlapping 

partition of a set of objects. In further exploiting the analogy to the competing prototype and 

exemplar models in cognitive theory, we mention that quantitative researchers have 

recurrently advocated p-median clustering as a viable procedure for partioning a data set 

(Alba & Domíguez, 2006; Brusco & Köhn, 2008a, 2008b; Hansen & Mladenoviĉ, 2008; 

Klastorin, 1985; Mulvey & Crowder, 1979; Rao, 1971; Vinod, 1969). Since the medians 

represent manifest objects that form the centers for the p groups, it has been argued that 

clusters built around real objects facilitate substantive interpretation; as an illustration, 

consider clustering instructional institutions in educational psychology, where groups 

constructed around existing schools offer an immediate and vivid picture, as opposed to the 

“virtual” centers found when using a prototype based clustering model. Or recall Murphy’s 

(2002) example of categorizing dogs: classes that are characterized by centroids of variables 

representing weight, height, maximal running speed, costs of keeping, friendliness-

aggressiveness ratings, life expectancy, and so on, might be less catching and intuitively 

accessible than clusters centered around actual dogs such as German shepherd, poodle, 

boxer, or pekinese. In addition, p-median clustering is applicable to a wide range of data 

formats, be that square-symmetric/-asymmetric or rectangular proximity matrices; whereas, 

the usual clustering algorithms are usually constrained either to square-symmetric proximity 

matrices (in the case of hierarchical clustering) or a standard, rectangular data matrix (in the 

case of K-means clustering or model-based clustering). Lastly, Kaufman and Rousseeuw 

(2005, Chapter 2) emphasize the remarkable robustness of the p-median approach to 

outliers.

The unavailability of state-of-the-art implementations of p-median clustering through 

popular social and behavioral science statistical software packages might present the main 

cause for the lack of its awareness among researchers (sole exception: Kaufman and 

Rousseeuw, 2005, provide code written in R for a standard p-median implementation). In an 

attempt to make p-median clustering more accessible, we offer an introduction to p-median 

clustering in an effort to help bridge the gap between the theory of clustering based on 
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exemplars and the pragmatic needs of a sophisticated user in psychological research. The 

next section briefly reviews several integral concepts such as proximity data, loss function, 

heuristics, and clustering as a combinatorial optimization problem. A detailed description of 

the rationale underlying the p-median clustering algorithm, illustrating its key features by a 

small-scale example, is given in the third section. Afterwards, an application to real-world 

data sets are presented for the perception of a vast collection of food items. We conclude 

with a discussion of the specific merits of p-median clustering and an outlook onto 

directions for future methodological developments of the p-median model.

Theoretical Preliminaries: Concepts and Terminology

Proximities

Tversky’s (1977) seminal paper on similarity gives a most thorough theoretical treatment of 

the concept, emphasizing its eminent and ubiquitous role in psychological “theories of 

knowledge and behavior” (p. 327). Similarity and its complement, dissimilarity, are typically 

subsumed under the notion of proximity. In its broadest sense, the term ‘proximity’ refers to 

any numerical measure of relationship between the elements of a pair from two (possibly 

distinct) sets of entities or objects. Proximities are typically collected into a matrix, with 

rows and columns representing the respective sets of objects, and the numerical cell values 

the observed pairwise proximity scores. By assumption, proximities are restricted to be 

nonnegative, and are, henceforth, consistently interpreted as dissimilarities so that larger 

numerical indices pertain to less similar pairs of objects. Cluster analytic methods depend on 

proximity data as key information and basis for identifying maximally homogenous 

subgroups.

Loss Function

As a common example, consider the least-squares loss function of the simple (linear) 

regression model: estimation of model parameters is determined by the objective of 

minimizing the sum of the squared deviations (residuals) between estimated and observed 

criterion values. In general, a loss function quantifies how well a fitted model approximates 

the original data. Thus, model estimation governed by a loss function offers the enormous 

advantage of a solid criterion for evaluating the quality of an obtained solution, and is 

nowadays considered a mandatory standard for statistical modeling, including the task of 

clustering a data set.

Global/Local Optima

Loosely speaking, the global optimum of a loss function denotes its unique absolute 

minimum/maximum value across the entire set of admissible (‘feasible’) solutions, as 

opposed to a local optimum pertaining to the minimum/maximum on a subset of the solution 

space; the associated solutions are said to be globally- or locally-optimal. The former simply 

indicates that we cannot ‘do any better’ for a given data-analytic task; whereas the latter, 

typically, but not necessarily, is inferior to the globally-optimal solution.

Related to the definitions of optima are the solution methods, or algorithms, themselves. 

Specifically, for optimization problems, algorithms can be broadly divided into two classes: 
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exact and approximate. Exact algorithms (e.g., dynamic programming, branch and bound, 

etc.) produce guaranteed globally-optimal solutions; whereas, approximate algorithms 

(alternating least squares, expectation-maximization algorithm, etc.) cannot provide this 

guarantee.

Clustering as a Discrete Optimization Problem

The p-median problem is conceptualized as a combinatorial, discrete optimization problem 

where either an object an object falls into class Ck or class Ck′ (where 1 ≤ k, k′ ≤ K, with K 
denoting the total number of classes). Combinatorial optimization problems are 

characterized by non-smooth functions involving discrete or integer variables; combinatorial 

optimization problems are said to be discrete (the terms combinatorial and discrete 

optimization are often used interchangeably in the literature). The set of feasible solutions is 

finite, and a globally-optimal solution always exists (typically, a set of integers, a 

permutation, or partition of N objects), implying the misrepresentation that these problems 

are ‘easy’ and solvable through the explicit search of the entire solution space (‘complete 

enumeration’). The number of feasible solutions, however, grows exponentially with 

problem size. Even for small-scale problems, the computational effort of an exhaustive 

enumeration of all feasible solutions is prohibitive. For example, a seemingly plausible 

strategy for finding the best fitting cluster representation for a data set would aim at 

evaluating all possible combinations of assigning objects to groups, and choose the solution 

that provides a global optimum of the associated loss function. From a certain number of 

objects onward, this does not offer a realistic option, because the number of distinct 

partitions of N objects into K clusters increases approximately as KN/K!. In short, complete 

enumeration of all possible object groupings is not computationally feasible for most 

practical applications.

Sophisticated partial enumeration strategies such as dynamic programming (see Hubert, 

Arabie, & Meulman, 2001, Chapter 3), and branch-and-bound methods (Brusco & Stahl, 

2005, Chapters 2–5) can often facilitate globally-optimal solutions of larger clustering 

problems, without the need for explicit enumeration of the entire solution set, but do face 

serious limitations on the sizes of problems that can be handled. Thus, despite significant 

advancement in the development of exact solution procedures, heuristic algorithms remain 

necessary for combinatorial clustering problems of practical size, with no guarantee of 

identifying a global optimum, but often producing solutions at least within a close 

neighborhood of the desired global optimum.

p-Median Clustering

The p-median clustering model originated in operations research from attempts to optimize 

the planning of facility locations (Hanjoul & Peters, 1985; Kuehn & Hamburger, 1963; 

Maranzana, 1964; Mladenoviĉ, Brimberg, Hansen, & Moreno-Pérez, 2007). For example, 

consider the task of rolling-out a network of medical emergency wards in a densely 

populated area, with multiple candidate sites. Budget constraints limit the actual number of 

facilities to be installed; at the same time, the choice of locations should guarantee maximal 

accessibility within minimal time for the entire population across all communities. The 
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search for the most suitable facility sites requires the evaluation of numerous combinations 

of community assignments to potential facility locations; in operations research known as 

the p-median facility location problem. The p-median clustering method is molded from this 

optimization problem: given a set of N objects, p exemplars (‘medians’) are selected, and the 

remaining N – p objects (‘satellite’) are assigned to medians such that the loss function of 

the total sum of median-to-satellite dissimilarities is minimized. In its most general form, p-

median clustering can be used on data represented by a rectangular matrix containing 

proximities between two distinct sets of entities (such as in the previous example, where cell 

entries correspond to distances between communities and location candidates). Many data 

sets in the social sciences, however, focus on documenting the relationship between entities 

from a single set, often expressed as pairwise interobject dissimilarities and collected into a 

square-symmetric proximity matrix. As an aside, pairwise dissimilarity scores can either be 

directly elicited from subjects, say, through ratings on a scale, or derived from integrating 

multiple attribute ratings. Without loss of generality, we develop the logic of p-median 

clustering in application to square-symmetric proximity matrices.

Concretely, the p-median clustering problem can be formulated as a (linear) integer 

programming problem (IP) and formalized through an objective function (comparable to a 

loss function) subject to constraints imposed on the function variables (often referred to as 

‘decision variables’). The specific IP formulation of p-median clustering is given as the 

minimization problem

(IP) min
X

f (X) = ∑
i = 1

N
∑

j = 1

N
di jxi j ,

where dij represent the given input proximities, and xij denote binary decision variables 

restricted to take on only values of zero or one (thus, the name ‘integer program’). Let D 
represent the collection of interobject dissimilarities, DN×N = {dij}N×N. Then the decision 

variables, xij, are collected into an analogous matrix, XN×N = {xij}N×N. The decision 

variables in X split into two sets: the first, {xjj}, refers to the entries along the main diagonal 

of X. They represent the candidate medians (the subscript j follows from the convention that 

medians are chosen among the column objects). The second set of decision variables, 

{xij}i≠j, denotes the off-diagonal entries in X; they indicate whether a remaining (row) object 

Oi is assigned to a median Oj. Since the decision variables are constrained to values of zero 

or one, they operate as ‘switches turning on or off’ a specific object, either as a median or a 

satellite. If a decision variable is set to a value of one, then the dissimilarity value in the 

corresponding cell in D enters the objective function. As a technical detail, notice that an 

object selected as a median itself always contributes a value of djj = 0 to the objective 

function, with the immediate implication that any p-median clustering problem can be 

‘solved’ trivially by simply setting p = N. In other words, changing the problem structure 

from p to p + 1 will automatically decrease the loss function.

As an example, consider Figure 1. In this figure, there is a set of N = 9 objects located in a 

plane. For illustrative purposes, assume the goal then is to assign these nine objects to p = 3. 
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Despite the striking simplicity of its rationale, p-median clustering poses a very difficult 

partitioning problem because, for each particular choice of p, the globally-optimal solution 

must be identified among 
N
p

 different candidates (note that a candidate solution is well-

defined as soon as a particular set of medians has been selected, because the subsequent 

assignment of remaining objects to medians is fully determined by their row minima across 

median columns). In our example, we must evaluate 
9
3 = 9!

6!3! = 84 different choices for 

selecting cluster centers.

The globally-optimal solution for p = 3 medians (represented as dots with circles around 

them) is shown in Figure 1, with the total sum of median-to-satellite Euclidean distances 

(represented as the lines connecting the satellites to the medians) equalling .77 + .70 + .65 

+ .89 + .86 + 1.07 = 4.94, which corresponds to the partition

= {C1, C2, C3} = {(2), (5), (9, 1, 3, 4, 6, 7, 8)}.

Figure 2 presents matrices D and X side-by-side to illustrate the underlying mechanics for 

the globally-optimal solution of our small-scale example, {(2), (5), (9, 1, 3, 4, 6, 7, 8)}. 

Observe that only entries x22, x55, and x99 along the main diagonal of X (corresponding to 

medians 2, 5, and 9) equal one. The distribution of 0–1-values among the off-diagonal cells 

indicates that all remaining objects, 1, 3, 4, 6, 7, and 8, have been assigned to median object 

9. The value of the objective function is simply computed as the total sum of products of 

corresponding cells in D and X: f(X) = d11x11 + d21x21 + ··· + d89x89 + d99x99 = 4.94. More 

succinctly, solving the p-median IP amounts to searching for a specific 0–1-pattering of X 
that will yield a global minimum of the objective function.

As an additional complication, the choice of the 0–1-values for the decision variables must 

conform to a set of constraints that ensure the identification of an at least feasible solution (a 

formal listing of these conditions is given below). First, the sum of the xjj variables along the 

main diagonal must equal p to guarantee that exactly p objects are selected as medians (see 

constraint 1). Second, the value of any decision variable, xij, can at most equal the value of 

the median variable, with corresponding index j, xjj. Thus, a remaining object, Oi, can be 

assigned to median j if and only if object Oj has been selected as a median (see constraint 2). 

Third, for each row object, Oi, of X, the sum of the xij variables across the j columns is 

limited to equal 1, which translates into the requirement that a remaining object can only be 

assigned to one median (i.e., multiple assignments are blocked, because the resulting sum 

across columns then would exceed one; see constraint 3). Note that for selected medians this 

condition is automatically fulfilled, because then xjj always equals 1. In formal notation, the 

constraints are summarized by

∑
j = 1

N
x j j = p, (1)
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xi j ≤ x j j ∀i, j, (2)

∑
j = 1

N
xi j = 1 ∀i . (3)

The crucial question remains how to find the optimal values for the decision variables that 

conform to the stated constraints.

Solving the p-Median IP Globally Optimal

Brusco and Köhn (2008b) proposed a three-stage method for obtaining globally-optimal 

solutions to p-median clustering problems. The three stages are: (1) multiple restarts of a 

vertex substitution (VS) heuristic (the term ‘vertex’ simply refers to an object as a candidate 

median), (2) Lagrangian relaxation/subgradient optimization, and (3) a branch-and-bound 

algorithm. The three-stage method has obtained globally-optimal solutions to problems with 

up to N = 1, 400 objects and p = 30 clusters. We provide only a brief non-technical account 

of Brusco and Köhn’s three-stage procedure; for an in-depth technical description, the 

interested reader is encouraged to consult the original source, which also provides detailed 

performance results for a collection of test data sets.

Originally proposed by Teitz and Bart (1968), the VS heuristic is an efficient, effective, and 

widely applied method for p-median problems. VS performs a systematic, but succinct 

iterative search among all possible median candidates through consecutively replacing 

selected medians by unselected objects until an exchange step will not yield any further 

reduction of the objective function (i.e., the total sum of median-to-satellite distances). The 

resulting solution is locally optimal with respect to all replacement operations, but not 

necessarily globally optimal. Hence, as p-median clustering represents a minimization 

problem, VS provides at least an upper bound to the optimal solution of the p-median 

clustering IP. The procedure proposed by Brusco and Köhn for p-median clustering employs 

an especially efficient implementation of VS developed by Hansen and Mladenoviĉ 
(19972005) drawing on earlier work by Whitaker (1983).

Cornuejols et al. (1977; see also, Mulway & Crowder, 1979) introduced an elegant (exact) 

solution for relatively large p-median clustering problems through Lagrangian relaxation 

(LR). ‘Relaxation’ means to simplify an optimization problem by removing those 

constraints that are ‘difficult’ to meet. Thus, in the case of a minimization problem, dropping 

constraints will automatically lead to a reduction in the value of the objective function. 

Hence, the solution for the ‘relaxed’ problem can be considered as a lower bound to the 

solution of the original optimization problem. In case of LR, the relaxed constraints are not 

simply discarded from the optimization problem, but are attached with a weighting 

coefficient (‘Lagrangian multiplier’), and incorporated as penalty terms into the objective 

function. In other words, LR represents a rather ‘conservative’ form of relaxation. Still, the 
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LR optimization problem is typically ‘easier’ to solve than the original IP version, and 

provides at least a ‘tight’ lower bound to the optimal solution of the original IP of p-median 

clustering (see also Christofides & Beasley, 1982; Fisher, 1981; Hanjoul & Peeters, 1985). 

LR optimization problems can be solved efficiently by iterative subgradient optimization 

(see Agmon, 1954; Held & Karp, 1970; Motzkin & Schoenberg, 1954), provided a tight 

upper bound on the solution for the original IP is available (say, through VS). Loosely 

speaking, subgradient optimization iteratively cycles through estimating values for the 

decision variables in X, subsequently updating the penalty coefficients for the relaxed 

constraints and the value of the objective function of the LR problem, then followed by 

another estimation-update step until the value of the objective function can no longer be 

reduced. The combination of VS and LR results at least in a narrow interval bracing the 

globally-optimal solution of the original p-median clustering IP. Very often, however, a 

verifiably globally-optimal solution is identified for the original IP if the subgradient 

iterations converge to updated constraint weights all equal to zero (which is equivalent to 

neutralizing the LR relaxation, and, therefore, identical to the original p-median clustering 

IP).

If the solution obtained through VS/LR-subgradient optimization is not globally optimal 

(i.e., the subgradient iterations do not converge to zero LR weights), then a subsequent 

search through branch-and-bound (BAB) is initialized that guarantees a globally-optimal 

solution if convergence is attained. The general idea of BAB is straightforward: the 

optimization problem (as forwarded from VS/LR-subgradient) is decomposed into 

subproblems (‘branching’), thereby allowing for a structured ‘incremental’ enumeration. 

Starting from a particular subproblem, the algorithm explores various stepwise completion 

scenarios (‘nodes’) of the initial partial problem; results are constantly monitored against an 

initial upper bound from a candidate solution for the entire problem (i.e., the locally-optimal 

solution obtained through VS/LR-subgradient optimization). If at a specific node the partial 

solution exceeds the bound, then the node is discarded along with all subsequent branches 

emanating from it (‘pruning’). The algorithm terminates when all nodes of the search tree 

have been pruned/solved (‘convergence’), yielding the global optimum.

Choosing the Number of Medians (i.e., Clusters)

As with most clustering procedures, p-median clustering requires the user to pre-specify the 

number of clusters and the question often arises about the correct way to choose the number 

of clusters. Rousseeuw (1987) introduced the widely accepted silhouette index for choosing 

the number of clusters in the context of p-median clustering. The silhouette index is given as

SIk = ∑
i = 1

N b(i) − a(i)
max a(i), b(i) /N, (4)

where a(i) is the average dissimilarity of object i to all other objects of the cluster to which it 

is assigned and b(i) is the minimum distance from object i to any object that is in a different 
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cluster. Different numbers of clusters are fit to the data, and k is chosen to the value that 

maximizes SIk. The minimum value for SIk is zero, while the maximum value is unity.

Example: Data Set on Perception of Food Items

Our application uses data collected by Ross and Murphy (1999) asking 38 subjects to sort 45 

foods into as many categories as they wished, based on perceived similarity. The data were 

aggregated into proportions of subjects who did not place a particular pair of foods together 

in a common category (thus, these proportions are keyed as dissimilarities in which larger 

proportions represent the less pairwise similar foods). The pairwise dissimilarity scores were 

collected into a 45 × 45 square-symmetric proximity matrix. The ultimate substantive 

question involves the identification of the natural categories of food that may underlie the 

subjects’ classification judgements. The types of categorizations given by the subjects can be 

diverse, implying an intricate, potentially multi-criteria evaluation of the stimuli. For 

example, these might involve the differing situations in which food is consumed, or possibly, 

a more basic notion of what type of food it is. For a few illustrations, ‘egg’ might be 

subsumed among foods that involve breakfast as a common consumption situation, or that 

are dairy products (type). Similarly, ‘spaghetti’ appears related either to those objects that 

are entrees and particularly to those that are Italian (consumption situation), or apparently 

when relying on a different interpretation for the word, to those foods that are cereal-based 

(type). We obtained globally-optimal solutions for 2 ≤ p ≤ 14 clusters. The final number p of 

clusters was determined based on the silhouette index and the percentage reduction in the 

value of the objective function resulting from an increase of the number of medians from p 
to p + 1 (see Table 1). Although the absolute maximum average silhouette index occurs at p 
= 11, the values increase steeply until p = 8 and then begin to become quite flat. The value 

of .5514 for p = 8 also falls within Kauffman and Reusseeuw’s (1990, p. 88) range of 

“reasonable structure”, which is .51 – .70.

The solution with eight clusters, is provided in Table 2 (foods representing cluster centers, 

‘medians’, are listed in the top line in bold face). In summary, the eight clusters can be 

characterized as fruit (cluster 1), vegetables (cluster 2), grain-based foods (cluster 3), 

‘munchies’ (cluster 4), pastries/tarts/dessert (cluster 5), dairy products (cluster 6), water 

(cluster 7), and animal-based foods (cluster 8).

Discussion and Conclusion

The choice among the myriad of available clustering methods — model- or (combinatorial) 

nonmodel-based, hierarchical or non-hierarchical, and so on (for a recent documentation, see 

Gan, Ma, & Wu, 2007) — represents an often difficult decision. Sometimes, theoretical 

considerations can help; for example, is the continuity assumption underlying most model-

based clustering methods justifiable for the given data? Or, were the data generated by a 

discrete process such that combinatorial clustering or discrete latent class models should be 

preferred? Many practical applications, however, lack unequivocal theoretical support for 

such a complex decision; instead, after exploring the results of multiple clustering methods 

applied to a particular data set, one might simply go with what ‘works best’.

Köhn et al. Page 10

Psychol Methods. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



K-means clustering and model-based clustering provide a very reasonable choice if object 

categorization is to be analyzed in light of a prototype theory. Contrastingly, p-median 

classification incorporates a clustering rationale, most closely related to a perspective on 

object categorization elaborated by the exemplar model in cognitive theory (i.e., object 

categories are constructed around manifest objects). So, researchers studying exemplar-

driven object classification, might, indeed, consider p-median clustering as a viable 

clustering technique. In addition, Kaufman and Rousseeuw’s (2005, Chapter 2) statement, 

referenced earlier, that the p-median approach is more robust and less sensitive to outliers 

than K-means partitioning might recommend the former as particularly suitable for 

clustering data potentially contaminated by such distorting observations.

One of its biggest advantages is that the p-median algorithm can handle flexibly a large 

variety of input formats of proximity matrices, be they square-symmetric, square-

asymmetric, or rectangular, containing interval-scale or categorical data (Brusco & Köhn, 

2008a). Contrastingly, most model-based clustering procedures (and non-model based 

clustering procedures) typically only accommodate rectangular input matrices, with rows 

referring to objects, and columns to variables having at least interval scale level.

p-median clustering represent combinatorial optimization problems. Hence, it suffers from 

an explosive growth of feasible solutions, as the number of objects increases, and for 

realistically-sized data sets, each method must rely on heuristics that often produce locally-

optimal rather than globally-optimal solutions. For most researchers, who use clustering as a 

means to an end for an applied data-analytic task, a ‘good’ locally-optimal solution will be 

perfectly fine.

Fortunately, the three-stage p-median clustering procedure proposed by Brusco and Köhn 

(2008b) identifies guaranteed globally-optimal solutions for object sets of a size roughly up 

to N = 1, 400, and at most 30 clusters (depending on the complexity of the problem 

structure).

The fast VS heuristic (Hansen & Mladenoviĉ, 1997, 2005; Whitaker, 1983), the first module 

in Brusco and Köhn’s (2008a, 2008b) three-stage p-median procedure, generally performs 

well for problems where the number of clusters equals 20 or fewer; however, computation 

time explodes, accompanied by a degrading performance as an increasing function of p > 20. 

Still, for most practical applications in the behavioral and social sciences, partitions with 

more than 20 classes are seldom interpretable. Avella, Sassano, and Vasil’ev (2007) describe 

a branch-cut-price algorithm that guarantees globally-optimal clustering solutions for two-

dimensional Euclidean p-median problems (corresponding to our small-scale introductory 

example) as large as N = 3, 795 and p = 500; so far, however, the performance of their 

method on higher-dimensional or non-Euclidean proximity data is unknown.

In summary, if obtaining the globally-optimal solution to a clustering task is mandatory, 

then, depending on the size of the given data set, a researcher would likely fare well using 

the p-median method.
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Computational Logistics

The VS- and LR-subgradient optimization modules of Brusco and Köhn’s (2008a, 2008b) 

three-stage procedure for p-median clustering have been written in MATLAB; the BAB-

module, is currently only available as an executable FORTRAN file.

We already mentioned that Kaufman and Rousseeuw (2005, Chapter 2) provide R-code for a 

heuristic p-median routine, pam, (Kaufman and Rousseeuw refer to p-median clustering as 

‘partitioning around medoids’) that represents an implementation of VS, refined by the 

innovations proposed by Whitaker (1983), but does not offer the advanced stage 2 and 3 

modules, LR-subgradient optimization and BAB, of Brusco and Köhn’s (2008a, 2008b) 

implementation (pam is available from http://finzi.psych.upenn.edu/library/cluster/html/

pam.html).

Although considerable progress has been made in the development of large-scale exact and 

approximate procedures for the p-median problem (Avella et al., 2007; Hansen, Mladenoviĉ, 

& Pérez-Brito, 2001; Resende & Werneck, 2004) most of the reported results for large test 

problems correspond to two-dimensional Euclidean data, and little is known about their 

performance on a broader class of proximity data. In addition, the aforementioned authors 

implemented their methods on workstations using optimized compilation of FORTRAN and 

C++ codes, respectively, that most practitioners might find difficult to operate.

Directions of future research on the p-median clustering algorithm will focus on accessible 

computer implementations that produce high-quality solutions for problems of large set 

sizes, N (and a further increase in the number of medians, p), as well as diversified data 

structures. For example, most recently, Brusco and Köhn (2008c) proposed a p-median 

heuristic based on simulated annealing that was successfully applied to test problems with 

6,000 or more objects, constrained only by computer RAM limitations.
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Figure 1. 
Scatter plot of the globally-optimal solution for the nine-object set with p = 3 medians.
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Figure 2. 
Dissimilarities and matrix of binary decision variables, with entries corresponding to the 

globally-optimal solution marked by circles.

Köhn et al. Page 17

Psychol Methods. Author manuscript; available in PMC 2018 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Köhn et al. Page 18

Table 1

Globally-optimal p-median solutions for 2 ≤ p ≤ 14, percentage reduction in the objective function, and 

silhouette indices

p Global Optimum Reduction p to p + 1 in % Silhouette Index (SIk)

2 2871 — .1630

3 2385 16.93 .2227

4 1946 18.41 .3129

5 1619 16.80 .3843

6 1358 16.12 .4330

7 1119 17.60 .4884

8 964 13.85 .5514

9 885 8.20 .5535

10 817 7.68 .5580

11 751 8.08 .5594

12 696 7.32 .5454

13 641 7.90 .5292

14 591 7.80 .5196
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Table 2

Globally-optimal food clustering solution, with p = 8 medians. Foods representing cluster centers, ‘medians’, 

are listed in the top line in bold face — the numbers in parentheses refer to the original numerical codes used 

by Ross and Murphy (1999).

Cluster 1 2 3 4

Apple (1) Broccoli (7) Bagel (14) Pretzels (22)

Watermelon (2) Lettuce (6) Rice (12) Crackers (20)

Orange (3) Carrots (8) Bread (13) Popcorn (23)

Banana (4) Corn (9) Oatmeal (15) Nuts (24)

Pineapple (5) Onions (10) Cereal (16) Potato Chip (25)

Potato (11) Muffin (17)

Pancake (18)

Spaghetti (19)

Granola Bar (21)

Cluster 5 6 7 8

Pie (30) Cheese (35) Water (38) Pork (42)

Doughnuts (26) Yogurt (33) Soda (39) Hamburger (40)

Cookies (27) Butter (34) Steak (41)

Cake (28) Eggs (36) Chicken (43)

Chocolate Bar (29) Milk (37) Lobster (44)

Pizza (31) Salmon (45)

Ice Cream (32)
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